当前位置:文档之家› 二次函数与相似三角形问题(含答案)

二次函数与相似三角形问题(含答案)

二次函数与相似三角形问题(含答案)
二次函数与相似三角形问题(含答案)

综合题讲解 函数中因动点产生的相似三角形问题

例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式...

求得抛物线的解析式为x x 4

1y 2

+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;

⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......

为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况

2. 函数中因动点产生的相似三角形问题一般有三个解题途径

① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y

x

E

Q P

C B O

A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、

B 两点,交y 轴于点

C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;

(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形?并证明你的结论;

(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.

练习1、已知抛物线2

y ax bx c =++经过5330P E ?

????

,,

,及原点(00)O ,.

(1)求抛物线的解析式.(由一般式...

得抛物线的解析式为2253

33

y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.

(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形

OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D

处。已知折叠CE =,且3

tan 4

EDA ∠=。 (1)判断OCD △与ADE △是否相似?请说明理由; (2)求直线CE 与x 轴交点P 的坐标;

(3)是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。

练习3、在平面直角坐标系xOy 中,已知二次函数2

(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点

A 在点

B 的左边)

,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式...

得抛物线的解析式为2

23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,,

(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

O

练习4图

练习4 、如图所示,已知抛物线2

1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.

(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.

(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.

练习5、已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=o

,点A C ,的坐标分别

为(30)A -,

,(10)C ,,3

tan 4

BAC ∠=. (1)求过点A B ,的直线的函数表达式;点(30)A -,

,(10)C ,,B (13),,3944

y x =+ (2)在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如P Q ,分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m 使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.

x

练习6、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式;

(2) 设抛物线顶点为D ,求四边形AEDB 的面积;

(3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。

练习7、如图,已知抛物线y =34

x 2

+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =

3

4t

x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.

(1)填空:点C 的坐标是_ _,b =_ _,c =_ _; (2)求线段QH 的长(用含t 的式子表示);

(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所

A B x

y

O

Q

H P

C

(1)求出抛物线的解析式;

(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.

练习9、已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线2

14

y x =

上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接

CF DF 、.

(1)求点A B F 、、的坐标; (2)求证:CF DF ⊥;

(3)点P 是抛物线2

14

y

x =

对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.

练习10、当x =2时,抛物线y =ax 2+bx +c 取得最小值-1,并且抛物线与y 轴交于点C (0,3),与x

轴交于点A 、B .

(1)求该抛物线的关系式;

(2)若点M (x ,y 1),N (x +1,y 2)都在该抛物线上,试比较y 1与y 2的大小;

(3)D 是线段AC 的中点,E 为线段AC 上一动点(A 、C 两端点除外),过点E 作y 轴的平行线EF 与抛物线交于点F .问:是否存在△DEF 与△AOC 相似?若存在,求出点E 的坐标;若不存在,则说明理由.

练习11、如图,一次函数y=-2x 的图象与二次函数y=-x 2+3x 图象的对称轴交于点B.

(1)写出点B 的坐标 ;

(2)已知点P 是二次函数y=-x 2+3x 图象在y 轴右侧..部分上的一个动点,将直线y=-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为 .

O B C D

A B C D O x y

E

F

3 (第26题图)

(1)求抛物线的解析式;

(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;

(3)在x轴下方的抛物线上是否存在一点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

练习13、已知:函数y=ax2+x+1的图象与x轴只有一个公共点.

(1)求这个函数关系式;

(2)如图所示,设二次

..函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;

(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.y

练习14、如图,设抛物线C 1:()512

-+=x a y , C 2:()512

+--=x a y ,C 1与C 2的交点为A , B ,点A 的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;

(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG . 记过C 2顶点M的直线为l ,且l 与x 轴交于点N .

① 若l 过△DHG 的顶点G ,点D 的坐标为(1, 2),求点N 的横坐标; ② 若l 与△DHG 的边DG 相交,求点N 的横坐标的取值范围.

练习15、如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP=x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原。

(1)当x=0时,折痕EF 的长为 ;当点E 与点A 重合时,折痕EF 的长为 ; (2)请写出使四边形EPFD 为菱形的x 的取值范围,并求出当x=2时菱形的边长;

(3)令2

y EF =,当点E 在AD 、点F 在BC 上时,写出y 与x 的函数关系式。当y 取最大值时,判断EAP V 与PBF V 是否相似?若相似,求出x 的值;若不相似,请说明理由。

练习16、如图,已知 (4,0)A ,(0,4)B ,现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C .

(1) 求C 点坐标及直线BC 的解析式;

(2) 一抛物线经过B 、C 两点,且顶点落在x 轴正半轴上,求该抛物线的解析式并画出函数图象; (3) 现将直线BC 绕B 点旋转与抛物线相交与另一点P ,请找出抛物线上所有满足到直线AB 距离为32的点P .

参考答案

例题、解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-= ∵抛物线过原点, ∴1)20(a 02+-= ∴4

1a -

=. 抛物线的解析式为1)2x (41y 2+--=,即x x 4

1

y 2+-=

⑵如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB,

由1)2x (4

102

+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6

将x =6代入1)2x (4

1y 2+--=,得y =-3,

∴D(6,-3);

根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB 是平行四边形,此时D 点的坐标为(-2,-3),

当OB 为对角线即四边形OCBD 是平行四边形时,D 点即为A 点,此时D 点的坐标为(2,1) ⑶如图2,由抛物线的对称性可知:AO =AB,∠AOB =∠ABO. 若△BOP 与△AOB 相似,必须有∠POB =∠BOA =∠BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1)

∴直线OP 的解析式为x 2

1

y -=

由x x 41x 212

+-=-,

得6x ,0x 21==

.∴P(6,-3)

过P 作PE ⊥x 轴,在Rt △BEP 中,BE =2,PE =3, ∴PB =13≠4.

∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO 与△BAO 不相似,

同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.

练习1、解:(1)由已知可得:

3375

04

20a a c ?+=?

?+=?

?=??

解之得,203a b c =-==,.

因而得,抛物线的解析式为:2233

y x x =-+. (2)存在.

设Q 点的坐标为()m n ,

,则223n m =-

+, 要使,BQ PB OCP PBQ CP OC =△∽△

3m -=

223m m

+-=

解之得,12m m =.

当1m =2n =,即为Q

点,所以得Q

要使,BQ PB OCP QBP OC CP =△∽△

,则有33n -=

,即223333m +=

解之得,12m m =

m =时,即为P 点,

当1m =3n =-

,所以得3)Q -. 故存在两个Q 点使得OCP △与PBQ △相似.

Q

点的坐标为3)-.

(3)在Rt OCP △

中,因为tan CP COP OC ∠=

=.所以30COP ∠=o

. 当Q

点的坐标为时,30BPQ COP ∠=∠=o

. 所以90OPQ OCP B QAO ∠=∠=∠=∠=o

因此,OPC PQB OPQ OAQ ,

,,△△△△都是直角三角形.

QA

即有30POQ QOA QPB COP ∠=∠=∠=∠=o

. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠=o

, 所以OQA OQP △≌△.

练习2 解:(1)OCD △与ADE △相似。 理由如下:

由折叠知,90CDE B ∠=∠=°,

1290∠+∠=∴°,13902 3.∠+∠=∴∠=∠o Q ,

又90COD DAE ∠=∠=∵°,

OCD ADE ∴△∽△。

(2)3

tan 4

AE EDA AD ∠==∵,∴设AE=3t , 则AD=4t 。

由勾股定理得DE=5t 。

358OC AB AE EB AE DE t t t ==+=+=+=∴。

由(1)OCD ADE △∽△,得

OC CD

AD DE

=, 845t CD t t

=∴, 10CD t =∴。

在DCE △中,2

2

2

CD DE CE +=∵,

222(10)(5)t t +=∴,解得t=1。

∴OC=8,AE=3,点C 的坐标为(0,8), 点E 的坐标为(10,3), 设直线CE 的解析式为y=kx+b ,

103k b +=??,∴解得12k ?

=-??,

图1

2

1

82

y x =-+∴,则点P 的坐标为(16,0)

。 (3)满足条件的直线l 有2条:y=-2x+12, y=2x -12。

如图2:准确画出两条直线。

练习3

解:(1)Q 二次函数图象顶点的横坐标为1,且过点(23),和(312)--,,

∴由1242393212.

b

a a

b

c a b ?-=??++=??-+=-?

?,, 解得123.a b c =-??

=??=?,,

∴此二次函数的表达式为 223y x x =-++.

(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.

在223y x x =-++中,令0y =,则由2

230x x -++=,解得1213x x =-=,

(10)(30)A B ∴-,,,.

令0x =,得3y =.(03)C ∴,

. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .

Q 点B 的坐标为(30),,点C 的坐标为(03),,点A 的坐标为(10)-,

4345.

AB OB OC OBC ∴===∠=o

,, BC ∴==.

要使BOD BAC △∽△或BDO BAC △∽△, 已有B B ∠=∠,则只需

BD BO

BC BA

=

, ①

或.BO BD

BC BA

=

成立.

若是①,则有344

BO BC BD BA

?=

=

=g .

而45OBC BE DE ∠=∴=o ,.

∴在Rt BDE △中,由勾股定理,得2

2222

24BE DE BE BD ??+=== ? ???

解得 9

4

BE DE ==(负值舍去)

. 93

344OE OB BE ∴=-=-=.

∴点D 的坐标为3944?? ???

,.

将点D 的坐标代入(0)y kx k =≠中,求得3k =.

∴满足条件的直线l 的函数表达式为3y x =.

[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC △∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D

的坐标为3944??

???

,.]

若是②,则有

BO BA BD BC =

==g .

而45OBC BE DE ∠=∴=o

,.

∴在Rt BDE △中,由勾股定理,得2222

22BE DE BE BD +===.

解得

2BE DE ==(负值舍去)

. 321OE OB BE ∴=-=-=.

∴点D 的坐标为(12),.

将点D 的坐标代入(0)y kx k =≠中,求得2k =.

∴满足条件的直线l 的函数表达式为2y x =.

∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三

角形与BAC △相似,且点D 的坐标分别为3944??

???

,或(1

2),.

将点(10)E ,的坐标代入3y kx =+中,求得3k =-.

∴此直线的函数表达式为33y x =-+.

设点P 的坐标为(33)x x -+,,并代入2

23y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).

512x y ∴==-,. ∴点P 的坐标为(512)-,.

此时,锐角PCO ACO ∠=∠. 又Q 二次函数的对称轴为1x =,

∴点C 关于对称轴对称的点C '的坐标为(23),. ∴当5p x >时,锐角PCO ACO ∠<∠;

当5p x =时,锐角PCO ACO ∠=∠; 当25p x <<时,锐角PCO ACO ∠>∠.

练习四

解:(1)令0y =,得2

10x -= 解得1x =± 令0x =,得1y =-

∴ A (1,0)- B (1,0) C (0,1)-

(2)∵OA=OB=OC=1 ∴∠BAC=∠ACO=∠BCO=45o

∵AP ∥CB , ∴∠PAB=45o

过点P 作PE ⊥x 轴于E ,则?APE 为等腰直角三角形 令OE=a ,则PE=1a + ∴P (,1)a a +

∵点P 在抛物线2

1y x =-上 ∴2

11a a +=-

解得12a =,21a =-(不合题意,舍去) ∴PE=3

∴四边形ACBP 的面积S =12AB?OC+12AB?PE=11

2123422

??+??= (3). 假设存在

∵∠PAB=∠BAC =45o

∴PA ⊥AC

∵MG ⊥x 轴于点G , ∴∠MGA=∠PAC =90o

在Rt △AOC 中,OA=OC=1 ∴

在Rt △PAE 中,AE=PE=3 ∴

AP= 设M 点的横坐标为m ,则M 2

(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?AMG ∽?PCA 时,有

AG PA =MG

CA

∵AG=1m --,MG=2

1m -

2=

解得11m =-(舍去) 22

3

m =

(舍去) (ⅱ) 当?MAG ∽?PCA 时有AG CA =MG

PA

2

=

解得:1m =-(舍去) 22m =- ∴M (2,3)-

② 点M 在y 轴右侧时,则1m > (ⅰ) 当?AMG ∽?PCA 时有

AG PA =MG

CA

∵AG=1m +,MG=2

1m -

2

=

解得11m =-(舍去) 243m = ∴M 47

(,)39

(ⅱ) 当?MAG ∽?PCA 时有

AG CA =MG

PA

2=

解得:11m =-(舍去) 24m = ∴M (4,15)

∴存在点M ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似

M 点的坐标为(2,3)-,47

(,)39

,(4,15)

练习5、

解:(1)Q 点(30)A -,,(10)C ,

4AC ∴=,3

tan 434

BC BAC AC =?=?=∠,B 点坐标为(13),

设过点A B ,的直线的函数表达式为y kx b =+,

由0(3)3k b k b

=?-+??

=+? 得34k =,94b =∴直线AB

39

(2)如图1,过点B 作BD AB ⊥,交x 轴于点D

在Rt ABC △和Rt ADB △中,

BAC DAB =Q ∠∠ Rt Rt ABC ADB ∴△∽△,

D ∴点为所求又4tan tan 3

ADB ABC ==∠∠,

49tan 334CD BC ADB ∴=÷=÷

=∠134OD OC CD ∴=+=,1304D ??

∴ ???

, (3)这样的m 存在

在Rt ABC △中,由勾股定理得5AB =如图1,当PQ BD ∥时,APQ ABD △∽△

则1334135

34

m

m

+

-=+,解得259m =

如图2,当PQ AD ⊥时,APQ ADB △∽△

1334135

34

m

m

+

-=+

,解得12536m =

图1

图2

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

相似三角形综合题练习

相似三角形综合题练习 类型一相似三角形中动点问题 例1:如图正方形ABCD的边长为2,AE=EB,线段MN的两端点分别在CB、CD上滑动,且MN=1,当CM为何值时△AED与以M、N、C为顶点的三角形相似? 变式:如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA与△BCA相似. 例2:如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式; (3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ? A B D C E N

N C M B 变式:如图,在矩形ABC D中,AB=12cm,BC=8cm.点E 、F、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2c m/s ,点F 的速度为4cm/s,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S(c m2) (1)当t =1秒时,S 的值是多少? (2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围. (3)若点F 在矩形的边B C上移动,当t 为何值时,以点E 、B 、F 为顶 点的三角形与以点F 、C 、G为顶点的三角形相似?请说明理由. 例3:如图,在梯形ABC D中,AD ∥BC,AD =3,DC=5,BC=10,梯形的高为4.动点M 从B点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动N 同时从C 点出发沿线段C D以每秒1个单位长度的速度向终点D 运动.设运动的时间为t(秒). (1)当MN//AB 时,求t 的值; (2)试探究:t 为何值时,△MN C为直角三角形.

2018中考复习——二次函数和相似三角形

2018数学中考复习 ——二次函数与相似三角形 二次函数中因动点问题产生的相似三角形的解题方法一般有以下三种: 1.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A 、B 、C 三点的抛物线解析式; (2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE; (3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F , 试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗请说明理由. 2、如图,已知抛物线过点A (0,6),B (2,0),C (7, 5 2 ). 若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称. (1)求抛物线的解析式; (2)求证:∠CFE=∠AFE ; (3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由. O A B E D F C x N M

3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE 的面积. (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标. (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为 顶点的三角形与△BCE 相似若存在,求m 的值;若不存在,请说 明理由. 4. 如图,已知抛物线 与x 轴的正半轴分别交于点A 、B (点A 位于点 B 的左侧),与y 轴的正半轴交于点 C . ⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示); ⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△ QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由. 5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三 x y P O C B A

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

初中数学经典相似三角形练习题(附参考答案)

经典练习题相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. $ 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.

4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. ; 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. | 7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=_________°,BC=_________; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: ' (1)经过多少时间,△AMN的面积等于矩形ABCD面积的 (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似若存在,求t的值;若不存在,请说明理由.

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题 二次函数中因动点产生的相似三角形问题一般有三个解题途径: 例题1:已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 (1)求抛物线的解析式;(用顶点式求得抛物线的解析式为x x 41 y 2+-=) (2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO =AB,△AOB =△ABO. 若△BOP 与△AOB 相似,必须有△POB =△BOA =△BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1) △直线OP 的解析式为x 21y -= 由 x x 41 x 212+-=- , 得6x ,0x 21== .△P(6,-3) 过P 作PE△x 轴,在Rt△BEP 中,BE =2,PE =3, △PB =13≠4. △PB≠OB,△△BOP≠△BPO, △△PBO 与△BAO 不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P,使得△BOP 与△AOB 相似. 例1题图 图1 O A B y x O A B y x 图2 E A' O A B P y x 图2 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ② 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③ 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

初三数学相似三角形练习题集

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 初三数学相似三角形练习题集 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

相似三角形练习题 1.如图所示,给出下列条件: ①;②;③;④. 其中单独能够判定的个数为() A.1 B.2 C.3 D.4 2.如图,已知,那么下列结论正确的是() A.B.C.D. 3. 如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为 1:4.其中正确的有:() A.0个B.1个C.2个D.3个 4.若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为() A.1∶4B.1∶2C.2∶1D.1∶ 5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值() D B C A N M O

A.只有1个 B.可以有2个 C.有2个以上但有限 D.有无数个 6.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD 的中点,连接OM、ON、MN,则下列叙述正确的是() A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 7.如图,在方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是() A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 8.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为() A.12.36cm B.13.6cm C.32.36cm D.7.64cm 9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米, AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 () A.3米B.0.3米C.0.03米D.0.2米 10、在比例尺为1︰10000的地图上,一块面积为2cm2的区域表示的实际面积是()

二次函数中相似三角形存在性

相似三角形的存在性(作业) 例:在平面直角坐标系中,二次函数图象的顶点坐标为C (4,3-),且与x 轴 的两个交点间的距离为6. (1)求二次函数的解析式; (2)在x 轴上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由. x y O C B A x y O C B A 第一问:研究背景图形 【思路分析】 ①由顶点坐标C (4,3-)可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A (___,___),B (___,___). ②设交点式__________________,再代入坐标__________可求解出解析式__________________. 6 (4,-3) (7,0) (1,0) x y O C B A 【过程示范】 ∵顶点坐标为C (4,3-), ∴抛物线对称轴为直线x =4, 又∵抛物线与x 轴的两个交点间的距离为6, ∴由抛物线的对称性可知:A (1,0),B (7,0). 设抛物线的解析式为(1)(7)y a x x =--, 分析不变特征,确定分类标准. 定点:_____________; 动点:_____________; 目标三角形: 特征:

Q 1 E x y O D C B A Q 2 x y O B A 将C (4,3-)代入可得,39 a =, ∴所求解析式为238373999 y x x = -+. 第二问:整合信息、分析特征、设计方案 【思路分析】 相似三角形存在性问题也是在存在性问题的框架下进行的: ①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形. ②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ = _____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况. ③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证. 【过程示范】 存在点Q 使得△QAB 与△ABC 相似. 由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于D , 则AD =3,CD =3. 在Rt △ACD 中,tan ∠DAC = 3 3 , ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=3 6332 ? =,BE =3, ∴E (10,0),Q 1(10,33). 当x =10时,y =33, ∴点Q 1在抛物线上.

中考相似三角形经典综合题

中考相似三角形经典综合题 1、如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C 向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线 段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 3 3 QG? 2、在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA. (Ⅰ)如图①,求点E的坐标; (Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′. ①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标; ②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

3、如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=7时,点P与点Q相遇; (2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形? (3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位. ①求s与ι之间的函数关系式; ②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直 线PC上,求折叠后的△APD与△PCQ重叠部分的面积. 4、如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k·AE,AC=k·AD,点M是DE的中点,直线AM交直线BC于点N. (1)探究∠ANB与∠BAE的关系,并加以证明. (2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并证明变化后∠ANB与∠BAE的关系. 5.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,B ∠和C ∠都为锐角,M为AB一动点(点M与点A B 、不重合),过点M作MN BC ∥,交AC于点N,在AMN △中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h. (2)将AMN △沿MN折叠,使AMN △落在四边形BCNM所在平面,设点A落在平面 A B C E M D N

二次函数中的相似三角形

二次函数中的相似三角形 例1(2011绵阳):已知抛物线y = x2 -2x +m -1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B. (1)求m的值; (2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形; (3)将此抛物线向下平移4个单位后,得到抛物线C’,且与x轴的左半轴交于E点,与y轴交于F点。如图,请在抛物线C’上求点P,使得△EFP是以EF为直角边的直角三角形. 例1图例1(1)(2)图例1(3)图

例2:如图,抛物线y = ax2 +bx + 1与x轴交于两点A(-1,0)、B(1,0)与y轴交于点C.(1)求抛物线的解析式; (2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 例2(1)(2)图例2(3)图

例3:已知,如图,二次函数y = ax2 - 2ax + c(a ≠ 0)的图象与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0). (1)求该二次函数的关系式并写出它的对称轴和顶点坐标; (2)点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标(2,0).问:是否存在这样的直线l.使△ODF是等腰三角形?若存在,请求出点P坐标;若不存在,请说明理由. 思考:在(1)中抛物线的对称轴上是否存在点M,使△BCM是直角三角形?若存在,请直接写出点M坐标;若不存在,请说明理由. 例3(1)(2)图例3(3)图 例3思考

相似三角形综合题精选

相似三角形综合题精选 1、在Rt ABC ?中, ∠ACB =90°, CD AB ⊥,垂足为D . E 、F 分别是AC 、BC 边上一点, 且CE = 13AC ,BF =1 3BC . (1 )求证∶AC BC =CD BD . (2 )求EDF ∠的度数. 2、在矩形ABCD 中,AB =4,AD =5,P 是射线BC 上的一个动点,作PE ⊥AP ,PE 交射线DC 于点E ,射线AE 交射线BC 于点F ,设BP =x ,CE =y . (1)如图,当点P 在边BC 上时(点P 与点B 、C 都不重合),求y 关于x 的函数解析式,并 写出它的定义域; (2)当x =3时,求CF 的长; (3)当EP/AP=2 1 时,求BP 的长. F F E D C B A

3、(1)在ABC ?中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠. ①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长; ②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域; (2)正方形ABCD 的边长为5(如图2),点P 、Q 分别在直线..CB 、DC 上(点P 不与 点C 、点B 重合),且保持?=∠90APQ .当1=CQ 时,写出线段BP 的长 (不需要计算过程,请直接写出结果). 图1 A B C 备用图 A B C P Q A B C D 图2

※ 课堂练习: 1、在ABC ?和AED ?中, AB ·AD =AC ·AE ,CAE ∠=BAD ∠,ADE S ?=4ABC S ?. 求证∶DE =2BC . 2、如图1,在平行四边形ABCD 中,CD AC =. (1)求证:ACB D ∠=∠; (2)若点E 、F 分别为边BC 、CD 上的两点,且CAD EAF ∠=∠.(如图2) ① 求证:ADF ?∽ACE ?; ② 求证:EF AE =. (图1) (图 2) E D C B A

二次函数与相似三角形

课题二次函数与相似三角形 教学目标知识与 技能 根据条件寻找或构造相似三角形,从而得出点的坐标。 过程与 方法 通过复习,掌握中考题型中二次函数的综合应用。 情感态 度与价 值观 培养学生的参与意识和探索精神。 教学重点根据条件寻找或构造相似三角形 教学难点根据条件寻找或构造相似三角形 教学准备课件,活页练习 教学课时1课时 教学过程个案修改 (手写)一、导入: 我们已经学完了二次函数的基础知识,从今天开始我们要学习二次函 数与其他知识的综合应用。首先,我们来学习中考中最常见的一种—— 二次韩数与相似三角形。 二、复习提问: 1、二次函数的一般形式是 2、如何确定一条抛物线与X轴和y轴的交点坐标? 3、抛物线的顶点坐标如何确定? 4、相似三角形的判断方法有哪些? 三、例题讲解: .如图,已知抛物线y=–(x–2)2+1 的图像与x轴交于A、B 两点 (点A在点B左侧),与y轴交于点C. (1)求点A,点B,点C的坐标;

(2)若点D是抛物线的顶点,DH垂直于x轴,垂足为H,试判断直角三角形DHA与直角三角形COB是否相似?说明理由. (3)若点M在抛物线上且在x轴上方,过点M作MG垂直于x轴, 垂足为点G,是否存在M,使得△AMG与△AOC相似。若存在,求出M 点坐标;若不存在,说明理由。 分析: (1)第一步是基础知识,可由学生自己解决,只对个别不会的学生加以辅导,可以由B号学生帮助解决 (2)第二步要判断两个直角三角形相似,可以证明夹着直角的四条边成比例;另外,还要注意强调格式——先回答问题,再书写证明过程(3)第三步要先设出点M的坐标,进一步表示出MG和AG的长度,然后再分两种情况利用四条线段成比例得方程,从而解得点M的坐标。另外,题目中“点M在抛物线上且在x轴上方”能给我们 什么信息,需要注意什么? 教学组织: (1)学生自己分析题意,找出不会的地方; (2)小组内讨论,初步解决 (3)汇总不能解决的问题,教师分析解决 (4)书写第(3)问解答过程,A号展示 四、变式练习: 上题中,若点D是抛物线的顶点,点M在抛物线上且在x轴上方,

初三数学_相似三角形练习题

相似三角形练习题 1.如图所示,给出下列条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③ AC AB CD BC = ;④2 AC AD AB =g . 其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4 2.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A . AD BC DF CE = B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 3. 如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为 1: 4.其中正确的有:( ) A .0个 B .1个 C .2个 D .3个 4.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4 B .1∶2 C .2∶1 D .1∶2 5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个 6.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中 点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 7.如图,在55?方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向 右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格 8.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm ,则它的宽约为( ) A .12.36cm B.13.6cm C.32.36cm D.7.64cm 9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015 D B C A N M O

专题训练二次函数与相似三角形

专题训练:二次函数与相似三角形 例1、如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式; ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 例2、已知:如图,抛物线22 1 412-+= x x y 与y x 、轴分别相交于A 、B 两点,将△AOB 绕着点O 逆时针旋90°到△''A OB ,且抛物线2 2(0)y ax ax c a =++≠过点''B A 、。 (1)求A 、B 两点的坐标; (2)求抛物线2 2y ax ax c =++的解析式; (3)点D 在x 轴上,若以'B D 、B 、为顶点的三角形与△B B A ''相似,求点D 的坐标. 图1 O A B y x O A B y x 图 2 B' A'O B A y x

例3、已知:矩形OABC 在平面直角坐标系中的位置如图所示,()6,0A ,()0,3C ,直线 3 4 y x = 与BC 边交于D 点. (1)求D 点的坐标; (2)若抛物线2 y ax bx =+经过A 、D 两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 是对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求出符合条件的点P .

例4、已知抛物线c bx x y ++=2 4 3与坐标轴交于点A,B,C 三点,A 点的坐标为)0,1(-,过点C 的直线343 -= x t y 与x 交于点,Q 点P 是线段BC 上的一个动点,过点P 作OB PH ⊥于点H ,若)10(,5<<=t t PB ,请回答下面的问题; (1)、求出抛物线的解析式 (2)、求线段QH 的长,(用含有t 的式子表示) (3)、根据P 点的变化,是否存在t 的值,使得以点Q H P ,,为顶点的三角形与COQ ?相似?若存在,求出所有的t 的值,若不存在,说明理由;

专题:相似三角形综合题型

专题:相似三角形综合题型 1.如图,已知△ABC 的面积是3的等边三角形,△ABC ∽△ADE ,AB=2AD , ∠BAD=45°,AC 与DE 相交于点F ,则△AEF 的面积等于__________(结果保留根号). 【答案】 4 3 3- 2.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E , 连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1) 求证:△ADF ∽△DEC (2) 若AB =4,AD =33,AE =3,求AF 的长. 3.(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点 P .求证: QC PE BQ DP =. (2) 如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接 AG ,AF 分别交DE 于M ,N 两点. ①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2 =DM·EN . 【答案】(1)证明:在△ABQ 中,由于DP ∥BQ , ∴△ADP ∽△ABQ , ∴DP/BQ =AP/AQ . 同理在△ACQ 中,EP/CQ =AP/AQ . ∴DP/BQ =EP/CQ . (2) 9 2. (3)证明:∵∠B +∠C =90°,∠CEF +∠C =90°. ∴∠B =∠CEF , 又∵∠BGD =∠EFC , ∴△BGD ∽△EFC . ∴DG/CF =BG/EF , ∴DG·EF =CF·BG

又∵DG =GF =EF ,∴GF 2 =CF·BG 由(1)得DM/BG =MN/GF =EN/CF ∴(MN/GF )2=(DM/BG )·(EN/CF ) ∴MN 2 =DM·EN 4.如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 ,当90α=°时, BP BQ 的值是 ; (2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求 BP BQ 的值; ②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积. (3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使 1 2 BP BQ =?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 【答案】解:(1)矩形(长方形); 4 7 BP BQ =. (2)① POC B OA ''∠=∠,PCO OA B ''∠=∠90=°, COP A OB ''∴△∽△. CP OC A B OA ∴=''', 即668CP =, 9 2 CP ∴=,72 BP BC CP =-= . 同理B CQ B C O '''△∽△ CQ B C C Q B C '∴ =''' , 即106 68CQ -=, 3CQ ∴=,11BQ BC CQ =+=. 722 BP BQ ∴ =. ②在OCP △和B A P ''△中, ) (图3) (图2) x

相关主题
文本预览
相关文档 最新文档