当前位置:文档之家› 量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2

量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2

量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2
量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学第二章总结

第二章 1.波函数/平面波: (1)频率和波长都不随时间变化的波叫平面波。 (2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数 2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子. 3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。 由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。 (2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。 4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|2 5.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2 d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2 d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。 7.归一化: C ∫∞|Φ(x,y,z,t)|2 d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2 d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ?Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2 故把(1)式改写成 ∫∞|Ψ(r , t)|2 d τ=1 把Φ换成Ψ的步骤称为归一化。 8.δ—函数 δ(x-x 0)= 0 x ≠x 0 ∞ x=x0 ∫+∞ -∞δ(x-x 0)dx=1 9.波函数的标准化条件: (1)单值、有限、连续 (2)正交 归一 完备 10.态叠加原理: 态叠加原理一般表述:若Ψ1 ,Ψ2 ……Ψn …… 是体系的一系列可能的状态,则这些态的线性叠加 Ψ= C 1Ψ1+ C 2Ψ2+……+C n Ψn 也是体系的一个可能状态。 11.能量算符/哈密顿算符 定态波函数满足下面两个方程: 两个方程的特点:都是以一 个算符作用于Ψ(r, t)等于E Ψ(r, t)。 →哈密顿算符 这两个算符都是能量算符 12.薛定谔方程: 13.几率流密度 单位时间内通过τ的封闭 表面S 流入(面积分前面的负号)τ内的几率,因而可以自然的把J 解释为概率密度矢量。 14.质量守恒定律: 15.电荷守恒定律:

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学-第四版-卷一-(曾谨言-著)习题答案第4章-2

4.29——6.1 4.29证明在z L ?的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L =-,求平均。) 证:设ψ是z L 的本征态,本征值为 m ,即ψψ m L z = [] x L i =-=y z z y z y L L L L L ,L ,[]y L i =-=z x x z x z L L L L L ,L , ( )( ) ( ) 011 1 =-=-=-= ∴ψψψψψψψψψψψψy y y z z y y z z y x L m L m i L L L L i L L L L i L 同理有:0=y L 。 附带指出,虽然x l ?,y l ?在x l ?本征态中平均值是零,但乘积x l ?y l ?的平均值不为零,能够证明:,2 1 2y x y x l l i m l l -== 说明y x l l ??不是厄密的。2?x l ,2?y l 的平均值见下题。 4.30 设粒子处于()?θ,lm Y 状态下,求()2 x L ?和() 2 y L ? 解:记本征态lm Y 为lm ,满足本征方程 ()lm l l lm L 221 +=,lm m lm L z =,lm m L lm z =, 利用基本对易式 L i L L =?, 可得算符关系 () ()x y z x z y x y z z y x x x L L L L L L L L L L L L L i L i -=-== 2 () x y z z x y y x y z y z x y L L L L L L L i L L L L i L L L -+=-+=2 将上式在lm 态下求平均, 使得后两项对平均值的贡献互相抵消,因此 2 2 y x L L = 又()[] 222 2 2 1 m l l L L L z y x -+=-=+ ()[] 222 2 12 1 m l l L L y x -+= = ∴ 上题已证 0==y x L L 。 ()() ()[] 222 2 2 2 2 12 1 m l l L L L L L L x x x x x x -+= =-=-=?∴

量子力学第四版卷一曾谨言著习题答案第章

第五章: 对称性及守恒定律 P248设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r dt d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21 ,??????[222z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21 ],??????[2 2 2 z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[21222 V p z V p y V p x p p z p p y p p x z y x z z y y x x +++++= μμμ (3) 前式是轮换对称式,其中对易算符可展开如下: x x x x p x p p x p p x ?????]?,??[23 2-= x x x x x x p x p p x p p x p p x ???????????22 23-+-= x x x x x p p x p p p x ?]?,?[??]?,?[2+= 222?2??x x x p i p i p i =+= (4) ],?[?????????????],??[V p x p V x V p x p x V V p x V p x x x x x x x =-=-=

3.2量子力学初步.doc

§3、2 量子力学初步 3.2.1、 物质的二象性 ①光的二象性: 众所周知,光在许多情况下(干涉、偏振、衍射等)表现为波动性,但在有些情况下(如光电效应、黑体辐射等)又表现为粒子字。因而对光完整的认识应是光具有波粒二象性。 一个光子的能量: E=hv v 是光的频率,h 是普朗克常数 光子质量: 22c hv c E m == 秒焦??=-341063.6h 光子动量: c hv mc P = = ②德布罗意波 德布罗意把光的波粒二象性推广到实物粒子。他认为,波粒二象性是一切微观粒子共有的特性。第一个实物粒子在自由运动时所具有的能量为E 、动量为p ,这样的自由粒子必定对应一个振动频率为v 、波长为λ的平面简谐波。这两组特征量之间的关系仍是 λh p hv E =?= 自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为许多实验所证实。 物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。物质波若在某处振幅的平方较大,

则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。 例1、试估算热中子的德布罗意波长。(中子的质量 kg m n 271067.1-?=)热中子是指在室温下(T=300K )与周围处于热平衡的中子,它的平均动能 eV J kT 038.01021.63001038.123232123=?=???==--ερ 它的方均根速率 s m m v n 32721107.21067.11021.622?≈???==--ε,相应的德布罗 意波长 nm v m h n 15.027001067.11063.62734 =???==--λ 这一波长与X 射线的波长同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。 3.2.2、海森伯测不准原理 设一束自由粒子朝z 轴方向运动,每一个粒子的质量为m ,速度为v ,沿z 轴方向的动量P=mv 。这一束自由粒子对应一个平面简谐波,在与z 轴垂直的波阵面上沿任何一个方向(记为x 方向)的动量取0=x p 精确值。波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x 位置坐标可取任意值,或者说粒子的x 位置坐标不确定范围为∞→?x 。为了在波阵面的某个x 位置“抓”到一个粒子,设想用镊子去夹粒子。实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x 轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。如果狭缝的宽度为△x ,那么对于通过狭缝的粒子可以判定它的x 位置不确定范围为△

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

量子力学习题答案.

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论(一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数

(二)的情形 令 ,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为 由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数

2.3 以势阱底为零势能参考点,如图所示 (1) ∞ ∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 ∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成 由波函数归一化条件得 所以波函数 (2) ∞∞ 左中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为其中 其解为 由在右边波函数的有界性得为零 ∴ 再由连续性条件,即由 得 则 得 得 除以得 再由公式 ,注意到 令 ,

量子力学教程课后习题答案高等教育

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λh P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学第四章习题(1)

第四章态叠加原理及力学量的算符表示 4-1 下列算符哪些是线性的?为什么? (1) (2) ( )2 (3) (4) 4-2 线性算符具有下列性质:,式中C是复数。下列算符哪些是线性的?(1)(2)(3)(4)(5)(6) 4-3 若都是厄米算符,但,试问:(1)是否厄米算符? (2)是否厄米算符? 4-4 证明下列算符哪些是厄米算符: 4-5 (1)证明(2) 4-6试判断下述二算符的线性厄米性,(1)(2) 4-7 试证明任意一个算符不可能有两个以上的逆。又问,算符的情况下,是什么样的算符? 4-8 对于一维运动,求的本征函数和本征值。进而求的本征值。 4-9 若算符有属于本征值为的本征函数,且有:和,证明和也是的本征函数,对应的本征值分别是和。 4-10 试求能使为算符的本征函数的值是什么?此本征函数的本征值是什么? 4-11 如果为线性算符的一个本征值,那么为的一个本征值。一般情况下,设为的多项式,则便为的一个本征值。试证明之。 4-12 试证明线性算符的有理函数也是线性算符。 4-13 当势能改变一个常数C时,即时,粒子的波函数与时间无关的那部分改变否?能量本征值改变否? 4-14 一维谐振子的势能,处于的状态中,其中,问:(1)它的能量有没有确定值?若有,则确定值是多少? (2)它的动量有没有确定值? 4-15 在时间时,一个线性谐振子处于用下列波函数所描写的状态:式中是振子的第n个时间无关本征函数。(a)试求C3的数值。(b)写出在t时的波函数。(c)在时振子的能量平均值是什么?在秒时的呢?

4-16 证明下列对易关系: ,4-17 证明下列对易关系:

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学曾谨言习题解答第四章

第四章:力学量用算符表示 [1]设[])(,,q f ih p q =是q 的可微函数,证明下述各式:[一维算符] (1)[] .2)(,2hipf q f p q = (证明)根据题给的对易式及[];0)(,=q f q []qf p f qp fq p f qp f p q 2222 2 ,-=-= f ih qp p qppf f pq p qppf )()(--=-= hipf pf hi pq qp 2)(=+-= (2))(])(,[pf fq ih p q pf q += (证明)同前一论题 )(],[hi qp pf qpfp pfpq qpfp pfp q --=-= hipf pqfp qpfp hipf pfpq qpfp +-=+-= )()(pf fp hi hipf fp pq qp +=+-= (3)ihfp p q f q 2])(,[2 = [证明]同前一题论据: fppq fqpp fppq qfpp fp q -=-=],[2 hifp fpqp fqpp hi qp fp fqpp +-=--=)( hifp hifp p pq qp f 2)(=+-= (4)i f p i h q f p p 22 )](,[= [证明]根据题给对易式外,另外应用对易式 i f i h q f p = )](,[ dq df f i ≡)( )(],[2222fp pf p fp p f p f p p -=-= 物83-309蒋 ~80~

i f p i h f p p 22],[= = (5)p pf i h p q pf p i = ])(,[ (证明)论据同(4): p fp pf p pfp fp p pfp p )(],[22-=-= p pf i h i = (6)2 2 ])(,[p f i h p q f p i = (证明)论据同(4): 2 2222)(],[p f i h p fp pf fp pfp fp p i = -=-= (2)证明以下诸式成立: (1) (证明)根据坐标分角动量对易式 为了求证 该矢量关系式,计算等号左方的矢量算符的x 分量。 以及 看到 由于轮换对称性,得到特征的公式。 ~81~

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学答案

第一章 绪论 1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温 度T 成反比,即 b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。 [解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为 ννπνρννd e c h d kT h 1 183 3 -= 由此可以求出波长在λ与λλd +之间的能量密度λλρd )( 由于 λν/c =, λ λ νd c d 2 + = 因而有: λλπλλρλ d e hc d kT hc 1 1 8)(5 -= 令 λkT hc x = 所以有: 11 )(5 -=x e Ax λρ (44558c h T k A π=常数) 由 0 ) (=λλρd d 有 0)1(115)(254=??????---=λλλρd dx e e x e x A d d x x x 于是,得: 1 )51(=-x e x 该方程的根为 965.4=x 因此,可以给出, k hc xk hc T m 2014.0== λ 即 b T m =λ (常数) 其中 k hc b 2014.0=2383410380546.110997925.21062559.62014.0--????? = k m ??=-310898.2

[注] 根据 1183 3 -= kT h e c h νννπρ 可求能量密度最大值的频率: 令 kT h x ν= 11 3 -=x e Ax νρ (23338h c T k A π=) 0]11[3=-=ννρνd dx e Ax dx d d d x 因而可得 1 31=??? ?? -x e x 此方程的解 821.2=x h kT h kTx 821.2max == ν b T T b '=?'=-1 max max νν 其中 3423 1062559.610380546.1821 .2821.2--??=='h k b 1910878.5-???=s k 这里求得m ax ν与前面求得的m ax λ换算成的m ν的表示不一致。 1.2 在0k 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。 [解] 德布罗意公式为 p h = λ 因为价电子能量很小,故可用非相对论公式 μ22 p E = 代入德布罗意公式得 λ= = 这里利用了电子能量 E eV =。将普朗克常数h ,电子质量μ和电子 电量电e 的数值代入后可得

量子力学第四版卷一曾谨言著习题答案

第一章 量子力学的诞生 1.1设质量为m 的粒子在谐振子势2221)(x m x V ω= 中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1,x V E m p n nh x d p -===?? )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω= ==。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 得ω ωπm n m nh a 22== (3) 代入(2),解出 ,3,2,1,==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-?arcsin 222222 2 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, 粒子能量 1.3设一个平面转子的转动惯量为I ,求能量的可能取值。 提示:利用,,2,1,20 ==?n nh d p π ?? ?p 是平面转子的角动量。转子的能量I p E 2/2?=。 解:平面转子的转角(角位移)记为?。 它的角动量. ??I p =(广义动量),?p 是运动惯量。按量子化条件

量子力学 第二章 算符理论

第二章(一维)算符理论 本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。最后,作为对上述内容的综合应用,讨论了不确定性原理。 1.算符:每一个可观测量,在态空间中被抽象成算符。在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上 ①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =?=αβ 。总之,方阵与线性变换一一对应。由于方阵性质比矩阵更丰富,我们将只研究方阵。 ②微分算子:在微积分中2222,,,i i x f x f dx f d dx df ???? 也可简写成f f f D Df 22,,,??。前两种在解 欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算 ③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f D mix μ=中,把μ称为问题本征值,f 称为本征函数 ⑤线性算符:现在把上述概念统一为线性算符理论。 考虑一个可测量Q ,定义它的对应算符为Q ?,它的本征方程是ψ=ψλQ ?或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」 (或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ, 如后面将遇到的坐标算符本征态x 、动量算符本征态p ) ⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作用于系统粒子的态矢量ψ,测量值只能为算符Q ?的本征值i λ。在这次测量后,假设得到

量子力学导论第2章答案

第二章 波函数与Schr?dinger 方程 2.1设质量为m 的粒子在势场)(r V 中运动。 (a )证明粒子的能量平均值为 ω?= ?r d E 3 , ψψψψωV m * * 2 2+?= (能量密度) (b )证明能量守恒公式 0=??+??s t w ??? ? ? ????+???- =* *2 2ψψ ψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化) V T r d V m E +=??? ? ? ?+?-=?32 2* 2ψψ (1) ?= ψψV r d V * 3 (势能平均值) (2) ( )( )()[] ?????-???- =???? ???-=ψψ ψψψψ* * 3 2 22* 3 2) (2动能平均值r d m m r d T 其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。因此 ψψ ???= ?* 3 2 2r d m T (3) 结合式(1)、(2)和(3),可知能量密度,2* *2 ψψψψωV m +???= (4) 且能量平均值 ??= ωr d E 3 。 (b )由(4)式,得 ... 2 ** .. . . . 2*22**. . 2 2 2 2 * 2222V V t m t t t t V V m t t t t t t s V V t m t m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ?? ??*??*???=???+???++????????? ?? ?????*??*??*??? ? ?=???+?-?+?++? ? ? ???????? ?? ?? ????? ?*?=-??+- ?++- ?+ ? ????? ?? =-??+ .. *t t ψψψψ???*? ? + ?????

量子力学导论习题答案(曾谨言)

第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则 ()BA AB +21 和()BA AB i -21也是厄米算符。由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且 ()()+++-=+= F F i F F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=?? ? ???++++++ 21212121 ()BA AB +∴2 1 为厄米算符。 ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=?? ? ???-+++++ 21212121 ()BA AB i -∴21 也为厄米算符。 ⅲ)令AB F =,则()BA A B AB F ===+++ +, 且定义 ()()+++-=+= F F i F F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+ -++ +==F F F F ,,即+F 和-F 皆为厄米算符。 则由(1)式,不难解得 -++=iF F F 4.2)设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ??=?? -= 整函数是指),(p x F 可以展开成∑∞ == ,),(n m n m mn p x C p x F 。 证: (1)先证[ ][] 11 , ,,--=-=n n m m p ni p x x mi x p 。 [][][][][ ] [][ ] []()() []()1 111 11 3 3 1 3 32312 2211 1 1,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m m x m i x i x i m x x p x i m x x p x i x x p x x p x x i x x p x x p x x i x x p x p x x p 同理,

量子力学曾谨言习题解答第二章

目次 第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书 1.曾谨言编著:量子力学上册 科学。1981 2.周世勋编:量子力学教程 人教。1979 3.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。1982 4.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。1981 5.列维奇著,李平译:量子力学教程习题集 高教。1958 6.原岛鲜著:初等量子力学(日文) 裳华房。1972 7.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics (有中译本:陈洪生译。科学) 1951 9. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics (英译本) Springer V erlag 1973 11. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 https://www.doczj.com/doc/1a1899181.html,ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1) dx e x a n e x a dx e x ax n ax n ax n ?? -- = 1 1 )0(>n (2) )cos sin (sin 2 2 bx b bx a b a e bxdx e ax ax -+= ? (3) = ?axdx e ax cos )sin cos (2 2 bx b bx a b a e ax ++ (4) ax x a ax a axdx x cos 1sin 1sin 2 -=? (5) = ?axdx x sin 2 ax a x a ax a x cos )2( sin 22 2 2 - + (6) ax a x ax a axdx x sin cos 1cos 2 +=? (7ax a a x ax a x axdx x sin )2( cos 2cos 3 2 2 2 - += ?)

相关主题
文本预览
相关文档 最新文档