当前位置:文档之家› 量子力学答案-周世勋

量子力学答案-周世勋

量子力学答案-周世勋
量子力学答案-周世勋

第一章 量子理论基础

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即

m λ T=b (常量)

; 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式

dv e

c

hv d kT

hv v v 1

1833

-?

=πρ, (1) 以及 c v =λ, (2)

λρρd dv v v -=, (3)

,1

18)()

(5-?=?=??

? ??-=-=kT

hc v v e

hc c

d c d d dv λλλ

πλλρλλλρλρ

ρ

这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511

86'

=????

?

??

-?+--?=-kT

hc kT hc e kT hc e hc

λλλλλπρ ? 011

5=-?+--kT hc

e kT

hc λλ ? kT

hc

e kT hc λλ=--)1(5 如果令x=kT

hc

λ ,则上述方程为

x e x =--)1(5

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有

xk

hc T m =

λ 把x 以及三个物理常量代入到上式便知

K m T m ??=-3109.2λ

这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知

E=hv ,

λ

h

P =

如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么

e

p E μ22

= 如果我们考察的是相对性的光子,那么

E=pc

注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有

p

h =

λ nm

m m E c hc E h e e 71.01071.031051.021024.12296

6

2=?=????=

==--μμ

在这里,利用了

m eV hc ??=-61024.1

以及

eV c e 621051.0?=μ

最后,对

E

c hc e 2

2μλ=

作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是kT E 2

3=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。

解 根据

eV K k 3101-=?,

知本题的氦原子的动能为

,105.12

3

233eV K k kT E -?=?==

显然远远小于2c 核μ这样,便有

E c hc 2

2核μλ=

nm

m m

37.01037.0105.1107.321024.193

9

6

=?=?????=

---

这里,利用了

eV eV c 962107.3109314?=??=核μ

最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为

T

kc hc E

c hc 2

2

22μμλ=

=

据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。

1.4 利用玻尔——索末菲的量子化条件,求:

(1)一维谐振子的能量;

(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。

解 玻尔——索末菲的量子化条件为

?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有

2

22

12kx p E +=μ

这样,便有

)2

1(22kx E p -

±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据

22

1kx E =

可解出 k

E

x 2±

=± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有

??

-+

+

-

=--+-x x x x nh dx kx E dx kx E )2

1

(2)()21(222μμ

?

nh dx kx E dx kx E x x x x =-+-??+-

-+

)21

(2)21(222μμ ?

h

n

dx kx E x x 2)21(22=-?

+

-

μ

为了积分上述方程的左边,作以下变量代换;

θsin 2k

E

x =

这样,便有

h n k E d E 2sin 2cos 222

2

=???

? ???-

θθμπ

π

?

?-

=?

22

2cos 2cos 2π

π

θθθμh n

d k E E

?

h n

d k

E 2

cos 222

2=

?

?=

π

πθθμ

这时,令上式左边的积分为A ,此外再构造一个积分

?-?

=22

2sin 2π

πθθμ

d k

E B

这样,便有

??--?

=-?=?

=+22

22

2cos 2,

22π

ππ

πθ

θμ

μ

πθμ

d k

E B A k

E d k

E B A (1)

??--

==22

22

,

cos )

2(2cos π

ππ

π???

θθμ

d k

E

d k

E

这里? =2θ,这样,就有

0sin ==-?-π

π

d k

E

B A (2)

根据式(1)和(2),便有

k

E A μ

π

=

这样,便有

h n

k

E 2

=

μ

π

? k

h n E μπ2=

,

k nh μ=

其中π

2h

h =

最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

(2)当电子在均匀磁场中作圆周运动时,有

B q R υυμ=2

? qBR p ==μυ

这时,玻尔——索末菲的量子化条件就为

?

θ20

)(nh R qBRd

? nh qBR =?π22 ? nh qBR =2

又因为动能耐μ

22

p E =,所以,有

μμ22)(2

222R B q qBR E =

= ,

22B nBN q nB qBn =?==μμ 其中,μ

2

q M B =

是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且 B BM E =?

具体到本题,有 J J E 232410910910--?=??=?

根据动能与温度的关系式

kT E 2

3=

以及

J eV K k 223106.1101--?==?

可知,当温度T=4K 时,

J J E 2222106.9106.145.1--?=???=

当温度T=100K 时,

J J E 2022104.2106.11005.1--?=???=

显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?

解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有

2c hv E e μ==

此外,还有

λ

hc

pc E =

=

于是,有

2

c hc

e μλ

=

?

2c hc e μλ=

nm

m m 3126

6104.2104.21051.01024.1---?=?=??= 尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。

第二章波 函数和薛定谔方程

2.1证明在定态中,几率流与时间无关。 证:对于定态,可令

)]

r ()r ()r ()r ([m 2i ]

e )r (e )r (e )r (e )r ([m

2i )

(m 2i J e

)r ( )

t (f )r ()t r (**Et i

Et i **Et i Et i **Et

i

ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(,

可见t J 与

无关。

2.2 由下列定态波函数计算几率流密度:

ikr ikr e r

e r -==

1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21

在球坐标中 ?

θθ?θ??

+??+??=?s i n r 1e r 1e r r 0

r m r k r m r k r r ik r r r ik r r m i r e r

r e r e r r e r m i m

i J ikr ikr ikr ikr

3

020

220

1*

1*111 )]11(1)11(1[2 )]1(1)1(1[2 )

(2 )1(==+----=??-??=?-?=--ψψψψ r J 1

与同向。表示向外传播的球面波。

r

mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )

(m

2i J )2(3020

220

ikr ikr ikr ikr *

2*222

-=-=---+-=??-??=?-?=--ψψψψ

可见,r J

与2反向。表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==?

?∞

dx dx ψψ*

∴波函数不能按1)(2

=?

dx x ψ方式归一化。

其相对位置几率分布函数为

12

==ψω表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场

??

???>∞≤≤<∞=a x a x x x U ,,

,0 00

)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。其定态S —方程

)()()()(22

2

2x E x x U x dx

d m ψψψ=+- 在各区域的具体形式为

Ⅰ: )()()()(2 01112

22x E x x U x dx d m x ψψψ=+-< ① Ⅱ: )()(2 0 2222

2x E x dx d m a x ψψ=-

≤≤ ② Ⅲ: )()()()(2 3332

22x E x x U x dx

d m a x ψψψ=+-> ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须

0)(1=x ψ 0)(2=x ψ

即粒子不能运动到势阱以外的地方去。

方程(2)可变为0)(2)(222

22=+x mE

dx x d ψψ

令2

22 mE

k =

,得

0)()(22

2

22=+x k dx

x d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④

根据波函数的标准条件确定系数A ,B ,由连续性条件,得 )0()0(12ψψ=⑤ )()(32a a ψψ=⑥

⑤ 0=?B ⑥

0sin =?ka A

)

,3 ,2 ,1( 0

sin 0

==?=∴≠n n ka ka A π ∴x a

n A x π

ψsin )(2= 由归一化条件 1)(2

=?

dx x ψ

得 1sin 0

2

2

=?

a

xdx a

n A

π

mn a

b

a

xdx a n x a m δππ?

=*2

sin sin

x a n a x a

A πψs i n 2)(2

2=

∴=

?

222

mE

k =

),3,2,1( 22

2

22 ==

?n n ma E n π可见E 是量子化的。 对应于n E 的归一化的定态波函数为

??

???><≤≤=-a x a x a

x xe a n a

t x t

E i

n n , ,0 0 ,sin 2),( πψ

#

2.4. 证明(2.6-14)式中的归一化常数是a

A 1=

'

证:??

?

??≥<+'=a x a x a x a n A n ,0 ),(sin πψ (2.6-14) 由归一化,得

量子力学答案完整版周世勋第三版

找了好久才找到的,希望能给大家带来帮助 量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比, 即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =? ?? ? ? ??-?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 第一章绪论

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ= 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 如果令x=kT hc λ ,则上述方程为 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 把x 以及三个物理常量代入到上式便知 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:根据德布罗意波粒二象性的关系,可知 λ h P =。 所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0?=<<),满足 e k m p E 22 =, 因此利用非相对论性的电子的能量—动量关系式,有 在这里,利用了 m eV hc ??=-61024.1, eV c m e 621051.0?=。 最后,对 E m h e 2= λ 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。 自然单位制: 在粒子物理学中,利用三个普适常数(光速c ,约化普朗克常数,玻耳兹曼常数 k )来减少独立的基本物理量的个数,从而把独立的量纲减少到只有一种(能量量纲,常用单位eV )。例:1nm=5.07/keV ,1fm=5.07/GeV , 电子质量m=0.51MeV . 核子(氢原子)质量M=938MeV ,温度5 18.610K eV -=?.

量子力学教程(周世勋)课后答案详解-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学答案-周世勋

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =???? ? ?? -?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ

量子力学周世勋习题解答第四章

第四章习题解答 4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。 解:? ??'-'-=τπd e p z p y e L r p i y z r p i p p x )??()21()(3 ? ??'--=τπd e zp yp e r p i y z r p i )()21(3 ???'-??-??-=τπd e p p p p i e r p i z y y z r p i ))(()21(3 ? ?'-??-??-=τπd e p p p p i r p p i z y y z ) (3)21)()(( )()(p p p p p p i y z z y '-?? -??= δ ?''=τψψd L x L p x p p p x 2 *2)()( ? ??'--=τπd e p z p y e r p i y z r p i 23)??()21( ???'---=τπd e p z p y p z p y e r p i y z y z r p i )??)(??()21(3 ?''-??-??-=τπd e p p p p i p z p y e r p i y z z y y z r p i ))()(??()21(3 ???'--??-??=τπd e p z p y e p p p p i r p i y z r p i y z z y )??()21)()((3 ??'-??-??-=τπd e p p p p r p p i y z z y )(322 )21()( )()(22p p p p p p y z z y '-??-??-= δ # 4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。 解:基矢:x a n a x u n π sin 2)(= 能量:2 2 222a n E n μπ = 对角元:2sin 202 a xdx a m x a x a mm ==?π 当时,n m ≠ ???=a mn dx a x x a m a x 0)(sin )(sin 2π

周世勋量子力学教案

一. 算符 算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。用 表示一算符。 二.力学量算符 1.坐标的算符就是坐标本身: 2.动量算符: , , 3.动能算符 4.哈密顿算符: 5.角动量算符: 如果量子力学中的力学量在经典力学中有相应的力学量,则表示这个力学量的算符由经典表示式中将 换成算符得出 算符和它所表示的力学量的关系?

一线性算符 满足运算规则的算符称为线性算符。 二单位算符 保持波函数不改变的算符 三算符之和 加法交换律 加法结合律 两个线性算符之和仍为线性算符。 四算符之积 定义: 算符与的积为 注意: 一般说算符之积不满足交换律,即:这是与平常数运算规则不同之处。五逆算符 设能唯一解出,则定义的逆算符为: 注意: 不是所有的逆算符都有逆算符。 , 六算符的复共轭,转置,厄密共轭

1.两个任意波函数与的标积 2.复共轭算符 算符的复共轭算符为:把的表示式中所有复量换成其共轭复量 3.转置算符 定义: 算符的转置算符满足: 即: 4.厄密共轭算符 算符的厄密共轭算符定义为

即 算符的厄密共轭算符即是的转置复共轭算符 5.厄密算符 厄密算符是满足下列关系的算符 注意:两个厄密算符之和仍为厄密算符,两个厄密算符之积却不一定是厄密算符 例:证明是厄密算符 证: 为厄密算符,为厄密算符

第三节力学量算符的本征值与本征函数 一厄密算符的本征值与与本征函数 设体系处于测量力学量O,一般说,可能出现不同结果,各有一定的几率,多次测量结果的平均值趋于一确定值,每次具体测量的结果围绕平均值有一个涨落,定义为 如为厄密算符,也是厄密算符 存在这样一种状态,测量力学量所得结果完全确定。即. 这种状态称为力学量的本征态。在这种状态下 称为算符的一个本征值,为相应的本征函数。 二力学量算符的性质 1.力学量算符是厄密算符 量子力学的一个基本假定: 测量力学量时,所有可能出现的值,都是力学量算符的本征值。 厄密算符的本征值必为实数 证:设 为厄密算符

量子力学(周世勋)课后答案-第一二章电子版本

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2 -?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λ ρ

对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ ? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学周世勋第二版课后习题解答第1章

1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1833-=, 及λνc =、λλ νd c d 2-=得 1 185-=kT hc e hc λλλπρ, 令kT hc x λ=,再由0=λ ρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=?≈==-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3=,求K T 1=时氦原子的de Broglie 波长。 解:010A 63.12m 1063.1232=?≈===-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,123K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123T J 10923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 12q p E μωμ+= 可以化为() 122222 22=???? ??+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμE b E a ==,相空间面积为 ,2,1,0,2=====?n nh E E ab pdq νωππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02=+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

相关主题
文本预览
相关文档 最新文档