当前位置:文档之家› 液压元件通用技术条件

液压元件通用技术条件

液压元件通用技术条件
液压元件通用技术条件

液压元件通用技术条件

1 范围

本标准规定了液压元件的通用技术条件。

本标准适用于以液压油液或性能相当的其他液压液为工作介质的一般工业用途的液压元件。

注:液压辅件可参照本标准。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而。鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 2346 液压传动系统及元件公称压力系列(GB/T 2346-2003,ISO 2944:2000,MOD)

GB/T 2347 液压泵及马达公称排量系列(GB/T 2347-1980,eqv ISO 3662:1976)

GB/T 2348 液压气动系统及元件缸内径及活塞杆外径(GB/T

2348-1993,neq ISO 3320:1987)

GB/T 2349 液压气动系统及元件缸活塞行程系列(GB/T

2349-1980,eqv ISO 4393:1978)

GB/T 2350 液压气动系统及元件活塞杆螺纹型式和尺寸系列(GB/T 2350-1980,eqv ISO 4395:1978)

GB/T 2353 液压泵及马达的安装法兰和轴伸的尺寸系列及标注代号(GB/T 2353-2005.ISO 3019-2:

2001, MOD)

GB/T 2514 四油口板式液压方向控制阀安装面(GB/T 2514-1981,eqv ISO 4401:1980)

GB/T 2877 二通插装式液压阀安装连接尺寸

GB/T 2878 液压元件螺纹连接油口型式和尺寸(GB/T2 878-1993,neq ISO 6149:1980)

GB/T 8098 液压传动带补偿的流量控制阀安装面(GB/T

8098-2003,ISO 6263:1 997,MOD)

GB/T 8100 板式联接液压压力控制阀(不包括溢流阀)顺序阀、卸荷阀、节流阀和单向阀安装面

(GB/T 8100-1987,neq ISO/DIS 6264)

GB/T 8101 液压溢流阀安装面(GB/T 8101-2002,ISO 6264:1998,MOD) GB/T 14036 液压缸活塞杆端带关节轴承耳环安装尺寸(GB/T

14036-1993,neq ISO 6982:1982)

GB/T 17446 流体传动系统及元件术语(GB/T 17446-1998,idt ISO 5598:1985)

3 术语和定义

GB/T 17446确立的术语和定义适用于本标准。

4 技术要求

4.1 液压元件的基本参数、安装连接尺寸,应符合GB/T 2346,GB/T

2347,GB/T 2348,GB/T 2349,GB/T 2350,GB/T 2353,GB/T 2514,GB/T 2877,GB/T 2878,GB/T 8098,GB/T 8100,GB/T 8101,GB/T 14036的规定。

4.2 对液压元件的承压通道应进行耐压试验,试验方法应按各元件相关标准的规定。

4.3 壳体

4.3.1 元件的壳体应经过相应处理,消除内应力。壳体应无影响元件使用的工艺缺陷,并达到元件要求的强度。

注:对于复杂铸件宜进行探伤检查。

4.3.2 壳体表面应平整、光滑,不应有影响元件外观质量的工艺缺陷。

4.3.3 铸件应进行清砂处理,内部通道和容腔内不应有任何残留物。

4.4 元件应使用经检验合格的零件和外购件按相关产品标准或技术文件的规定和要求进行装配。任何变形、损伤和锈蚀的零件及外购件不应用于装配。

4.5 零件在装配前应清洗干净,不应带有任何污染物(如铁屑、毛刺、纤维状杂质等)。

4.6 元件装配时,不应使用棉纱、纸张等纤维易脱落物擦拭壳体内腔及零件配合表面和进、出流道。

4.7 元件装配时,不应使用有缺陷及超过有效使用期限的密封件。

4.8 应在元件的所有连接油口附近清晰标注表示该油口功能的符号。除特殊规定外,油口的符号如下:

P——压力油口;

T——回油口;

A, B——工作油Q;

L——泄油口;

X, Y——控制油口。

4.9 元件的外露非加工表面的涂层应均匀,色泽一致。喷涂前处理不应涂腻子。

4.10 元件出厂检验合格后,各油口应采取密封、防尘和防漏措施

5 试验要求

5.1飞测量准确度等级

元件性能试验的测量准确度分为A,B,C三个等级:

a) A级 :适用于科学鉴定性试验。

b) B级 :适用于液压元件的型式试验,或产品质量保证试验和用户的选择评定试验。

c) C级 :适用于液压元件的出厂试验,或用户的验收试验。

5.2 测量系统误差

测量系统的允许误差应符合表1的规定.

表1 测量系统的允许系统误差

5.3 测量

试验测量应在稳态工况下进行。各被测参量平均显示值的变化范围符合表2规定时为稳态工况。在稳态工况下应同时测量每个设定点的各个参量(压力、流量、转矩、转速等)。

表2 被测参量平均显示值的允许变化范

5.4 试验油液

a) 油液温度:除特殊规定外,试验时油液温度应为500C,其稳态工况容许变化范围应符合表2的规定。

b)油液粘度:油液在40℃时的运动翁度应为42 mm2/s~74 mm2/s(特殊要求另做规定)。

c)油液污染度.应不高于液压元件使用要求规定的油液污染度等级。

5.5 对特殊要求的液压元件,其试验条件与要求由供、需双方商定。

6 标志和包装

6.1 应在液压元件的明显部位设置产品铭牌,铭牌内容应包括:

——名称、型号、出厂编号;

——主要技术参数;

——制造商名称;

——出厂日期.

6.2 对有方向要求的液压元件(如液压泵的旋向等),应在元件的明显部位用箭头或相应记号标明。

6.3 液压元件出厂装箱时应附带下列文件:

——合格证;

——使用说明书(包括:元件名称、型号外形图、安装连接尺寸、结构简图、主要技术参数,使用条件和维修方法以及备件明细表等);

——装箱单。

6.4 液压元件包装时,应将规定的附件随液压元件一起包装,并固定于箱内。

6.5 对有调节机构的液压元件,包装时应使调节弹簧处于放松状态,外露的螺纹、键槽等部位应采取保护措施。

6.6 包装应结实可靠,并有防震、防潮等措施。

6.7 在包装箱外壁的醒目位置,宜用文字清晰地标明下列内容:

——名称、型号;

——件数和毛重;

——包装箱外形尺寸(长、宽、高);

——制造商名称;

——装箱日期,

——用户名称、地址及到站站名;

——运输注意事项或作业标志。

常用液压元件图形符号

常用液压图形符号 (1)液压泵、液压马达和液压缸 名称符号说明名称符号说明 液压泵 液压泵一般符号 双作用缸不可调单 向缓冲缸 详细符号 单向定量液压泵单向旋转、 单向流动、 定排量 简化符号 双向定量液压泵双向旋转, 双向流动, 定排量 可调单向 缓冲缸 详细符号 单向变量液压泵单向旋转, 单向流动, 变排量 简化符号 双向变量液压泵双向旋转, 双向流动, 变排量 不可调双 向缓冲缸 详细符号 液压马达液压马达一般符号简化符号 单向定量 液压马达 单向流动, 单向旋转 可调双向 缓冲缸 详细符号 双向定量 液压马达 双向流动, 双向旋转, 定排量 简化符号 单向变量 液压马达 单向流动, 单向旋转, 变排量 伸缩缸

双向变量液压马达双向流动, 双向旋转, 变排量 压力转换 器 气-液转换 器 单程作用 摆动马达双向摆动, 定角度 连续作用 泵-马达定量液压 泵-马达 单向流动, 单向旋转, 定排量 增压器 单程作用 变量液压 泵-马达 双向流动, 双向旋转, 变排量,外 部泄油 连续作用 液压整体 式传动装 置 单向旋转, 变排量泵, 定排量马达 蓄能器 蓄能器一般符号 单作用缸 单活塞杆 缸 详细符号 气体隔离 式 简化符号重锤式 单活塞杆 缸(带弹簧 复位) 详细符号弹簧式 简化符号辅助气瓶 柱塞缸气罐 伸缩缸 能量源 液压源一般符号 双作用缸单活塞杆 缸 详细符号气压源一般符号

简化符号电动机 双活塞杆 缸 详细符号原动机电动机除外 简化符号 (2)机械控制装置和控制方法 名称符号说明名称符号说明 机械控制 件直线运动 的杆 箭头可省略 先导压力 控制方法 液压先导 加压控制 内部压力控制旋转运动 的轴 箭头可省略 液压先导 加压控制 外部压力控制定位装置 液压二级 先导加压 控制 内部压力控制,内 部泄油 锁定装置 *为开锁的 控制方法 气-液先导 加压控制 气压外部控制,液 压内部控制,外部 泄油 弹跳机构 电-液先导 加压控制 液压外部控制,内 部泄油 机械控制方法 顶杆式 液压先导 卸压控制 内部压力控制,内 部泄油 可变行程 控制式 外部压力控制(带 遥控泄放口) 弹簧控制 式 电-液先导 控制 电磁铁控制、外部 压力控制,外部泄 油 滚轮式 两个方向操 作 先导型压 力控制阀 带压力调节弹簧, 外部泄油,带遥控 泄放口 单向滚轮 式 仅在一个方 向上操作, 箭头可省略 先导型比 例电磁式 压力控制 先导级由比例电磁 铁控制,内部泄油

万能转换开关原理图

万能转换开关的工作原理及符号表示 教程来源:本站原创作者:未知点击:2301 更新时间:2009-3-4 16:14:36 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56 阅读1518 评论5 字号:大中小订阅 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使用的场合不同,大体可以分为万能转换开 关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1-2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列:手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。这样的分布符合我们的装配习惯,装配时可以完全按照接点图至下而上(反之亦然)对各个部件进行一一对应安装),极大的提高了装配效率 同时便于装配检验。编码过程如下:

常用液压元件简介解读

常用液压元件简介 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向阀,它主要有单向阀和换向阀两大类。 (一)、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。 图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2)和主阀(3)被弹簧(4)和系统压力压在阀座上。若X口供给压力油则控制活塞(5)被推向右。这时首先打开导阀(2),然后打开主阀(3)。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5)能可靠地操纵阀芯动作,需要一定的最低控制压力。

图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积M上,从而有效地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起反作用,使阀芯打不开。

常用液压元件解读

常用液压元件简介(一) 液压元件 2008-09-13 14:47 阅读73 评论0 字号:大中小小 ( 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向 阀,它主要有单向阀和换向阀两大类。 (一、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管

路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一 单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力 一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使 用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。

图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2和主阀(3被弹簧(4和系统压力压在阀座上。若X口供给压力油则控制活塞(5被推向右。这时首先打开导阀(2,然后打开主阀(3。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5能可靠地操 纵阀芯动作,需要一定的最低控制压力。 图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5的环形面积与A口隔离。A 口来的油压只作用在控制活塞(5的面积M上,从而有效 地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起 反作用,使阀芯打不开。

液压系统图识读

液压系统图识读 (1)识读液压系统图的技巧 正确、迅速地分析和阅读液压系统图,对于液压设备的设计、分析、研究、使用、维修、调整和故障排除等都具有重要的指导作用。 ①必须掌握液压元件的结构、工作原理、特点和各种基本回路的应用;了解液压系统的控制方式、职能符号及其相关标准。 ②结合液压设备及其液压原理图,多读多练,逐渐掌握各种典型液压系统的特点.对于今后阅读新的液压系统,可起到以点代面、触类旁通和熟能生巧的作用。 ③阅读液压系统图的具体方法有传动链法、电磁铁工作循环表法和等效油路图法等。 (2)识读液压系统图的步骤 ①全面了解设备的功能、工作循环和对液压系统提出的各种要求,有助于识读者能够有针对性地进行阅读。 ②仔细研究液压系统中所有液压元件及它们之问的联系,弄清各个液压元件的类刑、原理、性能和功用。要特别注意用半结构图表示的专用元件的工作原理;要读懂各种控制装置及变量机构。 ③仔细分析并写出各执行元件的动作循环和相应的油液所经过的路线。为便于阅读,最好先将液压系统中的各条油路分别进行编号,然后按执行元件划分读图单元,每个读图单元先看动作循环,再看控制回路、主油路。要特别注意系统从一种工作状态转换到另一种工作状态时,是由哪些元件发出的信号,又是使哪些控制元件动作并实现的。 (3)液压系统图的分析 在读懂液压系统原理图的基础上,还必须进一步对该系统进行分析,这样才能评价液压系统的优缺点,使设计的液压系统性能不断完善。液压系统图的分析可考虑以下几个方面: ①液压基本回路的确定是否符合主机的动作要求; ②各主油路之问、主油路与控制油路之问有无矛盾和干涉现象; ③液压元件的代用、变换和合并是否合理、可行; ④液压系统的特点、性能的改进方向。 东莞巨丰液压制造有限公司

常用液压元件职能符号的对比分析记忆法

INTELLIGENCE 科 技 天 地 78 常用液压元件职能符号的 对比分析记忆法 河南省鹤壁市技工学校 马顺喜 摘 要:本文从液压元件职能符号的组成规则(即起源)的角度谈起,通过对溢流阀、减压阀和顺序阀等三种常见液压元件的职能符号进行对比分析,归纳总结出 一种液压元件职能符号的记忆方法——对比分析记忆法。并由此推广到其它液压元 件职能符号的记忆。 关键词:常用液压元件 职能符号 对比分析 记忆法 在《机械基础》“液压传动”中,要表示液压系统的工 作原理,就要用到各种各样的液压元件职能符号。但是由于元件众多,教材因篇幅所限又未介绍职能符号的组成规则,故很难记忆。尤其是溢流阀、减压阀、顺序阀等三种常用压力控制阀的职能符号,因其图形符号非常相似,所以极易混淆。本人在长期的教学实践中总结出一种对比分析的记忆方法,对液压元件职能符号的记忆很有帮助,现作如下介绍: 一、追根求源记符号 液压元件的职能符号看起来很难记忆,但若仔细分析就会发现,所有液压元件的职能符号都是由若干基本符号按照一定的规则组合而成的。我们只要了解了这些符号的组成规则和来源,符号的记忆问题就会迎刃而解。在液压传动中,国标规定的基本符号含义及其含义如下表 1。 只要理解了这些基本符号的含义,元件职能符号的记忆就不难了。 二、三种常用压力阀的对比分析 1、压力阀的功能对比分析 溢流阀:功能有二,一是溢流稳压,二是限压保护。 减压阀:起减压作用,用于降低系统某一分支油路的压力,使同一系统有两个或多个不同的压力,以满足不同执行机构的需要。 顺序阀:利用系统中的压力变化来控制油路的通、断(即当压力达到调定值时,进出油口相通,否则关闭),从而使执行元件按一定的顺序动作。 2、压力阀的阀体与弹簧 以上三种压力阀,从结构上看均存在阀体与调节弹簧,故其符号组成中均应有下列基本符号(如图1 阀体与弹簧): 3、压力阀的进出油口连接及压力情况对比分析 (1)溢流阀:安装在液压泵出口处。进口接系统,进口压力为系统压力;出口接油箱,压力为零(不计损失)。 (2)减压阀:安装在低压分支油路之前。进口油压为一次压力,出口压力为二次压力,出口压力低于进口压力。 (3)顺序阀:安装在执行顺序动作的执行机构之前。阀口打开后,进口油液压力等于出口油液压力(不计损失)。 根据它们进出油口连接及压力情况,故其职能符号组成情况如表 2。 4、压力阀控制信号来源(控制油路特点)对比分析 (1)溢流阀:控制阀口开启的压力信号来自于进口油液的压力(由进口压力控制),故其表示控制油路的虚线应由进口引出。 (2)减压阀:控制阀口开启的压力信号来自于出口油液的压力(由出口压力控制),故其表示控制油路的虚线应由出口引出。 (3)顺序阀:控制阀口开启的压力信号来自于进口油液的压力(由进口压力控制),故其表示控制油路的虚线应由

液压传动原理和液压元件图形符号

第一节液压传动原理和液压元件图形符号0644 液压传动的动力元件通常是指________。 A.油泵B.油马达 C.油缸D.A+B 0645 液压马达是将________能变为________能。 A.电,液B.液压,机械 C.机械,液D.电,机械 0646 液压泵是将________能变为________能。 A.电,液压B.液压,机械 C.机械,液压D.电,机械 0647 液压传动装置的执行元件常用的有________。 A.油泵B.液压马达 C.油缸D.B+C 0648 液压传动系统与电气—机械传动方式比较,有以下特点________。 A.能广泛适应各种高、低温条件 B.容易实现低速传动 C.运转平稳、制造成本低 D.因油泵流量有规格,故不易实现无级调速 0649 画液压泵图形符号时应注明泵的________。 A.供油量B.配载功率 C.工作压力D.转向 0650 采用国家标准图形符号画液压装置的系统原理图时,应注意________。 A.元件应位于常态位置 B.只表示元件间连接关系而非位置关系 C.符号表示元件功能而非型号 D.A与B与C 0651 液压传动与电气传动方式相比,缺点之一是________。 A.制造成本高B.调速困难 C.工作不平稳D.防过载能力差 0652 右图所示图形符号表示单向________。 A.定量液压泵 B.变量液压泵 C.定量液压马达 D.变量液压马达 0653 右图所示图形符号表示单向________。 A.定量液压泵 B.变量液压泵 C.定量液压马达 D.变量液压马达 0654 右图所示图形符号表示双向________。 A.定量液压泵 B.变量液压泵 C。定量液压马达

如何认识常见的液压元件符号解读

如何认识常见的液压元件符号 液压系统的图形符号,各国都有不同的绘制规定。有的采用结构示意图的方法表示,称为结构式原理图。这种图形的优点是直观性强,容易理解液压元件的内部结构和便于分析系统中所产生的故障。但图形比较复杂,尤其是当系统的元件较多时,绘制很不方便,所以在一般情况下都不采用。有的采用原理性的只能式符号示意图,这种图形的优点是简单清晰,容易绘制。我国制定的液压系统图图形符号标准就是采用原理性的职能式符号绘制的。现将一些常见的液压元件职能式图形符号分类摘编于书后附表一中,并对阅读要点作如下简介: (1)油泵及油马达以圆圈表示。圆圈中的三角形表示液流方向,如果三角形尖端向外,说明液流向外输出,表示这是油泵。若三角形尖端向内,则说明液流向内输入,表示这是油马达。如果圆圈内有两个三角形,表示能够换向。若元件加一斜向直线箭头、则是可变量的符号,表示其排量和压力是可调节的。 (2)方向阀的工作位置均以方框表示。方框的数目表示滑阀中的位置数目,方框外的直线数表示液流的通路数,方框内的向上表示液流连同方向,“T”表示液流被堵死不通。方框的两端表示控制方式,由于控制方式不同,其图形符号也是不一样。 (3)压力阀类一般都是用液流压力与弹簧力相平衡,来控制液压系统中油液的工作压力。方框中的箭头数表示滑阀中的通道数,通道的连通分常开与常闭两种,在液压系统中科根据工作需要进行选择。 (4)节流阀通常以一个方框中两小段圆弧夹一条带箭头的中心直线表示。如果节流阀作用可调,则再在方框内画一条带箭头的斜线。 (5)将液压元件的图形符号有机地连接起来,即可组成一个完整的液压系统图(又称液压回路图)。

液压元件符号库大全

泵和马达 FHYC20FHYC21FHYC22 FHYC23FHYC24 摆动气马达 摆动液压马达单向变量气马达单向变量液压泵单向变量液压马达单向定量气马达 单向定量液压泵单向定量液压马达定量液压泵-马达(双向) 定量液压泵-马达气马达 双向变量气马达双向变量液压泵双向变量液压马达双向定量气马达双向定量液压泵 双向定量液压马达液压泵液压整体式传动装置 插装阀 标准阀芯%7 标准阀芯%50 带缓冲节流口阀芯带阻尼孔%7 动力源符号

操作杆电动机气压源液压源原动机 方向控制阀 单向阀 单向阀(简易) 单向阀(简易)带弹簧单向阀(详细符号) 单向阀(详细符号)带弹簧电液换向阀 FHYJ34 FHYJ36 FHYJ37 FHYJ38 FHYJ39 FHYJ40 电液四通伺服阀(带电反馈三级)

电液四通伺服阀(二级) 三位四通电液阀外控内泄(带手动应急控制装置) 二位转向阀 二位二位二通阀(常闭) 二位二通阀(常开) 二位三通阀(A型) 二位三通阀(B型) 二位三通二位四通二位五通 三位转向阀 E型FHYJ23 FHYJ26 FHYJ27 FHYJ28 FHYJ41 FHYJ42 F型G型H型

J型M型N型P型 电磁换向阀1 电磁换向阀2 三位2 三位三位三通阀三位四通阀1 三位四通阀2 三位五通阀1 三位五通阀2 三位五通阀3 手动换向阀1 手动换向阀2 手动换向阀3 手动换向阀4 梭阀

或门型(简易符号)或门型(详细符号) 液控单向阀 双液控单向阀液控单向阀(控制压力打开阀)简易符号液控单向阀(控制压力打开阀)详细符号 液控单向阀(控制压力关闭阀)简易符号液控单向阀(控制压力关闭阀)详细符号 方向控制阀 FHYI12 FHYI13 FHYI14 FHYI15 四位五位一位 辅助元件 除油器(人工排出)除油器(自动排出)分水排水器(人工)分水排水器(自动)空气干燥器 空气过滤器(人工排出)空气过滤器(自动排出)气源调节装置三联件

如何读懂液压原理图

如何读懂液压原理图 为了正确而又迅速地阅读液压传动原理图,首先要很好地掌握液压知识,熟悉各种液压元件地工作原理,功用和特性;了解和掌握液压系统的各种基本回路和油路的一些性质;熟悉液压系统的各种控制方法和图中的符号标记。其次有在工作中联系实际,多读多练,通过各种典型的液压系统了解系统的特点,这对于阅读新的液压传动原理图可起到触类旁通和熟能生巧的作用。 如果液压传动原理图附有说明书和动作顺序表,可按说明书逐一对照阅读。如果没有说明书,而只有一张系统图(图上可能附有工作循环表,电磁铁动作顺序表或简单说明),这时就要求读者通过分析各种液压元件作用及油路连通情况,弄清系统工作原理。 阅读液压传动原理图一般可按下列步骤进行: 1. 了解液压系统的用途,工作循环,应具有的性能和对液压系统的各种要求等。 2. 根据工作循环,工作性能和要求等,分析需要哪些基本回路,并弄清各种液压元件的类型,性能,相互间的联系和功用。为此首先要弄清楚用半结构图表示的原件和专用元件的工作原理及性能;其次是阅读明白液压缸或液压马达;再次阅读并了解各种控制装置及变量机构;最后阅读和掌握辅助装置。在此基础上,根据工作循环和工作性能要求分析必须具有哪些基本回路,并在液压传动原理图上逐一地查找出每个回路。 3. 按照工作循环表,仔细分析并依次写出完成各个动作的相应油液流经路线。为了便于分析,在分析之前最好将液压系统中的每个液压原件和各条油路编上号码。这样,对分析复杂油路,动作较多的系统尤为重要。 写油液流经路线时要分清主油路和控制油路。对主油路,应从液压泵开始写,一直写到执行元件,这就构成了进油路线;然后再从执行元件回油写到油箱(闭式系统回到液压泵)。这样分析,目标明确,不易混乱。 在分析各种状态时,要特别注意系统从一种工作状态转换到另一种工作状态,是由哪些原件发出的信号,使哪些控制原件动作,从而改变什么通路状态,达到何种状态的转换。在阅读时还要注意,主油路和控制油路是否有矛盾,是否相互干扰等。在分析各个动作油路的基础上,列出电磁铁和其它转换元件动作顺序表。

如何彻底读懂液压系统原理图

如何彻底读懂液压系统原理图 第一,是从对液压技术的理论知识掌握角度看; 第二,是从对液压技术的实践经验角度看; 第三,是从对液压元器件的图形符号掌握角度看; 第四,是对主机工艺流程、动作要求的掌握角度看。 第五,一点小经验。 前面4大因素中,第一、第四是基础与关键。 第一,液压知识 1) 液压传动与控制的基础知识,这里主要的问题有三个方面。 首先,现在各位所能看到的书,有相当大的部分,内容比较经典、比较陈旧,大多数新的发展都没有得到反映,这个就要读者自己想办法找一些有针对性的资料加于补充。例如,工程机械用的平衡阀,很多书还是用它控式顺序阀,现在谁还敢用?而对新的平衡阀只有样本、论文里才能找到。 其次,对于液压传动一般还比较了解,而对于电液控制技术,就有相当多的人了解不多。现今的液压系统,不仅有液压传动的内容,还有液压控制的内容,像比例阀、伺服阀、高速开关阀、伺服缸、放大器等等。只掌握一般液压传动的人,需要在这方面加于补充。 再次,一般的教材对工业用液压器件与系统介绍比较多,对行走机械(工程机械等)的介绍比较少。现在有一批工程机械液压技术方面的书面市,但内容大多来自样本与主机使用说明书,缺少不要的分析。还有一点是经常使用与一般液压技术不一样的名词术语,搞得比较头痛。例如,单路稳流阀、优先阀、分配阀等等,实际上,分别就是定流量阀、定差溢流阀、比例方向阀。要读懂系统原图,也要越过这个障碍。 第二,实践经验对看懂系统原理图的重要性,不必我多说了。单纯从书本知识出发,很难真正读懂。 第三,图形符号。液压技术元器件类型繁多,应用领域广泛,加上技术在不断发展,尽管图形符号有相关的国际与全国标准,但一是标准总是跟不上发展,二是有的厂商就是标新立异,所以,现今的液压系统油路图上,经常出现一些似是而非、莫名其妙的符号,就连液压老手有时都感到麻烦、头痛。解决办法有二,一是从总体上分析其功能,二是从样本找出标新立异的规律。例如oil control 的插装阀样本,花头筋很多,仔细分析也就明白了。例如溢流阀的符号,它总要

万能转换开关的工作原理及符号表示

万能转换开关的工作原理及符号表示 一种可供两路或两路以上电源或负载转换用的开关电器。转换开关由接触系统、定位机构、手柄等主要部件组成。这些部件通过螺栓紧固为一个整体。 转换开关又称组合开关,与刀开关的操作不同,它是左右旋转的平面操作。转换开关具有多触点、多 位置、体积小、性能可靠、操作方便、安装灵活等优点,多用于机床电气控制线路中电源的引入开关,起着隔离电源作用,还可作为直接控制小容量异步电动机不频繁起动和停止的控制开关。转换开关同样也有单极、双极和三极。 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56阅读387评论1字号: 大中小 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使 用的场合不同,大体可以分为万能转换开关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1- 2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则 作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列: 手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。

液压原理图-液压系统的设计

?上一篇下一篇? 液压系统设计 发送到手机 | 收藏 全屏阅读模式字体:小 | 大 液压系统的设计步骤与设计要求 液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1.1 设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1.2 明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、转换精度等性能方面的要求; 6)自动化程序、操作控制方式的要求; 7)对防尘、防爆、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 制定基本方案和绘制液压系统图 3.1制定基本方案 (1)制定调速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。 速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变 化来实现。相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。 节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。 容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。其优点是没有溢流损失和节流损失,效率较高。但为了散热和补充泄漏,需要有辅助泵。此种调速方式适用于功率大、运动速度高的液压系统。 容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。 节流调速又分别有进油节流、回油节流和旁路节流三种形式。进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速。 调速回路一经确定,回路的循环形式也就随之确定了。 节流调速一般采用开式循环形式。在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。开式回路结构简单,散热性好,但油箱体积大,容易混入空气。 容积调速大多采用闭式循环形式。闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。其结构紧凑,但散热条件差。 (2)制定压力控制方案 液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力,一般在节流调速系统中,通常由定量泵供油,用溢流阀调节所需压力,并保持恒定。在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。 在有些液压系统中,有时需要流量不大的高压油,这时可考虑用增压回路得到高压,而不用单设高压泵。液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路。 在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力。 (3)制定顺序动作方案 主机各执行机构的顺序动作,根据设备类型不同,有的按固定程序运行,有的则是随机的或人为的。工程机械的操纵机构多为手动,一般用手动的多路换向阀控制。加工机械的各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,通过电气行程开关发出电信号给电磁铁推动电磁阀或直接压下行程阀来控制接续的 动作。行程开关安装比较方便,而用行程阀需连接相应的油路,因此只适用于管路联

万能转换开关的介绍

万能转换开关的介绍 目录 展开 概述 1)简介 万能转换开关单层结构示意图 万能转换开关,是一种多档位、多段式、控制多回路的主令电器,当操作手柄转动时,带动开关内部的凸轮转动,从而使触点按规定顺序闭合或断开。 2)结构组成

万能转换开关是由多组相同结构的触点组件叠装而成的多回路控制电器。它由操作机构、定位装置、触点、接触系统、转轴、手柄等部件组成。 触点是在绝缘基座内,为双断点触头桥式结构,动触点设计成自动调整式以保证通断时的同步性,静触点装在触点座内。使用时依靠凸轮和支架进行操作,控制触点的闭合和断开。 操作过程 是用手柄带动转轴和凸轮推动出头接通或断开。由于凸轮的形状不同,当手柄处在不同位置时,触头的粉和情况不同,从而达到转换电路的目的。 3)主要用途 万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 常用产品 图2:某LW5万能转换开关的使用说明 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自

定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开

常用液压元件符号大全

常用液压图形符号 表 1 常用液压图形符号(摘自 GB/T786.1-1993 ) ( 1)液压泵、液压马达和液压缸 名称 符号 说明 名称 符号 说明 液压泵 一般符 详细符号 号 不可调 单向旋 单向缓 单向定 转、单向 冲缸 量液压 简化符号 流动、定 泵 排量 双向定 双向旋 转,双向 液压泵 量液压 详细符号 流动,定 泵 可调单 排量 向缓冲 单向旋 单向变 缸 转,单向 量液压 简化符号 流动,变 泵 排量 双向变 双向旋 转,双向 双作 量液压 详细符号 流动,变 用缸 泵 排量 不可调 双向缓 液压马 一般符 冲缸 简化符号 达 号 单向定 单向流 量液压 动,单向 详细符号 马达 旋转 可调双 液压马 向缓冲 双向流 达 缸 双向定 动,双向 量液压 简化符号 旋转,定 马达 排量 单向变 单向流 动,单向 量液压 伸缩缸 旋转,变 马达 排量

双向变 双向流 动,双向 量液压 单程作用 旋转,变 马达 气 - 液 排量 转换器 双向摆 摆动马 动,定角 连续作用 达 度 压力 单向流 定量液 转换 压泵 - 动,单向 器 单程作用 马达 旋转,定 排量 双向流 增压器 变量液 动,双向 泵 - 马 压泵 - 旋转,变 连续作用 达 马达 排量,外 部泄油 单向旋 液压整 转,变排 体式传 量泵,定 蓄能器 一般符号 动装置 排量马 达 详细符 气体隔 号 蓄能 离式 单活塞 器 杆缸 简化符 重锤式 号 单作用 详细符 单活塞 缸 弹簧式 杆缸 号 (带弹 簧复 简化符 位) 辅助气瓶 号 柱塞缸 气罐

LW5-16万能转换开关

LW5-16万能转换开关 LW5-16转换开关.pdf(LW5-16万能转换开关的详细样本介绍,下载时请右键另存为) 适用范围 LW5-16万能转换开关可用于交流50Hz,电压500V及直流电压440V的电路中,作电气控制线路转换之用和电压380V5.5KW及以下的三相鼠笼型异步电动机的直接控制之用。 产品符合GB14048.5标准。 型号及规格

主要型号有 LW5-16/1节LW5-16/2节LW5-16/3节LW5-16/4节LW5-16/5节LW5-16/6节LW5-16/7节LW5-16/8节LW5-16/9节LW5-16/10节LW5-16/11节LW5-16/12节LW5-16/13节LW5-16/14节LW5-16/15节LW5-16/16节 结构特征 按用途分,有主令控制用转换开关和直接控制5.5KW三相鼠笼异步电动机用两种。 按接触系统节数有1~16节,共16种。 按操作方式与操动器位置组合分,有下列5种(见表1) 按操作方式分:有定位型自复型两种见表2. 按操动器外形分:有球型捏手式和旋钮式两种。 按工作制分:有断续周期工作制(操作频率300次/小时)和八小时工作制。 按防护形式分:有开启式和防护式两种。 表1

表2

主要技术数据 开启式转换开关的约定发热电流为16A。防护式仅提供可逆转换开关LW5-16/5.5N3,其约定封闭发热电流为16A,外壳防护等级为:IP40。转换开关的额定绝缘电压为:500V。 转换开关的额定工作电压(Ue)和额定工作电流(Ie)对应关系见表3。 a.主令控制用转换开关的额定工作电压(Ue)和额定工作电流(Ie)对应关系见表3。

相关主题
文本预览
相关文档 最新文档