FANUC数控系统螺距误差补偿功能
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
伺服参数:1020:轴号(88 89 90 ) 1013#1=0,IS—B设定1022 1023:轴名(1 2 3)1006#0#1=0,直线轴2020:电机号(代码)1815#1=1:使用分离脉冲编码器2021:负载惯量比3002#4=0,倍率相关的信号逻辑不变2165:放大器最大电流值1815#4=0的原因显示诊断310 311中2022:电机旋转方向(111 -111)20=4,138=7:存储卡加工有效2023: 速度脉冲数(8192)=快移速度/(60X增益)2024:位置脉冲数(12500 半闭环)全闭环:丝杠螺距/光栅尺分辨率2185:位置脉冲数转换系数(位置脉冲数〉32767时)2084:柔性进给齿轮比(分子)2085:柔性进给齿轮比(分母柔性齿轮比=电机旋转一周所需的位置脉冲/100万1010:CNC控制轴数8130:总控制轴数1820:指令倍乘比=(指令到位/检测单位)X21821:参考计数器容量1825:各轴伺服环增益1826:各轴到位宽度1827:各轴到位宽度(切削进给)1801#4:CCI切削进给时的到位宽度0:使用1826 1:专用18271828:移动中最大偏差1829:停止时最大偏差1850:栅格偏移量或参考点偏移量2000#0=1,使参数(2023 2024)的值增大10倍#1=0,进行数字伺服参数的初始设定1803#1,是否在到位极限中进行停止/移动中误差过大的检查0:进行1:不进行1804#4:在VRDY OFF忽略信号处于1的状态执行紧急停止时0:为0之前不会解除紧急停止1:解除#5=0:在检测异常负载情况下使所有轴停止并报警#6:当VRDY OFF报警忽略为1或各轴VRDY OFF为1时(0:伺服准备就绪信号SA为0 1:SA=1)1311#0=1:刚通电后的存储行程限位检测有效1300#6=0:进行手动回零前存储行程检测(1311#0=1时)1301#6=0:超程信号不向PMC输入#7:是否进行移动前行程检测0:不进行1:进行3111#0=1:显示伺服设定画面3111#5=1:予以进行操作监视显示#6=1:操作监视画面的速度表上是主轴速度0:主轴电机速度3160:MDI单元类别设定3202#0 NE8=1,禁止8000—8999程序编辑#4=1 NE9 禁止9000-9999程序编辑#6使受到保护的程序的号检索0:无效1:有效3290#7:存储器保护信号0:使用KEY1、2、3、4信号(G46。
FANUC 数控系统简介一、FANUC数控系统的发展1、FANUC 公司创建于1956年,1959年首先推出了电液步进电机,在后来的若干年中逐步发展并完善了以硬件为主的开环数控系统。
进入70年代,微电子技术、功率电子技术,尤其是计算技术得到了飞速发展,FANUC公司毅然舍弃了使其发家的电液步进电机数控产品,一方面从GETTES公司引进直流伺服电机制造技术。
1976年FANUC公司研制成功数控系统5,随时后又与SIEMENS公司联合研制了具有先进水平的数控系统7,从这时起,FANUC公司逐步发展成为世界上最大的专业数控系统生产厂家,产品日新月异,年年翻新。
2、1979年研制出数控系统6,它是具备一般功能和部分高级功能的中档CNC系统,6M适合于铣床和加工中心;6T适合于车床。
与过去机型比较,使用了大容量磁泡存储器,专用于大规模集成电路,元件总数减少了30%。
它还备有用户自己制作的特有变量型子程序的用户宏程序。
3、1980年在系统6的基础上同时向抵挡和高档两个方向发展,研制了系统3和系统9。
系统3是在系统6的基础上简化而形成的,体积小,成本低,容易组成机电一体化系统,适用于小型、廉价的机床。
系统9是在系统6的基础上强化而形成的具备有高级性能的可变软件型CNC系统。
通过变换软件可适应任何不同用途,尤其适合于加工复杂而昂贵的航空部件、要求高度可靠的多轴联动重型数控机床。
4、1984年FANUC公司又推出新型系列产品数控10系统、11系统和12系统。
该系列产品在硬件方面做了较大改进,凡是能够集成的都作成大规模集成电路,其中包含了8000个门电路的专用大规模集成电路芯片有3种,其引出脚竟多达179个,另外的专用大规模集成电路芯片有4种,厚膜电路芯片22种;还有32位的高速处理器、4兆比特的磁泡存储器等,元件数比前期同类产品又减少30%。
由于该系列采用了光导纤维技术,使过去在数控装置与机床以及控制面板之间的几百根电缆大幅度减少,提高了抗干扰性和可靠性。
Fanuc系统参数一.16系统类参数1.SETTING 参数参数号符号意义16-T 16-M0/0 TVC 代码竖向校验O O0/1 ISO EIA/ISO代码O O0/2 INI MDI方式公/英制O O0/5 SEQ 自动加顺序号O O2/0 RDG 远程诊断O O3216 自动加程序段号时程序段号的间隔O O2.RS232C口参数20 I/O通道(接口板):0,1: 主CPU板JD5A2: 主CPU板JD5B3: 远程缓冲JD5C或选择板1的JD6A(RS-422) 5: Data Server10 :DNC1/DNC2接口O O100/3 NCR 程序段结束的输出码O O100/5 ND3 DNC运行时:读一段/读至缓冲器满O OI/O 通道0的参数:101/0 SB2 停止位数O O101/3 ASII 数据输入代码:ASCII或EIA/ISO O O 101/7 NFD 数据输出时数据后的同步孔的输出O O 102 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3〃软盘驱动器)O O103 波特率:10:480011:960012:19200 O OI/O 通道1的参数:111/0 SB2 停止位数O O111/3 ASI 数据输入代码:ASCII或EIA/ISO O O 111/7 NFD 数据输出时数据后的同步孔的输出O O 112 输入输出设备号:0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3〃软盘驱动器)O O113 波特率:10:480011:960012:19200 O O其它通道参数请见参数说明书。
3.进给伺服控制参数1001/0 INM 公/英制丝杠O O1002/2 SFD 是否移动参考点O O1002/3 AZR 未回参考点时是否报警(#90号)O 1006/0,1 ROT,ROS 设定回转轴和回转方式O O 1006/3 DIA 指定直径/半径值编程O1006/5 ZMI 回参考点方向O O1007/3 RAA 回转轴的转向(与1008/1:RAB合用) O O 1008/0 ROA 回转轴的循环功能O O1008/1 RAB 绝对回转指令时,是否近距回转O O 1008/2 RRL 相对回转指令时是否规算O O1260 回转轴一转的回转量O O1010 CNC的控制轴数(不包括PMC轴) O O1020 各轴的编程轴名O O1022 基本坐标系的轴指定O O1023 各轴的伺服轴号O O1410 空运行速度O O1420 快速移动(G00)速度O O1421 快速移动倍率的低速(Fo) O O1422 最高进给速度允许值(所有轴一样) O O1423 最高进给速度允许值(各轴分别设) O O1424 手动快速移动速度O O1425 回参考点的慢速 FL O O1620 快速移动G00时直线加减速时间常数O O 1622 切削进给时指数加减速时间常数O O1624 JOG方式的指数加减速时间常数O O1626 螺纹切削时的加减速时间常数O1815/1 OPT 用分离型编码器O O1815/5 APC 用绝对位置编码器O O1816/4,5,6 DM1--3 检测倍乘比DMR O O1820 指令倍乘比CMR O O1819/0 FUP 位置跟踪功能生效O O1825 位置环伺服增益O O1826 到位宽度O O1828 运动时的允许位置误差O O1829 停止时的允许位置误差O O1850 参考点的栅格偏移量O O1851 反向间隙补偿量O O1852 快速移动时的反向间隙补偿量O O1800/4 RBK 进给/快移时反向间补量分开O O4.坐标系参数1201/0 ZPR 手动回零点后自动设定工件坐标系O O1250 自动设定工件坐标系的坐标值O O1201/2 ZCL 手动回零点后是否取消局部坐标系O O 1202/3 RLC 复位时是否取消局部坐标系O O1240 第一参考点的坐标值O O1241 第二参考点的坐标值O O1242 第三参考点的坐标值O O1243 第四参考点的坐标值O O5.行程限位参数1300/0 OUT 第二行程限位的禁止区(内/外)O O 1320 第一行程限位的正向值O O1322 第一行程限位的反向值O O1323 第二行程限位的正向值O O1324 第二行程限位的反向值O O1325 第三行程限位的正向值O O1321 第三行程限位的反向值O O6.DI/DO参数3003/0 ITL 互锁信号的生效O O3003/2 ITX 各轴互锁信号的生效O O3003/3 DIT 各轴各方向互锁信号的生效O O2Fanuc系统参数3004/5 OTH 超程限位信号的检测O O3010 MF,SF,TF,BF滞后的时间O O3011 FIN宽度O O3017 RST信号的输出时间O O3030 M代码位数O O3031 S 代码位数O O3032 T代码位数O O3033 B代码位数O O7.显示和编辑3102/3 CHI 汉字显示O O3104/3 PPD 自动设坐标系时相对坐标系清零O O 3104/4 DRL 相对位置显示是否包括刀长补偿量O O 3104/5 DRC 相对位置显示是否包括刀径补偿量O O 3104/6 DRC 绝对位置显示是否包括刀长补偿量O O 3104/7 DAC 绝对位置显示是否包括刀径补偿量O O 3105/0 DPF 显示实际进给速度O O3105/ DPS 显示实际主轴速度和T代码O O3106/4 OPH 显示操作履历O O3106/5 SOV 显示主轴倍率值O O3106/7 OHS 操作履历采样O O3107/4 SOR 程序目录按程序序号显示O O3107/5 DMN 显示G代码菜单O O3109/1 DWT 几何/磨损补偿显示G/W O O3111/0 SVS 显示伺服设定画面O O3111/1 SPS 显示主轴调整画面O O3111/5 OPM 显示操作监控画面O O3111/6 OPS 操作监控画面显示主轴和电机的速度O O 3111/7 NPA 报警时转到报警画面O O3112/0 SGD 波形诊断显示生效(程序图形显示无效)O O 3112/5 OPH 操作履历记录生效O O3122 操作履历画面上的时间间隔O O3203/7 MCL MDI方式编辑的程序是否能保留O O3290/0 WOF 用MDI键输入刀偏量O O3290/2 MCV 用MDI键输入宏程序变量O O3290/3 WZO 用MDI键输入工件零点偏移量O O3290/4 IWZ 用MDI键输入工件零点偏移量(自动方式) O 3290/7 KEY 程序和数据的保护键O O8.编程参数3202/0 NE8 O8000—8999程序的保护O O3202/4 NE9 O9000—9999程序的保护O O3401/0 DPI 小数点的含义O O3401/4 MAB MDI方式G90/G91的切换O3401/5 ABS MDI方式用该参数切换G90/G91 O9.螺距误差补偿3620 各轴参考点的补偿号O O3621 负方向的最小补偿点号O O3622 正方向的最大补偿点号O O3623 螺补量比率O O3624 螺补间隔O O10.刀具补偿3109/1 DWT G,W分开O O3290/0 WOF MDI设磨损值O O3290/1 GOF MDI设几何值O O5001/0 TCL 刀长补偿A,B,C O5001/1 TLB 刀长补偿轴O5001/2 OFH 补偿号地址D,H O5001/5 TPH G45-G48的补偿号地址D,H O5002/0 LD1 刀补值为刀号的哪位数O5002/1 LGN 几何补偿的补偿号O5002/5 LGC 几何补偿的删除O5002/7 WNP 刀尖半径补偿号的指定O5003/6 LVC/LVK 复位时删除刀偏量O O5003/7 TGC 复位时删除几何补偿量(#5003/6=1)O 5004/1 ORC 刀偏值半径/直径指定O5005/2 PRC 直接输入刀补值用PRC信号O5006/0 OIM 公/英制单位转换时自动转换刀补值O O 5013 最大的磨损补偿值O5014 最大的磨损补偿增量值O11.主轴参数3701/1 ISI 使用串行主轴O O3701/4 SS2 用第二串行主轴O O3705/0 ESF S和SF的输出O O3705/1 GST SOR信号用于换挡/定向O3705/2 SGB 换挡方法A,B O3705/4 EVS S和SF的输出O3706/4 GTT 主轴速度挡数(T/M型)O3706/6,7 CWM/TCW M03/M04的极性O O3708/0 SAR 检查主轴速度到达信号O O3708/1 SAT 螺纹切削开始检查SAR O3730 主轴模拟输出的增益调整O O3731 主轴模拟输出时电压偏移的补偿O O3732 定向/换挡的主轴速度O O3735 主轴电机的允许最低速度O3736 主轴电机的允许最低速度O3740 检查SAR的延时时间O O3741 第一挡主轴最高速度O O3742 第二挡主轴最高速度O O3743 第三挡主轴最高速度O O3744 第四挡主轴最高速度O3751 第一至第二挡的切换速度O3752 第二至第三挡的切换速度O3771 G96的最低主轴速度O O3772 最高主轴速度O O4019/7 主轴电机初始化O O3 Fanuc系统参数4133 主轴电机代码O O12.其它6510 图形显示的绘图坐标系O7110 手摇脉冲发生器的个数O O7113 手脉的倍比m O O7114 手脉的倍比n O O13.0i系统的有关参数8130 总控制轴数O O8131/0 HPG 使用手摇脉冲发生器O O8132/0 TLF 刀具寿命管理功能O O8132/3 ISC 用分度工作台O8133/0 SSC G96功能生效O O8134/0 IAP 图形功能生效O O二.0系统参数1.SETTING 参数参数号符号意义0-T 0-M0000 PWE 参数写入O O0000 TVON 代码竖向校验O O0000 ISO EIA/ISO代码O O0000 INCH MDI方式公/英制O O0000 I/O RS-232C口O O0000 SEQ 自动加顺序号O O2.RS232C口参数2/0 STP2 通道0停止位O O552 通道0波特率O O12/0 STP2 通道1停止位O O553 通道1波特率O O50/0 STP2 通道2停止位O O250 通道2波特率O O51/0 STP2 通道3停止位O O251 通道3 波特率O O55/3 RS42 Remote Buffer 口RS232/422 O O 390/7 NODC3 缓冲区满O O3.伺服控制轴参数1/0 SCW 公/英制丝杠O O3/0.1.2.4 ZM 回零方向O O8/2.3.4 ADW 轴名称O30/0.4 ADW 轴名称O32/2.3 LIN 3,4轴,回转轴/直线轴O388/1 ROAX 回转轴循环功能O388/2 RODRC 绝对指令近距离回转O388/3 ROCNT 相对指令规算O788 回转轴每转回转角度O11/2 ADLN 第4轴,回转轴/直线轴O398/1 ROAX 回转轴循环功能O398/2 RODRC 绝对指令近距离回转O398/3 ROCNT 相对指令规算O788 回转轴每转回转角度O860 回转轴每转回转角度O500-503 INPX,Y,Z,4 到位宽度O O504-507 SERRX,Y,Z,4 运动时误差极限O O508-511 GRDSX.Y,Z,4 栅格偏移量O O512-515 LPGIN 位置伺服增益O O517 LPGIN 位置伺服增益(各轴增益) O O518-521 RPDFX,Y,X,4 G00速度O O522-525 LINTX,Y,Z,4 直线加/减速时间常数O O526 THRDT G92时间常数O528 THDFL G92X轴的最低速度O527 FEDMX F的极限值O O529 FEEDT F的时间常数O O530 FEDFL 指数函数加减速时间常数O O533 RPDFL 手动快速移动倍率的最低值O O534 ZRNFL 回零点的低速O O535-538 BKLX,Y,Z,4 反向间隙O O593-596 STPEX,Y,Z,4 伺服轴停止时的位置误差极限O O 393/5 快速倍率为零时机床移动O O4.坐标系参数10/7 APRS 回零点后自动设定工件坐标系O O2/1 PPD 自动设坐标系相对坐标值清零O24/6 CLCL 手动回零后清除局部坐标系O28/5 EX10D 坐标系外部偏移时刀偏量的值(×10)O 708-711 自动设定工件坐标系的坐标值O735-738 第二参考点O O780-783 第三参考点O O784-787 第四参考点O O5.行程限位8/6 OTZN Z轴行程限位检查否O15/4 LM2 第二行程限位O24/4 INOUT 第三行程限位O57/5 HOT3 硬超程-LMX--+LMZ有效O65/3 PSOT 回零点前是否检查行程限位O O700-703 各轴正向行程O O704-707 各轴反向行程O O15/2 COTZ 硬超程-LMX--+LMZ有效O20/4 LM2 第二行程限位O24/4 INOUT 第三行程限位O743-746 第二行程正向限位O747-750 第二行程反向限位O804-806 第三行程正向限位O807-809 第三行程反向限位O770-773 第二行程正向限位O774-777 第二行程反向限位O747-750 第三行程正向限位O751-754 第三行程反向限位O760-763 第四行程正向限位O764-767 第四行程反向限位O6.进给与伺服电机参数1/6 RDRN 空运行时,快速移动指令是否有效O O8/5 ROVE 快速倍率信号ROV2(G117/7)有效O49/6 NPRV 不用位置编码器实现主轴每转进给O O 20/5 NCIPS 是否进行到位检查O O4—7 参考计数器容量O O4—7 检测倍比O O21/0.1.2.3 APC 绝对位置编码器O O4 Fanuc系统参数35/7 ACMR 任意CMR O O37/0.1.2.3 SPTP 用分离型编码器O O100-103 指令倍比CMR O O7.DI/DO参数8/7 EILK Z轴/各轴互锁O O9/0.1.2.3 TFIN FIN信号时间O O9/4.5.6.7 TMF M,S,T读信号时间O O12/1 ZILK Z轴/所有轴互锁O31/5 ADDCF GR1,GR2,DRN 地址O252 复位信号扩展时间O O8.显示和编辑1/1 PROD 相对坐标显示是否包括刀补量O O2/1 PPD 自动设坐标系相对坐标清零O O15/1 NWCH 刀具磨损补偿显示W O O18/5 PROAD 绝对坐标系显示是否包括刀补量O 23/3 CHI 汉字显示O O28/2 DACTF 显示实际速度O O29/0.1 DSP 第3,4轴位置显示O35/3 NDSP 第4轴位置显示O38/3 FLKY 用全键盘O O48/7 SFFDSP 显示软按键O O60/0 DADRDP 诊断画面上显示地址字O O60/2 LDDSPG 显示梯形图O O60/5 显示操作监控画面O O64/0 SETREL 自动设坐标系时相对坐标清零O O 77/2 伺服波形显示O O389/0 SRVSET 显示伺服设定画面O O389/1 WKNMDI 显示主轴调整画面O O9.编程参数10/4 PRG9 O9000-O9999号程序保护O O15/7 CPRD 小数点的含义O O28/4 EXTS 外部程序号检索O O29/5 MABS MDI-B中,指令取决于G90/G91设定O 389/2 PRG8 O8000-O8999号程序保护O O394/6 WKZRST 自动设工件坐标系时设为G54 O10.螺距误差补偿11/0.1 PML 螺补倍率O O712-715 螺补间隔O756-759 螺补间隔O1000, 20003000, 4000 补偿基准点O O1001-11282001-21283001-31284001-4128 补偿值O O11.刀具补偿1/3 TOC 复位时清除刀长补偿矢量0 O1/4 ORC 刀具补偿值(半径/直径输入) O8/6 NOFC 刀补量计数器输入O10/5 DOFSI 刀偏量直接输入O13/1 GOFU2 几何补偿号(由刀补号或刀号)指定O13/2 GMOFS 加几何补偿值(运动/变坐标)014/0 T2D T代码位数O14/1 GMCL 复位时是否清几何补偿值O14/5 WIGA 刀补量的限制O15/4 MORB 直接输入刀补测量值的按钮O24/6 QNI 刀补测量B时补偿号的选择O75/3 WNPT 刀尖补偿号的指定(在几何还是在磨损中) O122 刀补测量B时的补偿号O728 最大的刀具磨损补偿增量值O729 最大的刀具磨损补偿值O78/0 NOINOW 用MDI键输入磨损补偿量O O78/1 NOINOG 用MDI键输入几何补偿量O O78/2 NOINMV 用MDI键输入宏程序变量O O78/3 NOINMZ 用MDI键输入工件坐标偏移量O O393/2 MKNMDI 在自动方式的停止时,用MDI键输入工件坐标偏移量O O12.主轴参数13/5 ORCM 定向时,S模拟输出的极性13/6.7 TCW,CWM S模拟M03,M04的方向O O14/2 主轴转速显示O O24/2 SCTO 是否检查SAR(G120/4) O O49/0 EVSF SF的输出O O71/0 ISRLPC 串行主轴时编码器信号的接法O71/4 SRL2SP 用1或2个串行主轴O71/7 FSRSP 是否用串行主轴O108 G96或换挡(#3/5:GST=1)或模拟主轴定向SOR:G120/5:M)=1速度OO110 检查SAR(G120/4)的延时时间O516 模拟主轴的增益(G96) O539 模拟主轴电机的偏移补偿电压(G96) O551 G96的主轴最的转速O556 G96的主轴最高转速O540-543 各挡主轴的最高转速O3/5 GST 用SOR(G120/5)定向/换挡O14/0 SCTA 加工启动时检查SAR信号O20/7 SFOUT 换挡时输出SF O29/4 FSOB G96时输出SF O35/6 LGCM 各挡最高速的参数号O539,541,555 各挡的主轴最高转速O542 主轴最高转速O543 主轴最低转速O585,586 主轴换挡速度(B型) O577 模拟主轴电机的偏移补偿电压O6519/7 主轴电机初始化O O6633 主轴电机代码O O6501/2 POSC2 用位置编码器O O6501/5-7 CAXIS1-3 用高分辨率编码器O O6503/0 PCMGSL 定向方法(编码器/磁传感器) O O6501/1 PCCNCT 内装传感器O O6501/4.6.7 位置编码器信号O O6504/1 HRPC 高分辨率编码器O O13.其它24/0 IGNPMC 用PMC O O71/6 DPCRAM 显示PMC操作菜单O O123 图形显示的绘图坐标系O6回复:Fanuc系统参数具体设置的时候是怎么知道那两个0的位置的呢QQ516136625请指教7补充一下G00快速定位方式的参数FANUC18M系统,SYSTEM/参数1401号参数#1位元LRP 定位(G00)0:定位以非线性定位形态执行,因此刀具以各轴互相独立方式快速移动。
基于FANUC系统中G10指令使用方法的探索作者:刘先生来源:《现代商贸工业》2010年第08期摘要:在FANUC 0I数控系统中,G10是一个比较特殊的指令,在不同的场合下有着不同的用途,但都能体现它的强大。
通过实例,介绍了FANUC系统中可编程参数自动设定G10指令在数控维修、数控编程等方面中配合使用的方法和技巧,以供参考。
关键词:FANUC 0I数控系统;G10指令;使用方法中图分类号:TP文献标识码:A文章编号:1672-3198(2010)08-0299-0 前言在对FANUC 0I数控系统进行维修时,可使用G10指令把系统参数输入到系统内,该功能用于设定螺距误差补偿数据。
随着对数控编程的了解,在编程中越来越多的地方使用G10指令,即简化了操作步骤,也使程序简洁、精炼,更使许多复杂的问题简单化。
因此本文对G10指令做以下几方面的探索。
1 G10指令用于参数设定众所周知,数控机床在制造过程中的一个重要的环节就是对传动丝杠副的实际位置精度进行测量。
螺旋误差的补偿数据可要以使用激光干涉仪进行测得,但是如何把这些螺旋误差的补偿数据(参数)输入到机床控制系统中去,是一项非常繁重的任务,如果把这项任务用G10来完成,即使用G10指令编辑程序,通过CF卡、RS232口等的传输手段传到机床,再运行就可实现上述目的。
G10L50设定参数输入方式N_R_;非轴性参数N_P_R_;轴性参数G11;取消参数输入方式在上述指令中各参数的意义如下N_;表示参数号(5位数)或补偿位置号(螺距误差补偿号+10000(5位数))。
R_; 表示参数设定值,前面的零可以省略,参数(R_)设定值不用小数点。
P_;表示对轴类参数设定从1到4(最大4轴)的轴号(P_)。
控制轴按CNC显示的顺序编号。
使用方法如下(1) 设定位(非轴)型参数No.3404位G10L50;参数输入方式N3404R00000100;SBP设定G11;取消参数输入方式(2)修改轴型参数No.1322(设定存储行程极限2中各轴正向的坐标值)中Z轴(第3轴)和A 轴(第4轴)的值。
FANUC数控机床调试参数系统第一次通电,必须把参数写保护打开(设定画面第一项PWE=1),否则参数无法写入。
在MDI方式下,按软键盘上的SYSTEM,在参数画面下将参数3190#6(CH2)设成1,断电重启,画面上的文字转换成中文。
注:无特殊情况下,第一次通电最好不要进行全清。
一、FSSB设定先把参数8130和1010的值设为3,表示3个轴;参数1023设成1;2;3,参数1902#0=0(当参数1902#1 ASE=1时,表示当选择FSSB自动设定方式时,自动设定完成)。
进入SYSTEM,按显示器下的键,画面进入伺服设定,初始化位设为0,将在表5中查得的电机代码输入(0i-Mate系列的Z轴电机代码要比X、Y两轴的代码大1)。
进入伺服调整画面,按照调试手册P15的图中设定X、Y、Z的各项,断电重启。
如果启动后不出现调试手册中P16表1的报警,则FSSB设定完成,否则重新设定FSSB(线路正常情况下)。
如果出现466号报警,将参数2165设为25、25、45(0i-Mate);45、45、45(0i-MC),复位即可消除此报警。
二、主轴设定在参数4133中输入主轴电机代码(表6中查得电机代码),把4019#7设定为1进行自动初始化。
断电重启,设定参数3736为4095,3741号参数为电机的最高转速(即主轴电机的额定转速)。
注:参数4020与3741的值必须一致,否则主轴的转速将与倍率开关的档位不对应三、各种功能对应的参数设定0i-Mate系列按照调试手册中P25-P26的AI先行控制中的参数设定;0i-MC 系列按P26-P27的AI轮廓控制中的参数设定。
其中参数1432为4000~10000、1620为150、1621为80。
四、其它参数的设定当以上的参数设好之后,如无出现报警现象,将下面参数输入。
参数如下:参数号功能设定值范围0020 I/O通道选择(同设定画面中的设定)0——RS2324——卡138#7=1 MDN=1:使用存储卡进行DNC操作有效1002#0 JAX=1:手动和回参考点同时控制轴数为3轴1006#5 ZMI=1:回零时停在负方向1020 各轴的编程名称X——88Y——89Z——901022 基本坐标系中各轴的属性X——1Y——2Z——31023 各轴的伺服轴号X——1Y——2Z——31241 第二参考点的设定1300#2 存储式行程检测切换信号EXLM有效LMS=11320 机床正向软限位1321 机床负向软限位1401#4 进给率为0时快速移动停止RF0=11410 空运行速度5000mm/min1420 各轴快速移动速度8000 mm/min1421 各轴快速移动倍率的F0速度500 mm/min1422 最大切削进给速度6000 mm/min1423 各轴手动连续(JOG)进给速度1000 mm/min1424 各轴手动快速移动速度3000 mm/min1425 各轴返回参考点减速后(FL)的速度300 mm/min1622 插补后切削进给时间常数150 ms1624 插补后JOG进给时间常数20 ms1800#1 位置控制就绪信号PRDY接通之前,速度控制就绪信号VRDY先接通时,不出现伺服报警CVR=11821 各轴的参考计数器容量80001825 各轴的伺服位置环增益3000~50001851 各轴反向间隙补偿量2022 电机旋转方向(根据实际情况调整正负值)X——-111Y——111Z——1113003#0 互锁无效ITL=13003#2 各轴互锁无效ITX=13003#3 各轴方向互锁无效DIT=13003#5 限位开关零点触头接常闭DEC=0限位开关零点触头接常开DEC=13105#0 MDI方式显示DPF=13105#2 实际主轴速度和T代码显示DPS=13108#7 显示手动连续进给速度JSP=13111#0 显示伺服设定画面SVS=1 #1 显示主轴调整画面SPS=1#2 显示同步误差值是峰值SVP=13117#0 在程序检查画面显示打开或关闭主轴速度表和负载表SMS=13190#6 显示简体汉字CH2=13202#4 程序O9000~9999的编辑禁止(刀库用)NE9=13210加密3211解密3605#0 使用双向螺补功能BDP=13620~3627 螺距补偿的设定4077 主轴定位5001#5 刀具补偿用H代码TPH=1当5001#2 OFH=0时有效6071=6 当设为0时无效,M00不能调用9001~9009子程序6711加工零件数6712加工零件总数参数6711和6712的设定只有当6700#0 为0时有效7113 手轮进给倍率1008131#0 使用手轮进给HPG=1注:如果软键盘上的键值不对应,将参数3100#2置1,3100#3置0即可如果在手动和回参考点是不能同时控制3轴,将1002#0 JAX置1即可栅格量的调整:在诊断画面中,参数302号可以看到各轴的栅格量,最好应在4000~5000之间,栅格量的调整只要调整零点开关的位置当参数4020和3741不一致时,显示出来的主轴转速与主轴倍率选定的不对应攻丝参数设定5200#4(DOV)=1 刚性攻丝退刀时倍率有效(倍率值在参数NO.5211中设定)5200#5(PCP)=1 刚性攻丝不使用高速深孔攻丝循环5201#0(NIZ)=1 进行刚性攻丝的平滑处理5204#0(DGN)=1 在诊断画面上显示主轴和攻丝轴的偏差量的偏差值5210=29 指令刚性攻丝的M代码5211=200 刚性攻丝退刀时的倍率值5241=3000 刚性攻丝时主轴的最高转速(第1档)5242=3000 刚性攻丝时主轴的最高转速(第2档)5243=3000 刚性攻丝时主轴的最高转速(第3档)5261=2000 主轴和攻丝轴的直线加减速时间常数(第1档)5262=2000 主轴和攻丝轴的直线加减速时间常数(第2档)5263=2000 主轴和攻丝轴的直线加减速时间常数(第3档)5280=1000 刚性攻丝时主轴和攻丝轴的位置控制回路增益5300=20 刚性攻丝时攻丝轴的到位宽度5301=20 刚性攻丝时主轴的到位宽度5310=32000 刚性攻丝时攻丝轴移动时位置偏差的极限值5311=32000 刚性攻丝时主轴移动时位置偏差的极限值5312=800 刚性攻丝中攻丝轴停止时的位置偏差极限值5313=800 在刚性攻丝中主轴停止时的位置偏差极限值5314=32000 在刚性攻丝中攻丝轴移动时位置偏差的极限值。
发那克900以后参数发那克900以后参数意义900 #5 公英制转换;1,公制#4 主轴模拟/串行输出;1,用离合器#3 手摇轮;1,用901 #7 复合固定循环;1,有#5 倒方角C,倒圆角R;1,有902 #6 用户宏程序A;1,有#5 丝杠螺距误差补偿;1,有#2 恒速切削控制;1,有903 #7 背景编辑;1,有#3 偏置量测定直接输入B;1,有#1 实际主轴转速输出;1,有904 #2 中文显示;1,中文(P23 #3设1)906 #7 外部刀具补偿;0,有#6 自动刀具补偿;0,有#5 刀具形状损失补偿;1,有#0 菜单编程;0,有907 #6 刀尖补偿;1;有#4 加工时间加工品数;1,有909 #1 外部信息;1,有#0 图形显示;1,有911 #3 时间功能;1,有932 #7 MDI—B;1,有#6 表面恒速;1,有#3 用户宏程序B;1,有#2 用户宏程序A;1,有(#2、#3不能同时选择)934 #4 特殊G代码输入;1,有935 #5 出现600号参数;1,有#2 加工复循环;1,有#1 工件坐标系;1,有#0 刀具寿命管理;1,有FANUC-0M系统的传输速率修改方法具体步骤:1、模式选择MDI状态按下“DGNOS PARAM”键;2、按上、下翻页键查找PWE参数(可写入参数)将其原有值0改为1;3、在参数中找到552,将其值改为11,则传输速率变为19200;4、再将PWE改为0。
注意:操作完第2项步骤会出现#100P/S ALARM报警,不用理会,继续执行以下步骤即可。
楼主,你是不懂机床还是拷贝错误:在参数中找到552,将其值改为11,则传输速率变为19200;11是9600波特率10是4800波特率诊断窗口和系统参数的显示和修改方法1.诊断窗口的显示方法(1)按系统操作面板上的:“DGNNOS/PARAM”键,使CRT屏幕上出现“DGNOS”页面,如果出现的是“PARAM”页面,则可再按一次“DGNNOS/PARAM”键或CRT屏幕底部的软操作键“DGNOS”。
FANUC数控系统数据备份与恢复的使用说明1.关闭系统插储备卡2.起动引导系统方法及画面如下(BOOT SYSTEM):3. 注意事项:CF 卡如果初次使用请事先格式化;抽取或安装CF卡请先关闭操纵器电源幸免CF卡损坏;不要在格式化或数据存取的过程中关闭操纵器电源幸免CF卡损坏。
4. 系统数据被分在两个区储备。
F-ROM 中存放的系统软件和机床厂家编写PMC 程序以及P-CODE 程序。
S-RAM中存放的是参数,加工程序,宏变量等数据。
通过进入BOOT 画面能够对这两个区的数据进行操作(按住以上两个键后同时接通CNC电源,引导系统起动后,开始显示『MAIN MENV画面』,下面对此画面及操作进行讲明。
SYSTEM MONITOR MAIN MENU 60M4-01 (显示标题。
右上角显示的是引导系统的系列号和版号。
)1.SYSTEM DA T A LOADINC (把系统文件、用户文件从储备卡写入到数控系统的快闪储备器中。
)2.SYSTEM DA T A CHECK (显示数控系统快闪储备器上储备的文件一览表,以及各文件128KB的治理单位数和软件的系列、确认ROM版号。
)3.SYSTEM DA T A DELETE (删除数控系统快闪储备器上储备的文件。
)4.SYSTEM DA T A SA VE (对数控系统F-ROM中存放的的用户文件,系统软件和机床厂家编写PMC 程序以及P-CODE 程序写到储备卡中。
)5.SRAM DA T A BACKUP (对数控系统S-RAM 中存放的CNC参数、PMC参数、螺距误差补偿量、加工程序、刀具补偿量、用户宏变量、宏P-CODE变量、SRAM变量参数全部下载到储备卡中,作备份用或复原到储备器中。
注:使用绝对编码器的系统,若要把参数等数据从储备卡复原到系统SRAM中去,要把1815号参数的第4位设为0,同时重新设置参考点。
备份:SRAM BACKUP[ CNC –---MEMORY CARD ];复原:.RESTOR SRAM[ MEMORY CARD ----CNC ] )6.MEMORY CARD FILE DELETE (删除储备卡上储备的文件)7.MEMORY CARD FORMA T (能够进行储备卡的格式化。
FANUC-0MC系统900以后参数FANUC--OMC系统参数可以分为两大类:一类:公开型参数——它是系统与机床有关设定的参数,这类参数在FANUC公开发表的各类资料中可以查到其各参数的含义,目前从FANUC有关资料中可查到约有1800多个参数。
有关公开型参数剖析,可在FANUC公司提供有关资料中可查到,不再在本文中论述。
另一类:密级型参数——它是FANUC系统的功能参数,这类参数都属于状态型参数。
每个参数既无名称和符号,也无说明。
这是在随机所带的参数表中有初始的设定值,每一个都代表某种功能的有,无。
只有这些参数的所代表的功能含义在FANUC所提供资料中是不提供任何解释。
FANUC—OMC中900--939参数,就是此类型参数。
它代表OMC系统许多功能。
按900--939号参数共40号,每个参数号为八位,40号参数共320个参数。
但是FANUC公司没有全部设置,目前我们已了解到密级型参数约有80余个。
下面将对这些密级型参数进行剖析。
FANUC--OMC密级型(功能)参数又可以分成二类:一、基本功能参数:即FANUC公司在提供系统时的基本功能的参数,如下:二、选购功能参数:实际上选购功能中又分为两类:A、需要有硬件配合,(即除了将功能参数设置“1”外,还需有硬件的要求。
)可能在价格上要高一些。
B、不需要硬件配合实现该功能。
而目前FANUC--OMC系统提供时,大部分软件已固化在主板上,所以不需要硬件配合的功能,只要将相应功能参数位的状态设置为“1”即可开通该功能。
对于早期版本软件,有可能没有完全固化在主板上时,若当将该功能参数设置“1”后,系统可能不启动或死机时,重新将该功能参数置“0”即可恢复。
§2 功能参数设定方法和传输一、功能参数设定方法1、压住紧急开关,打开机器电源。
2、将方法开关设定在“MDI”方式。
(以下步骤请保持紧急开关在压住状态,不可打开)3、按压PARAMETER键,选择显示参数画面。
4、1984年FANUC公司又推出新型系列产品数控10系统、11系统和12系统。
该系列产品在硬件方面做了较大改良,但凡能够集成的都作成大规模集成电路,其中包含了8000个门电路的专用大规模集成电路芯片有3种,其引出脚竟多达179个,另外的专用大规模集成电路芯片有4种,厚膜电路芯片22种;还有32位的高速处理器、4兆比特的磁泡存储器等,元件数比前期同类产品又减少30%。
由于该系列采用了光导纤维技术,使过去在数控装置与机床以及控制面板之间的几百根电缆大幅度减少,提高了抗干扰性和可靠性。
该系统在DNC方面能够实现主计算机与机床、工作台、机械手、搬运车等之间的各类数据的双向传送。
它的PLC装置使用了独特的无触点、无极性输出和大电流、高电压输出电路,能促使强电柜的半导体化。
此外PLC的编程不仅可以使用梯形图语言,还可以使用PASCAL语言,便于用户自己开发软件。
数控系统10、11、12还充实了专用宏功能、自动方案功能、自动刀具补偿功能、刀具寿命管理、彩色图形显示CRT等。
5、6、1987年FANUC公司又成功研制出数控系统15,被称之为划时代的人工智能型数控系统,它应用了MMC〔Man Machine Control〕、CNC、PMC的新概念。
系统15采用了高速度、高精度、高效率加工的数字伺服单元,数字主轴单元和纯电子式绝对位置检出器,还增加了MAP(Manufacturing Automatic Protocol)、窗口功能等。
二、、FANUC公司是生产数控系统和工业机器人的著名厂家,该公司自60年代生产数控系统以来,已经开发出40多种的系列产品。
三、FANUC公司目前生产的数控装置有F0、F10/F11/F12、F15、F16、F18系列。
F00/F100/F110/F120/F150系列是在F0/F10/F12/F15的根底上加了MMC功能,即CNC、PMC、MMC 三位一体的CNC。
四、FANUC公司数控系统的产品特点如下:1、结构上长期采用大板结构,但在新的产品中已采用模块化结构。
FANUC 0i(-mate)-D数控车床功能调试一、数控系统参数的全清FANUC 0i(-mate)-D数控系统是利用1.进入IPL 监控器画面:IPL 监控器通过如下操作而启动;(1)同时按下MDI 键[.]和[-],接通电源;(2)出现IPL监控器画面及“IPL MENU”(即,IPL菜单),如图1-1所示。
图1-1 IPL 监控器画面2.从上述“IPL MENU”菜单中选择“3”,则出现如图1-2的显示画面;在此画面中选择某项菜单,则将清除所选中的个别文件,进行格式化处理。
图1-2 个别文件的清除画面3. 在图1-2所示的菜单中选择要操作的项。
如要清空系统参数,则用MDI 键盘键“1”→按键;4. 则显示器上会出现“CLEAR FILE OK ? (NO=0,YES=1)”的提问;5. 如果想清空参数则键入“1”时;如果不想清空参数,则键入“0”表示中止操作。
6. 若要继续清除其它文件时,重复第3~5步骤的操作;7. 若想结束操作并返回上一级菜单画面(图1-1)时,请键入“0”。
也可以直接下电再重新上电,以便于检查系统参数是否全清。
二、数控系统参数设置数控系统正常运行的重要条件是必须保证各种参数的正确设定,不正确的参数设置与更改,可能造成严重的后果。
因此,必须理解参数的功能,熟悉设定值,详细内容参考《参数说明书》。
1. 显示参数的操作(1)按MDI 面板上的【SYSTEM 】功能键数次或者按【SYSTEM 】功能键一次,再按〖参数〗软键,选择参数画面,见图2-1。
图2-1 参数画面(2)参数画面由多页组成,可用光标移动键或翻页键,寻找相应的参数画面,也可由键盘输入要显示的参数号,然后按下〖号搜索〗软健,显示指定参数所在的页面,此时光标位于指定参数的位置。
2.用MDI设定参数(1)在操作面板上选择MDI方式或急停状态。
(2)按下【OFS/SET】功能键,再按〖设定〗软键,可显示“设定”画面的第一页。
FANUC数控系统螺距误差补偿功能
数控机床的直线轴精度表现在轴进给上主要由三项精度:反向间隙、定位精度和重复定位精度,其中反向间隙、重复定位精度可以通过机械装置的调整来实现,而定位精度在很大程度上取决于直线轴传动链中滚珠丝杠的螺距制造精度。
在数控机床生产制造及加工应用中,在调整好机床反向间隙、重复定位精度后,要减小定位误差,用数控系统的螺距误差螺距补偿功能是最节约成本且直接有效的方法。
FANUC数控系统已广泛应用在数控机床上,其螺距误差补偿功能有一定的典型性。
螺距补偿原理是将机械参考点返回后的位置作为螺距补偿原点,CNC系统以设定在螺距误差补偿参数中的螺距补偿量和CNC移动指令,综合控制伺服轴的移动量,补偿丝杠的螺距误差。
1 螺距误差补偿前的准备工作回参考点后,编程控制需要螺距误差补偿的轴,从参考点或机床机械位置某一点间歇移动若干个等距检测点,用激光干涉仪等检测计量仪器检测出各点的定位误差。
检测点数量可根据机床的工作长度自设。
2 设定螺距误差补偿参数
打开参数开关在MDI方式下设置参数PWE=1,系统出现1000报警,同时按CAN和RESET键清除报警。
⑴参考点的螺距误差补偿点号码参数X轴参数No.1000Z轴参数No.2000
⑵螺距误差补偿倍率参数参数No.0011的PML1,PML2。
.PML2 PML1 倍率(0 0 31,0 1 32,
1 0 34,1 1 38)设定的螺距补偿值,乘上该倍率,即为输出值.
⑶螺距误差补偿点间隔X轴参数No.756Z轴参数No.757螺距误差补偿点为等间隔,设定范围从0到999999999。
一般设定单位是0.001毫米。
⑷螺距补偿点数目各轴从0到127共128个螺距补偿点
⑸螺距补偿量及螺距补偿点的号X轴参数No.(1001+螺距补偿点号)Z 轴参数No.(2001+螺距补偿点号)每个螺距补偿点螺距补偿量的范围为(-7)~(+7)乘以螺距补偿倍率。
负侧最远补偿点的号=原点补偿点-(负侧的机床长/补偿点间隔)+1正侧最远补偿点的号=原点补偿点+(正侧的机床长/补偿点间隔) 3设定好螺距补偿参数后,在MDI方式下,设置参数PWE=0,关闭参数写状态。
机床断电后重新启动,回参考点,螺距补偿生效。
再检测定位精度,没达到要求的补偿点可反复修改补偿量,直至达到要求。
4 应用举例
数控车床的参考点一般设在机械正限位不到处,参考点与正限位之间的范围在加工工件时很少用到,下面以一台数控车床的Z轴丝杠精度检测结果,阐述螺距误差补偿如何应用。
编程后运行,检测Z轴移动点,每点来回检测
定位精度5次。
检测点参考点
-400-300 -200 -100 0 100(Z轴)
-350 -250 -150 -50 50
得到相邻两点间所需螺距误差补偿量点间100~50 50~0 0~-50 -50~-100 -100~-150补偿量-1 +2 -1 0 -1点间-150~-200 -200~-250 -250~-300
-300~-350 -350~-400补偿量-1 0 +2 -1 +1
设定参数置参数开关写状态PWE=1,解除1000报警。
⑴设定螺距误差补偿原点号码为20。
在参数No.2000中输入20。
⑵设定螺距误差补偿倍率为1。
置参数No.0011中PML1=0,PML2=0。
⑶设定螺补间隔为50mm。
在参数No.757中输入50000。
⑷设定螺距误差补偿正负侧最远补偿点的号:负侧最远补偿点的号=20-400/50+1=13正侧最远补偿点的号=20+100/50=22
⑸按下表输入补偿量补偿点号13 14 15 16 17 18 19 20 21 22参数2014 2015 2016 2017 2018 2019 2020 2021 2022 2023补偿量+1 -1 +2 0 -1 -1
0 -1 +2 -1
⑹置参数开关写状态PWE=0,关机后重新启动,机床Z轴回参考点后螺距误差补偿参数生效。
FANUC数控系统螺距误差补偿也可应用在数控机床的旋转轴上。
在旋转轴中,螺补间
隔按1转移动量(通常360º)的整除数设定,1转螺补量之和设定为0,每转同一位置补偿量设为相同
值。
通过对螺距误差补偿的熟练掌握,可以处理许多数控机床的加工难题。
如加工螺纹的螺距积累误
差,就可以用到螺距误差补偿的方法解决。
但在实际生产中,螺距误差补偿不易掌握,只有多用、多总
结经验,才能应用自如。