当前位置:文档之家› FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC数控机床螺距误差的检测分析与应用_赵宏立
FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC 数控机床螺距误差的检测分析与应用

赵宏立

(沈阳职业技术学院,沈阳110045

)1数控机床螺距误差补偿原理与检测分析

随着精密加工和精益生产的市场需求,数控机床这

种高效高精的自动化设备逐渐在我国普及和使用,由于设备的长期运转和磨损,机床自身的精度需要定期校准,特别是数控机床的重复定位精度和定位精度的检测和补偿,直接影响产品的加工精度和效益。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的检测和补偿方法。Fanuc 数控机床的螺距误差补偿功能有一定的代表性,下面针对Fanuc 数控机床进行螺距误差的检测分析和补偿。1.1

螺距误差补偿与检测原理

在半闭环数控系统当中,重复定位精度和定位精度很大程度上取决于数控机床的滚珠丝杠精度,由于滚珠丝杠存在制造误差和长期加工使用带来的磨损,其精度必然下降,故所有的数控机床都为用户提供了螺距误差补偿功能。螺距误差补偿是将指定的数控机床各轴进给指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控机床各轴全行程上的误差偏移值,再将误差偏移值补偿到数控系统中,则数控机床各轴在运动时控制刀具和工件向误差的逆方向产生相对运动,自动补偿误差偏移值,提高机床的加工精度。1.2

螺距误差补偿应用与分析

我们知道,在大多数数控系统中螺距误差补偿只是

对机床的线性补偿段起作用,只要在数控系统允许的范围内补偿就会起到补偿作用,每轴的螺距误差可以用最小移动单位的倍数进行补偿,一般以机床参考点作为补偿原点,在移动轴设定的各

补偿间隔上,把应补偿的值作为固定参数设定。如图1所示为步距规采用线性补偿方法进行检测。

但一般情况下丝杠的使用是不均匀的,经常使用的地方必然就要磨损得多,用线性补偿只是进行统一均匀线性补偿,不能照顾到特殊的点,而采用点补偿正好能满足这一点,螺距补偿才会没有误

差。为了减少点补偿的误差,应该尽量选取较小的螺距补偿点间距。点补偿的优点是能针对不同点的不同误差值进行补偿,解决了不同点不同螺距误差的补偿问题,补偿的精度高。缺点是测量误差时比较麻烦,需用专业的测量仪器跟踪各点测量。如图2所示,采用定点补偿法进行螺距误差补偿的检测。

摘要:

Fanuc 数控机床在我国数控加工领域占据着主导地位,它的精度和性能指标直接取决于数控机床的定位精度和重复定位精度。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的方法。利用激光干涉仪或步距规测得的实际位置与数控机床移动轴的指令位置相比较,计算出全程上的误差分布曲线,在数控系统控制移动轴运动时考虑该误差差值并加以补偿,可以使数控机床的精度达到更高水平。

关键词:

定位精度;螺距误差;检测;补偿中图分类号:T G502.13文献标识码:A 文章编号:1002-2333(2010)05-0038-03

Analysis and Application of Thread Pitch Error Compensation in Fanuc CNC Machine

ZHAO Hong-li

(Shenyang Polytechnic College,Shenyang 110045,China )

Abstract :Fanuc CNC Machine Tools dominated the field of NC machining in China,its accuracy and performance depends directly on the positioning accuracy and repeat positioning accuracy of CNC Machine Tools.In practical applications,the function of pitch error compensation is the most cost effective and direct method of CNC system.The actual position measured by using laser interferometer or a step gauge is compared with the instructions position of CNC machine moving axis,the position error curve is calculated out on the whole distribution,the error value is compensated in the moving-axis CNC system control movement.So the accuracy of CNC machine tools can be achieved a higher level.

Key words :position accuracy;screw pitch error;measure;

compensation

1

利用步距规进行线性

螺距误差检测

图2利用激光干涉仪进行

定点补偿检测

ACADEMIC COMMUNICATION

学术交流

理论/研发/设计/制造

机械工程师2010年第5期

38

2数控机床螺距误差补偿的测定和计算分析

目前大多数数控机床螺距误差精度的检测都采用雷

尼绍ML10激光干涉仪,利用它自动测量机床的误差,再通过RS232接口,利用软件自动对误差补偿表进行补偿,

比用步距规或光栅尺进行补偿的方法更节省时间和人力,并且避免了手工计算和手动数据键入而引起的随机误差,同时最大限度地增设补偿点数,使机床达到最佳补偿精度。

以威海天诺数控机械有限公司生产的数控刨台卧式铣镗床TH6513为例,

该机床能实现任意四轴联动,适合于大中型零件多工作面的铣、

钻、镗、攻丝、车螺纹、铣端面、两维、三维曲面等多工序加工。其X 轴、Y 轴的行程可达2000mm 以上。现利用ML10激光干涉仪对其X 轴进行检测分析。其线性误差偏移曲线和测量误差点如图3所示。

2.1操作和测量方法

根据GB/T 17421.2_2002机床检测通则、数控轴线

的定位精度和重复定位精度的确定,最为理想的检测环境是气温处于20℃时进行,

避免气流和外部辐射。机床的调平、

几何精度都要符合要求,并且要充分运转。操作时进给速度要保持一致,到达目标点时停留几秒,以便记录实际位置。由于该加工中心X 轴行程为2m ,要求全程激光测量,根据GB 规定,至少每米选择5个目标位置点,尽可能充分采点。因此,该X 轴目标位置选择了i =20个点,平均间隔长度p =100mm 。校激光时由于工作台较大,不可能在全程范围内进给,可以采用2m 的压板或水平钢板尺固定在工作台上代替测量。正向趋近↑和反向趋近↓分别测量j =5次。2.2

数值计算和分析

根据5次测量的位置偏差值X ij 计算出正负方向上的平均偏差X i ,继而求出每个目标点的反向差值B i ,B i =X i ↓-X i ↑;该机床在目标点为9时轴线反向差值B =max (B i )=10.4。在某一位置P i 的单向定位标准不确定度的估算值即标准偏差S i ↑=

1

n

i =1

Σ

(X ij

↑-X 軍i

↑)2

,同理,S i

↓=1n

i =1

Σ(X ij ↓-X 軍i ↓)2姨

,再根据标准偏差计算出某一位置的单向重复定位精度R i ,即R i ↑=4S i ↑,

R i ↓=4S i ↓,继而求得轴线单向重复定位精度R ↑和R ↓:R ↑=max

(R i ↑)=8;R ↓=max (R i ↓)=7.268;R =max (R i )。再根据公式R i =max (2S i ↑+2S i ↓+|B i |)求得某一位置的双向重复定位精度,继而再求出轴线双向重复定位精度R =max (R i )=13.422。最后再求出轴线单向定位精度A ↑和A ↓以及全程轴线的双向定位精度A :

公式为A ↑=max (X i ↑+2S i ↑)-min (X i ↑-2S i ↑)=6.684-(-3.390)=10.074;A ↓=max (X i ↓+2S i ↓)-min (X i ↓-2S i ↓)=2.633-(-10.988)=13.621。轴线双向定位精度A =max (X i ↑+2S i ↑或X i ↓+2S i ↓)-min (X i ↑-2S i ↑或X i ↓-2S i ↓)=6.684-(-10.988)=17.772。以上计算数控和结果如表1所示。

由以上图表曲线和数据及计算结果与GB 规定进行比较判断,可以检测该机床X 轴的单向和双向定位精度和重复定位精度合格与否,还可以由此为该机床X 轴精度验收提供依据。

3利用激光干涉仪对数控机床精度误差补偿分析与应用3.1

检测补偿实例

沈阳机床生产的HTC100290A 数控卧式车床的检验精度一般有三个方面:(a )重复定位精度(Maximum Repeat positioning Accuracy )R ;(b )反向差值(Maximum Reversal value )B ;(c )双向定位精度(Bidirectional Accuracy )A 。该数

图3重复定位精度和定位精度检测曲线图

图4

补偿前检测结果

图5补偿后检测结果

39

机械工程师2010年第5期

学术交流

理论/研发/设计/制造

ACADEMIC COMMUNICATION

误差/μm

/mm

mmmmmmmmmm 表1

校激光偏差表

控机床的系统为FANUC -0i 系统,以Z 轴为例进行多次检测。该型号机床的位置精度要求:(a )重复定位精度R 允差值=0.020mm ;(b )反向差值B 允差值=0.012mm ;(c )双向定位精度A 允差值=0.05mm 。补偿前检测结果反馈在计算机中如图4所示;补偿后检测结果反馈在计算机中如图5所示。3.2

补偿应用与分析

根据如图4和图5所示三种定位精度检测结果,定位精度补偿设置为:机床行程3m ;检测程序30段;每段位移行程为100mm ;螺距补偿点为100~130输入检测出的差值进行相应点补偿。

反向间隙补偿:采集机床反向间隙数据,机械间隙不应超出0.03mm ,再进行参数1851进行相应点的间隙补偿。

因此可以看出补偿前后机床的精度的变化,通过ML10检测出机床的线性误差记录分析得到误差值,并对数控系统进行误差补偿,从而使数控机床达到精度要求以保证加工工件的精度,因此无论是数控机床的装配出厂还是定期的检测对数控系统进行误差补偿都是非常重要和非常有意义的。4

本文采用激光干涉仪对数控机床的螺距误差补偿进行检测、分析、数值计算和应用,提出数控机床应该定期

进行螺距误差补偿和采用激光干涉仪进行检测的方法,运用GB/T 17421.2_2002对校激光所得到的目标位置偏差值进行数据处理和分析,能判断单向和双向的重复定位精度和定位精度,来明确机床精度的验收和检验依据。实践和数据表明,数控机床的定期精度检测和及时校对螺距偏差、反向间隙误差等可切实改善生产使用中的机床精度,通过对螺距误差补偿的熟练掌握,可以改善零件加工质量,可以使数控机床的精度达到一个更高的层次,提高机床利用率和价值。

[参考文献]

[1]俞鸿斌.数控机床中螺距误差补偿原理及测量方法研究[J ].组合机床与自动化技术,2008(1):42.

[2]王彦平.H7145加工中心丝杠的螺距误差补偿[J ].设备管理与

维修,

2006(9):13.[3]

陈吉红.数控机床试验指南[M ].武汉:华中科技大学出版社,2004.[4]王建平,黄登红.数控机床螺距误差实时补偿[J ].组合机床与自动化技术,2004(12):59-60.[5]刘焕牢,李曦,等.数控机床几何误差和误差补偿关键技术[J ].机械工程师,2003(1):16-18.[6]

张虎,周云飞,等.数控机床定位误差的软件补偿技术[J ].华中理工大学报,2001,29(4):47-49.(编辑立明)

作者简介:赵宏立,男,高级技师,主要研究方向为数控加工及数控原

理与维修。

收稿日期:2010-02-24

ACADEMIC COMMUNICATION

学术交流

理论/研发/设计/制造

机械工程师2010年第5期

40

数控车床丝杠螺距误差的补偿

项目数控车床丝杠螺距误差的补偿 一、工作任务及目标 1.本项目的学习任务 (1)学习数控车床丝杠螺距误差的测量和计算方法; (2)学习数控车床螺距误差参数的设置方法。 2.通过此项目的学习要达到以下目标 (1)了解螺距误差补偿的必要性; (2)掌握螺距误差补偿的测量和计算方法; (3)能够正确设置螺距误差参数。 二、相关知识 滚珠丝杠螺母机构 数控机床进给传动装置一般是由电机通过联轴器带动滚珠丝杆旋转,由滚珠丝杆螺母机构将回转运动转换为直线运动。 1、滚珠丝杠螺母机构的结构 滚珠丝杠螺母机构的工作原理见图1;在丝杠1 和螺母 4 上各加工有圆弧形螺旋槽,将它们套装起来变成螺旋形滚道,在滚道内装满滚珠2。当丝杠相对螺母旋转时,丝杠的旋转面经滚珠推动螺母轴向移动,同时滚珠沿螺旋形滚道滚动,使丝杠和螺母之间的滑动摩擦转变为滚珠与丝杠、螺母之间的滚动摩擦。螺母螺旋槽的两端用回珠管 3 连接起来,使滚珠能够从一端重新回到另一端,构成一个闭合的循环回路。

2、进给传动误差 螺距误差:丝杠导程的实际值与理论值的偏差。例如PⅢ级滚珠丝杠副的螺距公差为0.012mm/300mm。 反向间隙:即丝杠和螺母无相对转动时丝杠和螺母之间的最大窜动。由于螺母 结构本身的游隙以及其受轴向载荷后的弹性变形,滚珠丝杠螺母机构存在轴向间隙,该轴向间隙在丝杠反向转动时表现为丝杠转动α角,而螺母未移动,则形成了反向间隙。为了保证丝杠和螺母之间的灵活运动,必须有一定的反向间隙。但反向间隙过大将严重影响机床精度。因此数控机床进给系统所使用的滚珠丝杠副必须有可靠的轴向间隙调节机构。 图2为常用的双螺母螺纹调隙式结构,它 用平键限制了螺母在螺母座内的转动,调整时只要扮动圆螺母就能将滚珠螺母沿轴 向移动一定距离,在将反向间隙减小到规定的范围后,将其锁紧。

立式加工中心机床的螺距误差补偿(精)

立式加工中心机床的螺距误差补偿 随着我国制造业的飞速发展,数控机床制造技术也在不断地发展,同时对数控机床的各项性能提出了越来越高的要求。机床的定位精度便成为了衡量机床性能的一项重要指标。机械结构当中不可避免的摩擦、间隙,以及装配误差成为了制约机床定位精度的主要因素。由此,数控系统的制造商开发出了螺距误差补偿功能,借此以消除或者削弱以上因素对机床定位精度的影响,从而达到更好的加工效果。发那科与西门子两大公司在这个领域表现得尤为出色,以下将对这两种数控系统的螺距误差补偿方法进行详细介绍。 1.发那科数控系统机床的误差补偿(以FANUC 0i-MD为例) 1.1基本概念 1.1.1补偿点的指定 各轴的补偿点的指定,可通过夹着参考点的补偿点编号指定(+)侧、(-)侧来进行。机械的行程超过(+)侧、(-)侧所指定的范围时,有关超出的范围,不进行螺距误差补偿(补偿量全都成为0)。 1.1.2补偿点号 补偿点数,在螺距误差设定画面上提供有共计1024 点,从0 到1023。通过参数将该编号任意分配给各轴。 另外,螺距误差设定画面中,在最靠近负侧的补偿号前,显示该轴的名称。 1.1.3补偿点的间隔 螺距误差补偿的补偿点为等间隔,在参数中为每个轴设定该间隔。 螺距误差补偿点的间隔有最小值限制,通过下式确定。 螺距误差补偿点间隔的最小值=最大进给速度(快速移动速度)÷7500 1.2相关参数 (1)1851 每个轴的反向间隙补偿量。 (2)1852 每个轴的快速移动时的反向间隙补偿量。 (3)3620 每个轴的参考点的螺距误差补偿点号。 (4)3621 每个轴的最靠近负侧的螺距误差补偿点号。 (5)3622 每个轴的最靠近正侧的螺距误差补偿点号。 (6)3623 每个轴的螺距误差补偿倍率。 (7)3624 每个轴的螺距误差补偿点间隔。 注:以上参数中3620,3621,3622,3624修改后需要切断电源并重新上电才生效,其余参数修改后复位即可生效。 1.3操作方法(以X轴行程为850mm的丝杠为例,全长采集20个数据) 1.3.1连接激光干涉仪 1.3.2设置参数

数控机床误差实时补偿技术总结

数控机床实时误差补偿技术的学习总结 第1章绪论 制造业的高速发展和加工业的快速提高,对数控机床加工精度的要求日益提高。一般来说,数控机床的不精确性是由以下原因造成: [1]机床零部件和结构的几何误差; [2]机床热变形误差; [3]机床几何误差; [4]切削力(引起的)误差; [5]刀具磨损误差; [6]其它误差源,如机床轴系的伺服误差,数控插补算法误差。 其中热变形误差和几何误差为最主要的误差,分别占了总误差的45%、20%。提高机床加工精度有两种基本方法:误差防止法和误差补偿法(或称精度补偿法)。 误差防止法依靠提高机床设计、制造和安装精度,即通过提高机床本书的精度来满足机械加工精度的要求。由于加工精度的提高受制于机床精度,因此该方法存在很大的局限性,并且经济上的代价也很昂贵。 误差补偿法是认为地造出一种新的误差去抵消当前成为问题的原始误差,以达到减小加工误差,提高零件加工精度目的的方法。误差补偿法需要投入的费用很小,误差补偿技术是提高机床加工精度的经济和有效的手段,其工程意义非常显著。 误差补偿技术(Error Compensation Technique,简称ECT)是由于科学技术的不断发展对机械制造业提出的加工精度要求越来越高、随着精密工程发展水平的日益提高而出现并发展起来的一门新兴技术。误差补偿技术具有两个主要特性:科学性和工程性。 1.机床误差补偿技术可分为下面七个基本内容: [1]误差及误差源分析; [2]误差运动综合数学模型的建立; [3]误差检测; [4]温度测点选择和优化布置技术; [5]误差元素建模技术; [6]误差补偿控制系统及实施; [7]误差补偿实施的效果检验。 2.数控机床误差补偿的步骤: [1]误差源的分析和检测; [2]误差综合数学模型的建立; [3]误差元素的辨识和建模; [4]误差补偿的执行; [5]误差补偿效果的评价。 3.数控机床误差补偿技术研究的现状: [1]过长的机床特性检测和辨识时间; [2]温度测点布置位置优化; [3]误差补偿模型的鲁棒性; [4]误差补偿系统及实施; [5]五轴数控机床多误差实时补偿问题。 4.数控机床误差补偿技术研究的发展趋势: [1]多误差高效检测方法;

数控机床误差分析及位置精度提高方法

数控机床误差分析及位置精度提高方法 发表时间:2017-08-02T14:58:21.010Z 来源:《电力设备》2017年第9期作者:魏仁进[导读] 摘要:随着科技信息化的发展,现代制造业逐渐进入高效率,高精度方向,数控机床和其他设备的性能要求也在不断增加。(航宇救生装备有限公司湖北 441003)摘要:随着科技信息化的发展,现代制造业逐渐进入高效率,高精度方向,数控机床和其他设备的性能要求也在不断增加。数控机床上生产的产品,都只是依赖于机床自身加工精度。然而在数控机加工中仍然存在许多影响,影响数控机床的加工精度有很多,使用过程中也会出现很多的不确定因素对精度造成影响。 关键词:数控机床误差;位置精度;提高方法前言: 自动化的迅猛发展和广泛应用在生产过程中进行精密加工,数控机床加工精度也在不断提升。从现状可以看出,数控机床在当前生产过程中起到的不可或缺的作用,其精度是一个衡量数控机床等级的重要指标,而误差是严重干扰数控机床精度的。因此本文主要就数控机床误差分析及位置精度提高方法进行探讨,以供参考。 一、数控机床误差分类 数控机床的误差是指的操作指令的实际作用,相比预计的结果差异的影响的程序。具体的含义是在机床实际运行中,机床工作台和刀具的运动,理想与实际情况的差异。一般数控机床主要是机床身,立柱,主轴,以及各种直线导轨和旋转轴。所有这一切部件产生的误差最后都归结都数控机床实际加工的误差。误差来源可以被划分成:①运动误差;②切削力;③测试设备误差;④热变形误差;⑤机械安装误差;⑥几何误差机床组件;⑦机器重量和负载变形引起;⑧伺服控制误差和插补算法误差;⑨刀具磨损。 二、机器上误差产生条件 2.1 静态错误 在数控机床不进行切削时,检测存在的误差,其中包括机器的几何精度和定位精度的两个元素,也就是原来的精密机床和本身重力引起的误差。 2.2 动态误差 实际切割机工件的加工条件下被实现的准确度,它是不仅准确性的原始制造商的数控机刀具相关的,如处理的记录的过程中,刀具和工件,本身的误差,但切削力时,速度和其他相关的。 2.3高频率误差:一个动态的误差,如引起的振动带来的相关误差。 2.4位置误差 在机床工作台上或工具(机床坐标系中)位置相关的误差,这是一个函数的坐标系统的位置误差可表示为E = f{x,y,z,其他},类似的几何误差。非位置错误:与机床工作台或刀具位置无关的误差。 三、提高位置精度的主要方法 3.1误差防止法 数控机床的几何尺寸误差主要来自于机床零件的形状和装配误差,因此在机床零件的加工和装配过程中,改进工艺方法和提高零件质量,以达到减少几何误差的目的。此外,对于机床热变形误差和振动误差,通过校核数控机床结构的刚度和热传导特性可达到减少误差的目的。与普通机床相比,数控机床有插补误差和伺服误差,采用合理的插补计算和伺服控制方法,可以减少该项误差。 3.2 降低几何误差 机床组成零部件的几何误差直接影响机床的加工精度和加工工件的误差,其中机床主轴、导轨和进给系统零部件的几何精度等级影响最大。因此,可以通过提高机床组成零部件的几何精度来提高机床的加工精度。 3.3热变形解决措施 热变形误差是机床的发热部位产生热量,热量通过各种介质向外传递,导致机床关键零件变形从而产生误差。热变形误差是继几何误差之后影响机床加工精度的第二大影响因素,热变形误差补偿是提高机床精度的重要途径之一,对热变形误差补偿的研究晚于对几何尺寸误差研究,目前减小热变形误差的方法主要有硬补偿和软补偿两种方法。解决措施:减少热源和控制热流、优化机床结构设计和改善热传导性能。在精密和超精密零件加工中,这些机床的几何精度比较高,因此,降低热变形误差已经成为提高加工精度的主要途径。一方面采用空气静压轴承、磁悬浮轴承,减少摩擦,进而减少由此引起的热量;另一方面,合理布置机床结构,尽量采用对称布置,加快温度场热平衡,将相变理论应用到机床基础件的方法来减小热平衡也是近年来研究的新思路。 3.4伺服跟随误差分析 进给伺服系统是数控机床的一个重要组成部分,其性能直接影响零件的加工质量和生产效率。伺服系统静、动态特性对数控机床的定位精度、加工精度和位移速度有直接影响,对伺服系统的要求主要是精度、快速性和稳定性三个方面。数控机床伺服系统是按照数控装置的控制指令实现,由步进电动机或伺服电动机与传动机构结合来传动,因此,引起伺服系统的变化复杂,进而影响到加工误差。在数控机床的控制系统中,各坐标轴伺服系统准确跟踪数控指令的能力十分关键。由于伺服控制系统根据反馈方式不同,分为开环控制和闭环控制系统两种控制方法。目前对伺服系统跟随误差的研究主要集中在单轴伺服系统和多轴伺服系统性能的提高和改善两个方面。 3.5 插补误差分析 在数控加工过程中,对于复杂零件的加工,由于刀具运行轨迹非常复杂,计算工作量大,很难准确地满足数控加工的实时性要求。因此在实际加工中,根据加工时进给速度的要求,采用插补运算的方法,完成在起点到终点的数据点密化工作,从而形成坐标轴的运动轨迹。针对插补运算过程中存在的误差问题,采用二维非参数曲线插补算法、弧长接近参数值的五次样条曲线、二次泰勒级数展开式基础上的参数补偿等方法,来减小插补误差,提高插补计算精度。 四、数控机床误差补偿方法

FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC 数控机床螺距误差的检测分析与应用 赵宏立 (沈阳职业技术学院,沈阳110045 )1数控机床螺距误差补偿原理与检测分析 随着精密加工和精益生产的市场需求,数控机床这 种高效高精的自动化设备逐渐在我国普及和使用,由于设备的长期运转和磨损,机床自身的精度需要定期校准,特别是数控机床的重复定位精度和定位精度的检测和补偿,直接影响产品的加工精度和效益。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的检测和补偿方法。Fanuc 数控机床的螺距误差补偿功能有一定的代表性,下面针对Fanuc 数控机床进行螺距误差的检测分析和补偿。1.1 螺距误差补偿与检测原理 在半闭环数控系统当中,重复定位精度和定位精度很大程度上取决于数控机床的滚珠丝杠精度,由于滚珠丝杠存在制造误差和长期加工使用带来的磨损,其精度必然下降,故所有的数控机床都为用户提供了螺距误差补偿功能。螺距误差补偿是将指定的数控机床各轴进给指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控机床各轴全行程上的误差偏移值,再将误差偏移值补偿到数控系统中,则数控机床各轴在运动时控制刀具和工件向误差的逆方向产生相对运动,自动补偿误差偏移值,提高机床的加工精度。1.2 螺距误差补偿应用与分析 我们知道,在大多数数控系统中螺距误差补偿只是 对机床的线性补偿段起作用,只要在数控系统允许的范围内补偿就会起到补偿作用,每轴的螺距误差可以用最小移动单位的倍数进行补偿,一般以机床参考点作为补偿原点,在移动轴设定的各 补偿间隔上,把应补偿的值作为固定参数设定。如图1所示为步距规采用线性补偿方法进行检测。 但一般情况下丝杠的使用是不均匀的,经常使用的地方必然就要磨损得多,用线性补偿只是进行统一均匀线性补偿,不能照顾到特殊的点,而采用点补偿正好能满足这一点,螺距补偿才会没有误 差。为了减少点补偿的误差,应该尽量选取较小的螺距补偿点间距。点补偿的优点是能针对不同点的不同误差值进行补偿,解决了不同点不同螺距误差的补偿问题,补偿的精度高。缺点是测量误差时比较麻烦,需用专业的测量仪器跟踪各点测量。如图2所示,采用定点补偿法进行螺距误差补偿的检测。 摘要: Fanuc 数控机床在我国数控加工领域占据着主导地位,它的精度和性能指标直接取决于数控机床的定位精度和重复定位精度。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的方法。利用激光干涉仪或步距规测得的实际位置与数控机床移动轴的指令位置相比较,计算出全程上的误差分布曲线,在数控系统控制移动轴运动时考虑该误差差值并加以补偿,可以使数控机床的精度达到更高水平。 关键词: 定位精度;螺距误差;检测;补偿中图分类号:T G502.13文献标识码:A 文章编号:1002-2333(2010)05-0038-03 Analysis and Application of Thread Pitch Error Compensation in Fanuc CNC Machine ZHAO Hong-li (Shenyang Polytechnic College,Shenyang 110045,China ) Abstract :Fanuc CNC Machine Tools dominated the field of NC machining in China,its accuracy and performance depends directly on the positioning accuracy and repeat positioning accuracy of CNC Machine Tools.In practical applications,the function of pitch error compensation is the most cost effective and direct method of CNC system.The actual position measured by using laser interferometer or a step gauge is compared with the instructions position of CNC machine moving axis,the position error curve is calculated out on the whole distribution,the error value is compensated in the moving-axis CNC system control movement.So the accuracy of CNC machine tools can be achieved a higher level. Key words :position accuracy;screw pitch error;measure; compensation 图 1 利用步距规进行线性 螺距误差检测 图2利用激光干涉仪进行 定点补偿检测 ACADEMIC COMMUNICATION 学术交流 理论/研发/设计/制造 机械工程师2010年第5期 38

数控机床的误差补偿

数控机床的误差补偿 随着我国经济的飞速发展,数控机床作为新一代工作母机,在机械制造中已得到广泛的应用,精密加工技术的迅速发展和零件加工精度的不断提高,对数控机床的精度也提出了更高的要求。尽管用户在选购数控机床时,都十分看重机床的位置精度,特别是各轴的定位精度和重复定位精度。但是这些使用中的数控机床精度到底如何呢? 大量统计资料表明:65.7%以上的新机床,安装时都不符合其技术指标;90%使用中的数控机床处于失准工作状态。因此,对机床工作状态进行监控和对机床精度进行经常的测试是非常必要的,以便及时发现和解决问题,提高零件加工精度。 目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准GB10931-89等。同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。数控机床的位置标准通常指各数控轴的反向偏差和定位精度。对于这二者的测定和补偿是提高加工精度的必要途径。 一、反向偏差 在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。对于采用半闭环伺服系统的数控机床, 反向偏差的存在就会影响到机床的定位精度和重复定位精度, 从而影响产品的加工精度。如在G01切削运动时, 反向偏差会影响插补运动的精度, 若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。同时,随着设备投入运行时间的增长, 反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加, 因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。 (1)反向偏差的测定 反向偏差的测定方法:在所测量坐标轴的行程内, 预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差,在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值, 以所得平均值中的最大值为反向偏差测量值。在测量时一定要先移动一段距离AB段, 否则不能得到正确的反向偏差值。 测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。若采用编程法实现测量,则能使测量过程变得更便捷更精确。 例如,在三坐标卧式机床上测量X轴的反向偏差,可先将表压住主轴的圆柱表面,然后运行如下程序进行测量: N10 G91 G01 X50 F1000;工作台右移 N20 X-50;工作台左移,消除传动间隙 N30 G04 X5;暂停以便观察 N40 Z50;Z轴抬高让开 N50 X-50:工作台左移 N60 X50:工作台右移复位 N70 Z-50:Z轴复位 N80 G04 X5:暂停以便观察 N90 M99;

数控机床几何误差特性及其测量方法研究

2007年第26卷12月第12期机械科学与技术 M echanical Science and T echno l ogy for A erospace Eng ineer i ng D ece m be r V o.l 262007N o .12 收稿日期:2006-09-28 基金项目:国家高技术研究发展计划项目(2002AA423260),国家自然科学基金项目(50672015 )和广东海洋大学自然科学基金项目(0512145, 0612003)资助 作者简介:刘焕牢(1966-),男(汉),山西,副教授,博士,h166@163.co m 数控机床几何误差特性及其测量方法研究 刘焕牢1,李 斌2,王 贵1,师汉民 2 (1广东海洋大学工程学院,湛江 524025; 2 华中科技大学国家数控系统工程研究中心,武汉 430074) 摘 要:分析了数控机床几何误差和定位误差的异同。指出了数控机床定位误差测量的前提条件 是误差值要表示为指令位置点坐标的函数,从而进一步明确了数控机床满足这一条件的基本要求。在此基础上,提出了数控机床末端定位误差的基本特性是相对性、位置依赖性、连续性。并用试验的方法验证了以上特性,为数控机床的误差测量、误差补偿提供了理论依据和实践方法。关 键 词:数控机床;几何误差;定位误差;测量误差 中图分类号:TG659 文献标识码:A 文章编号:1003-8728(2007)12-1570-04 Characteristics ofGeo m etric Errors i n a CNC M achi ne Tool and TheirM eas ure m entM et hod L i u H uan lao 1,L i B i n 2,W ang G ui 1,Sh iH an m i n 2 (1Co llege of Eng i neeri ng ,G uangdong O cean U n i versity ,Zhanji ang 524025; 2 N ationa l CNC Contro l R esearch Center ,Huazhong U ni v ers it y o f Science and T echno l ogy ,W uhan 430074) Abst ract :W e analyze t h e d ifferences and si m ilarities o f geo m etric errors and position i n g errors i n a CNC m achine too.l The analysi s i n d icates t h at the preconditi o ns for its position i n g error m easure m ent is t h at the error value shou l d be expressed as the function of the coordinates of positi o ning po i n ts ,thus i d entifying the basic requ ire m ents to be satisfied by the CNC m achine too.l Based on the analysis ,w e put for w ard the fo ll o w i n g c haracteristics of its positi o -n i n g err o rs :relati v ity ,position dependency and continu ity .M oreover ,w e do experi m ents to ver ify the above char -acteristics ,providing theo retica l basis and a practicalm ethod for the error m easure m ent and co m pensation of a CNC m ach i n e too.l K ey w ords :CNC m ach i n e too ;l geo m etric error ;position i n g err o r ;error m easure m ent 由前人的研究成果已知,几何误差和由温度引起 的误差约占机床总体误差的70%[1] 。几何误差受环境影响较小,可在较长的时间内保持稳定,重复性好,易于进行误差补偿,所以是机床误差补偿的主要研究方向[2] 。误差补偿是提高机床精度的有效方法,也取得了一定的成果,关键是误差的测量。虽然补偿方法各有不同,测量方法多种多样,为了达到误差补偿的目的,误差数值都必将和机床的指令位置对应,最终表示为机床指令位置的函数[3~5] 。因而,明确几何误差的定义、特性,有益于误差模型的建立,进一步对几何误差的补偿,无疑是非常重要的。 1 几何误差的意义 数控机床的几何误差是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所产生的机床定位误差。几何误差和定位误差是两个不同的概念,容易产生混淆。针对数控机床误差测量的一般原则,特对数控机床的几何误差和定位误差作以下说明: (1)造成定位误差的原因很多,例如由于机床结构热变形引起的定位误差、由于机床结构力变形引起的定位误差等等,本文只研究由于机床几何误差所引起的定位误差。

数控机床误差补偿技术的研究

数控机床误差补偿技术的研究

目录 摘要 (iv) Abstract (v) 第一章概述........................................................... - 1 - 1.1数控技术的基本概念 (1) 1.1.1 数控技术和数控机床 .......................................... - 1 - 1.1.2数控机床的特点............................................... - 1 - 1.1.3 数控机床的分类 .............................................. - 1 - 1.2误差补偿技术的研究 (1) 1.2.1误差补偿现状................................................. - 2 - 1.3本论文的研究目的意义和研究内容 (3) 1.3.1研究的目的和意义............................................. - 3 - 1.3.2研究的主要内容............................................... - 3 - 1.3.3研究的基本思路和基本方法..................................... - 3 - 第二章数控机床的进给传动系统 ......................................... - 4 - 2.1数控机床对进给传动系统的要求.. (4) 2.2数控机床进给传动装置的结构 (4) 2.2.1滚珠丝杠螺母机构的结构....................................... - 4 - 2.2.2 进给传动误差................................................ - 5 - 2.2.3 电机与丝杠的联接、传动方式 .................................. - 6 - 2.3数控系统的三种控制方式.. (6) 第三章数控机床的精度及可靠性分析 ..................................... - 8 - 3.1数控机床误差的分类 (8) 3.2误差模型简介 (8) 3.2.1 几何误差.................................................... - 8 - 3.2.2 热误差...................................................... - 9 - 3.2.3 运动控制误差................................................- 10 - 3.2.4 其它误差....................................................- 10 - 3.3数控机床的精度 .. (10) 3.4数控机床的精度检查 (11) 3.4.1 机床几何精度的检查 ..........................................- 11 - 3.4.2 机床定位精度的检查 ..........................................- 11 - 3.5数控机床的可靠性 (12)

西门子840D数控系统螺距误差补偿知识

西门子840D数控系统螺距误差补偿 西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。 关键词:数控系统下垂补偿功能双向螺距误差补偿 由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。 一、西门子840D数控系统的补偿功能 西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。这些功能有: 1、温度补偿。 2、反向间隙补偿。 3、插补补偿,分为: (1) 螺距误差和测量系统误差补偿。 (2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。 4、动态前馈控制(又称跟随误差补偿)。包括:速度前馈控制和扭矩前馈控制。

5、象限误差补偿(又称摩擦力补偿)。分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。 6、漂移补偿。 7、电子重量平衡补偿。 在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。 二、840D下垂补偿功能的原理 1、下垂误差产生的原因: 由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。 2、840D下垂补偿功能参数的分析: 西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。描述如下: (1) $AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。 (2) $AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。 (3) $AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。 (4) $AN_CEC_STEP[t]:基准轴两插补点之间的距离。 (5) $AN_CEC_MIN[t]:基准轴补偿起始位置: (6) $AN_CEC_MAX[t]: 基准轴补偿终止位置 (7) $AN_CEC_DIRECTION[t]:定义基准轴补偿方向。其中:

13、螺距误差补偿及反向间隙补偿

螺距误差补偿及反向间隙补偿 根据下表设置螺距误差补偿相关参数: 参数号参数位设定值设置说明 3620 X Z 100 200 每个轴的参考点的螺 距误差补偿点号 3621 X Z 负方向最远的补偿位置号根据下面的公式进行计算: 参考点的补偿位置号—(负方向的机床行程/补偿位置间隔)+ 1 100-(1000/50)+1=81 所以负方向补偿位置号设置为81 3622 X Z 正方向的最远补偿位置号根据下面的公式进行计算: 参考点的补偿位置号+(正方向的机床行程/补偿位置间隔)+ 1 100+(0/50)+1=101 所以参考点正方向补偿位置号为101. 3624 补偿点间隔输入格式 为无小数点输入格 式,由于X轴为直径 值编程,所以X轴补 偿点间隔应为实际补 偿点间隔的2倍,应 设置为100000,为 100mm. 参数号参数位设定值设置说明 1800 #4(RBK) 是否分别进行切削进 给/快速移动反向间 隙补偿 0: 不进行。 1: 进行。 1851 X Z 每个轴的反向间隙补偿量,设置后,回零

生效 1852 X Z 每个轴的快速移动时的反向间隙补偿量,回零生效 由于FANUC系统螺距误差补偿采用增量式的补偿方式,所以在进行螺距误差补偿时,需根据补偿数据进行补偿数据的设定个。 下表为螺距误差补偿表 由于每个补偿点的最大补偿值只能到7,在上表中可以看到,在-400mm测量位置处出现了一次22的值,此点是所有补偿点误差的最大值,所以补偿倍率按此点进行计算,而且考虑其它点的误差值,将补偿倍率设置为3倍。 补偿倍率设置为3倍,所有的补偿值都放大了三倍,所以在补偿数据处看到的是计算值的1/3,如果测量人员给出的是补偿值,那么补偿数据就按上图中的数据进行输入,如果给出的

数控机床误差测量与补偿

数控机床误差测量与补偿 摘要:本文在分析数控加工误差来源及分类的基础上,明确了几何误差的性质、产生原因及在各类误差源中所占的比重,着重介绍了用激光干涉测量法的测量原理及特点并对其两种不同的测量 方法进行比较,最后进行误差试验,得到补偿效果。 abstract: based on the analysis of the source and classification of nc maching error, this paper clears the nature of the geometric error, the causes and its proportion in all kinds of error sources. the principle and characteristics of laser interferometry is emphatically introduced and the two different methods are compared. at last, the error measurement is conducted to get compensation efffect. 关键词:数控机床;几何误差;误差测量;误差补偿 key words: nc machine tools;geometric error;error measurement;error compensation 中图分类号:tg659 文献标识码:a 文章编号:1006-4311(2013)22-0017-02 1 数控机床误差分析 1.1 误差的来源数控机床的误差来源比较复杂。机械加工的误差主要来源于机床、加工过程和检测等三个方面。如:①床身、主轴、立柱、导轨、旋转轴等机床零部件在制造过程中引入的尺寸误

螺距误差补偿

螺距误差补偿 螺补有关的参数: MD32450MA_BACKLASH[ ] (轴反向间隙补偿) MD32700MA_ENC_COMP_ENABLE[ ] = 0 可以写补偿值 = 1 补偿文件写保护MD38000MA_MM_ENC_COMP_MAX_POINTA[ ](轴螺补补偿点数) 螺补的步骤(以X轴为例): 1参数MD38000,按照X轴的全行程以及步长必须小于150mm的规则确定要补偿的点数(最好是一次确定并更改所有需要螺补轴的补偿点数)。更改完此参数后会出现一个报警4000,此时不要做NCK Reset,此时应该做NC备份。备份完后作POWER ON。 2在“Programe”(程序)中“Workpiece Programe(工件程序)”拷入各个轴的螺补程序LBX,LBY,LBZ等。 3在Service(服务)中找寻Data selection,在打开的界面中选择NC_active_data,回到data manage(数据管理)中打开NC_active_data,会出现meas.system_error_comp目录,再打开此目录会出现几个子目录:meas.system_error_comp_axis1(axis2,Axis3,axis4,……),点击axis1,按copy出现一个面板,将axis1复制到LB中,回到“workpiece(工件)”的LB 中,将出现AX1—EEC程序,此程序就是X轴的数据补偿程序。其他轴同理。 4在对机床进行螺补之前,应先走一遍所测轴全程,确定所测轴的全程间隙,如果过大需要调整光栅钢带的长度,使得所测轴全程激光测得的数与显示屏显示的数相差范围在0.02mm以下。 5设置MD32700= 0,将X轴以LBX的程序运行一遍(注意要设置好LBX里的步长,全长等数据),将激光测试出的各个点的误差及反向间隙数据采集下来。把各个点的误差数据以及程序的步长,最大和最小点一次写入AX1—EEC程序(注意不要改变数据的正负号),将反向间隙写入MD32450。 6在auto方式下选择AX1—EEC程序,并执行此程序。将MD32700设置为1,按“MD 参数生效”,作一次复位,使补偿值生效。再执行LBX程序,再检验X轴精度是否合格。 7如果精度检验不合格,可能有以下几种情况: ⑴定位精度不合格。需要分析一下激光曲线,具体看是否有地方出现较大拐点等, 要检查钢带外壳的直线度并调整,最好控制在0.05mm以内,重复E,F步骤, 再次补偿。 ⑵重复精度不合格。这个问题就比较复杂,对于螺补数据几乎不可能,因为它完 全来源于机械的安装,只能寄希望于机械的安装精度合格了。也许唯一能解点

FANUC的进给运动误差补偿方法

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计论文 FANUC的进给运动误差补 偿方法 学生姓名: 指导教师姓名: 所在班级所在专业 论文提交日期论文答辩日期 答辩委员会主任主答辩人 系 年月日

FANUC的进给运动误差补偿方法 目录 毕业设计任务书 (1) 开题报告 (2) 第一章进给运动误差补偿方法 (6) 1.1常见进给运动误差 (7) 1.1.1反向间隙误差补偿 (8) 1.1.2螺距误差补偿 (9) 1.1.3摩擦补偿 (11) 第二章进给误差数据采集与补偿参数的设置 (12) 2.1激光干涉仪 (12) 2.1.1单频激光干涉仪 (12) 3.1 双频激光干涉仪 (13) 3.1.1 雷尼绍激光校准系统 (14) 3.1.2 测量误差分析 (19) 3.2误差补偿参数的设置 (20) 毕业设计总结 (23) 参考文献 (24) 致谢 (25) 外文翻译 (26) 2

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计任务书 课题名称FANUC的进给运动误差补偿方法 指导教师王小平职称高级技师 专业名称数控设备应用与维护班级数控设备10832 学生姓名尹耀强学号1061083237 课题需要完成的任务: 1.根据课题调研查阅资料,了解国内外现状、进展,编写调研报告。 2.收集技术资料、图纸进行设计或分析探讨。 3.对不同类型设计的分析, 进行方案论证,确定总体方案。 4.完成毕业设计的论文。 5. 3000单词量的外文资料的翻译(专业相关科技类)。 课题计划: 2月21日—2月25日;确定毕业设计课题。 2月28日—3月 4日;收集整理英文翻译资料。 3月 7日—3月11日;查阅技术资料,完成课题的前期调研工作,完成英文翻译。3月14日—3月18日;完成课题相关资料收集,进行毕业论文构思。 3月21日—3月25日;完成毕业论文初稿。 3月28日—4月01日;完成毕业论文初稿。 4月04日—4月08日;修改、完善毕业论文,定稿。 4月11日—4月20日;整理打印毕业设计资料,完成答辩 计划答辩时间: 4月20日 数控技术系(部、分院) 2011 年3月 1 日 1

数控机床几何误差及补偿方法(精)

数控机床几何误差及补偿方法 摘要:对数控机床几何误差产生的原因作了比较详细的分析,将系统误差的补偿方法进行了归纳,并在此基础上阐述了各类误差补偿方法的应用场合,为进一步实现机床精度的软升级打下基础。 关键词:数控机床;几何误差;误差补偿 Research on Geometric Errors and Its Compensation of CNC Mac hine Tool KE Ming-li, LIANG Yong-hui, LIU Huan-lao (Guangdong Ocean University, Zhanjiang, Guangdong 524088 , China) Abstract: Analyzed the reason why the geometric error occurs to CNC machine tool. The compensating methods of system er ror were induced in this paper. And the applicative occasion for all kinds of errors compensating method was elaborated. A foundation was built up for the CNC machine tool precis ion to further realize soft promotion. Key words: CNC machine tool; Geometric error; Error compensat ion 前言 提高机床精度有两种方法。一种是通过提高零件设计、制造和装配的水平来消除可能的误差源,称为误差防止法(error prevention)。该方法一方面主要受到加工母机精度的制约,另一方面零件质量的提高导致加工成本膨胀,致使该方法的使用受到一定限制。另一种叫误差补偿法(error compensation),通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的软升级。研究表明,几何误差和由温度引起的误差约占机床总体误差的70%,其中几何误差相对稳定,易于进行误差补偿。对数控机床几何误差的补偿,可以提高整个机械工业的加工水平,对促进科学技术进步,提高我国国防能力,继而极大增强我国的综合国力都具有重大意义。 1几何误差产生的原因 普遍认为数控机床的几何误差由以下几方面原因引起: 1.1 机床的原始制造误差 是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。 1.2 机床的控制系统误差 包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。 1.3 热变形误差 由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。 1.4切削负荷造成工艺系统变形所导致的误差 包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。

相关主题
文本预览
相关文档 最新文档