当前位置:文档之家› 因式分解讲义(十字相乘、分组分解)

因式分解讲义(十字相乘、分组分解)

因式分解讲义(十字相乘、分组分解)
因式分解讲义(十字相乘、分组分解)

因式分解——十字相乘法与分组分解法

【学习要求】

1. 理解十字相乘法与分组分解法;

2. 会运用十字相乘法与分组分解法分解因式。

【知识内容】

1. 十字相乘法分解因式:

(1)首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即

()()()x a x b x a b x ab ++=

+++2

将上式反过来,()()()x a b x ab x a x b 2

+++=++

得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定

上式中的a 和b ,例如,为了分解因式x px q 2

++,就需要找到满足下列条件的a 、b ;

a b p ab q +==??

?

(2)二次项系数不为1的二次三项式的因式分解

二次三项式ax bx c 2

++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳

为“分两头,凑中间”,例如,分解因式2762

x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-?-23,写成十字相乘,左边两个数的积为二次项系数。

右边两个数相乘为常数项,交叉相乘的和为()()13227?-+?-=-,正好是一次项

系数,从而得()()2762232

x x x x -+=--。 (3)含有两个字母的二次三项式的因式分解

如果是形如27622

a b ab -+的形式,则把ab 看作一个整体,相当于x ,如果是形如

2762

2

x xy y -+,则先写成2762

2

x y x y -+·,把y 看作已知数,写成十字相乘的形式

所以()()2762232

2

x xy y x y x y -+=--,即右边十字上都要带上字母y ,分解的结

果也是含有两个字母的两个因式的积。 2. 分组分解法分解因式:

我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。这种分解因式的方法叫做分组分解法。

如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。 分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。

分组分解法并不是一种独立的因式分解的方法。通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。通过适当的练习,不断总结规律,便能掌握分组的技巧。

【典型例题】

例1. 分解因式:-+

+1343

7

2

x x

分析:当系数有分数或小数时,应先化为整数系数,便于下一步十字相乘。

解:

-+

+1343

7

2

x x

()

=---1

3421

2

x x

()()

=-

-+1

3

73x x

例2. 分解因式:x xy y 22

29100++ 分析:含两个字母的二次三项式,把其中一个字母如y 看成是常数。 解:x xy y 2

2

29100++ =++x y x y 2

2

29100·

()()=++x y x y 425

例3. 分解因式:311102

x x -+

分析:首项系数为3应分解为1×3,常数项为10是正数,分解成的两个因式同号且应与一次项系数-11的符号相同,用十字相乘法尝试如下:

11

3

10

3

111013

--?-+?-=-()()

1103

1

1131031

--?-+?-=-()()

123

5

153211

--?-+?-=-()()

1

53

2

123517

--?-+?-=-()()

其中符合对角两数之积的和为-11的只有第三个。

解:()()311102352

x x x x -+=--

例4. 因式分解:x x 2

67+-

分析:这个二次三项不符合完全平方公式的特点,首先,二次项与常数项不同号,其次,常数项的绝对值不是一次项系数一半的平方,所以不能直接用公式分解,但经过适当的变形后,便可用公式分解。另外,这样的二次三项式可用十字相乘法分解。 解:方法一

x x x x 2

2

676997+-=++--

()()()

()()=+-=+++-=+-x x x x x 3163434712

方法二:()()x x x x 2

6771+-=+-

x x

+-71

小结:方法一叫配方法。用配方法分解二次三项式时,其前提是二次项系数为1(如

果二次项系数不是1,则提取这个系数,使二次项系数转化为1);其关键是,加上紧接着减去一次项系数绝对值一半的平方,这样便达到配方的目的。在用十字相乘法分解二次三项式时,主要考虑的是十字相乘后的代数和应是一次项。

例5. 分解因式: (1)22332

x xy x y +-- (2)a b a b 22

44-+- (3)4924162

2

2

x y yz z --- (4)x x x 3

21--+

分析:首先注意到前两项的公因式2x 和后两项的公因式-3,分别把它们提出来,剩

下的是相同因式()x y +,可以继续用提公因式法分解。此题也可以考虑含有y 的项分在一组。如下面法(二)解法。

解(一):22332

x xy x y +--

(

)

()

()()

()()

=+-+=+-+=+-223323232

x

xy x y x x y x y x y x

解(二):22332

x xy x y +--

()

()

()()

()()

=-+-=-+-=-+23232323232

x x xy y x x y x x x y

说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中

的对应项系数成比例,分别为1:1和2:()-3。这也是分组中必须遵循的规律之一。

(2)分析:若将此题按上题中法(二)方法分组将含有a 的项分在一组即

()a a a a 2

44+=+,含有b 的项一组即()--=-+b b b b 2

44,那()a a +4与()

-+b b 4再没有公因式可提,不可再分解下去。可先将a b 22

-一组应用平方差公式,再提出因式。

解:a b a b 2

2

44-+-

(

)()

()()()

()()

=-+-=+-+-=-++a b

a b a b a b a b a b a b 22

4444

(3)若将此题应用(2)题方法分组将492

2

x y -一组应用平方差公式,或者将

4162

2

x z -一组应用平方差公式后再没有公因式可提,分组失败。观察题中特点,后三项

符合完全平方公式,将此题一、三分组先用完全平方公式,再用平方差公式完成分解。

解:4924162

2

2

x y yz z ---

(

)

()()

()()=-++=-+=++--492416234234234222

2

2

x y yz z x y z x y z x y z

(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。

法(一):x x x 32

1--+

(

)()

()()

()()

()()()

()()

=---=---=--=-+-=+-x x x x

x x x x x x x x x 32

2

2

2

11111

11111

法(二):原式

(

)(

)=---x x x 3

2

1

(

)(

)

()

()

()()()

()()

=---=--=+--=+-x x x x x x x x x x 2

2

2

2

111111111

说明:分组时,不仅要注意各项的系数,还要注意到各项系数间的关系,这样可以启

示我们对下一步分解的预测,如下一步是提公因式还是应用公式等。

一般对于四项式的多项式的分解,若分组后可直接提取公因式,一般将四项式两项两项分成两组,并在各组提公因式后,它们的另一个因式恰好相同,在组与组之间仍有公因式可提,如例5(1)题的两种解法。两项两项分组后也可各自用平方差公式,再提取组之间的公因式。如例5的(2)题、(4)题。若分组后可应用公式还可将四项式中进行三项和一项分组先用完全平方公式再应用平方差公式。如例5中的(3)题。

例6. 分解因式:(

)()ab c d

cd a

b

22

2

2

+++

分析:多项式带有括号,不便于直接分组,先将括号去掉,整理后再分组分解。

解:

(

)()ab c d

cd a

b

22

2

2

+++

(

)(

)

()()

()()

=+++=+++=+++=++abc abd a cd b cd

abc a cd abd

b cd

ac bc ad bd ad bc bc ad ac bd 2

2

2

2

2

2

2

2

例7. 已知44421022x xy y x y ++--+=,求证:23022

x xy y x y ++--= 分析:要证明一个多项式的值为零,通常是将此多项式分解因式。若分解后的因式中有一个值为零,则原多项式的值为零。经过分组分解,可知

2322

x xy y x y ++--=()()x y x y ++-21,若x y +或21x y +-为零,则原多项式

的值为零。为达此目的,就要从条件入手。 证明:因为4442102

2

x xy y x y ++--+=,所以

()

()222102

x y x y +-++=

()2102

x y +

-=

所以210x y +-=

又因为()()23212

2

x xy y x y x y x y ++--=++-

而210x y +-=

所以2302

2

x xy y x y ++--=

例8. 已知347133722

x xy y x y m --+-+能分解成两个一次因式的乘积,求m 的值。并将此多项式分解因式。

分析:根据因式分解的概念和乘法法则可知,原多项式所分解得的两个因式必然都是三项式,而原多项式的前三项可分解为()()37x y x y -+,于是可设原多项式分解为

()()37x y a x y b -++

+,再根据恒等式中的对应项系数相等,便能使问题得到解决。

解:设34713372

2

x xy y x y m --+-+

()[]()[]

()()=

-+++=--+++-+37347372

2

x y a x y b x xy y a b x a b y ab

对应项系数相等,所以a b a b ab m

+=<>-=-<>=<>???

??

313

173723

由<1><2>解得:a b =-=25,

将a b =-=25,代入<3>,得:m =-10

所以34713372

2

x xy y x y m --+-+

()()

()()

=--+--=-+++=--++3471337103737252

2

x xy y x y x y a x y b x y x y

例9. 已知x y x y xy --++=314422

,求x 与y 的值。

分析:在通常情况下,由一个方程求两个未知数的值,条件是不够的,但在特殊条件

下又是可行的,这“特殊条件”包括非负数的和等于零的性质。本题已有一个明显的非负数,即x y --31,而另一个非负数可由因式分解得到。于是问题能够解决。 解:因为x y x y

xy --++=31442

2

,所以

x y x xy y

--+-+=314402

2

即()x y x y --+-=31202

所以x y x y --=-=??

?31020

解这个方程组,得:x y =-=-21,

【模拟试题】(答题时间:40分钟)

一. 选择题。

1. 用分组分解法分解多项式x mx nx mn 2

--+分组正确的是( ) A.

()

x

mx nx mn

2

--+ B. ()

()x

mx nx mn 2

--+

C. (

)

()

x mn mx nx 2

+-+

D. ()

()

x nx mx mn 2

---

2. 用分组分解法分解多项式

a

b b 2

2

1

4-+-

,分组正确的是( )

A.

()a

b

b 2

2

14-+-?

? ?

?

?

B. ()

a b b

22

14-?? ???--

C.

a b b 2

214--+?? ???

D.

a b b 2

214-+-?? ???

3. 将多项式a b a b 2

2

2

2

1--+分解因式,其中正确的是( )

A. ()()ab ab +-11

B.

()(

)a

b 2

2

11

-- C. (

)(

)a b 2

2

11

++

D. ()()()()a a b b +-+-1111

4. 下列因式分解中,不正确的是( ) A.

()()(

)x y

x y x y x y

4

4

2

2

16224-=-++

B. ()()ax ay bx by a b x y +--=-+

C. ()()12112

2

--+=+--+a

b ab a b a b

D. ()()12112

2

---=+++-x xy y

x y x y

5. 把多项式212

2

xy x y --+分解因式的结果是( ) A. ()()x y y x -+-+11 B. ()()x y y x +---11 C. ()()x y x y +--+11

D. ()()x y x y -+--11

二. 填空题。 1. ()(

)x xy y

x y 2

2

2357--=- 2. ()()271552x x x --=-

3. ()(

)-++=

1202

y y

4. ()()()x xy x y x y 2

34--

=+-

5. (

)()()

x y x y x y 2

2

2874+-=+-

6.

()()kx

x x k

2

5632+-=-=

,____________。

7. ()()18195922

x x x m x n -+=++,则m =___________,n =___________。

三. 分解因式。 (1)2532

x x -- (2)521182

x x -+ (3)a ab b 22

524-- (4)()

()x y x y +++-2

224

(5)3694

2

x x +- (6)x xy y 22

21++- (7)a b a ab 222

21-++ (8)x y z xy 2

2

2

2+-+ (9)()()()a b a b c b c +-+-2

(10)x x 356+-

四. 解答题。

1. 已知x xy y

2

2

235--=,求整数x 和y 的值。

2. 已知()()()()A x x x x =+-+-+234549(x 为整数),求证:A 为一个完全平方数。

【试题答案】

一. 选择题。

1. D

2. C

3. D

4. D

5. A

二. 填空题。

1.

()() x xy y x y x y 22

23575

--=-+

2.

()() 2715523 2

x x x x

--=-+

3.

()() -++=-+ 1205141

2

y y y y

4.

()()() x xy y x y x y 22

344

--=+-

5.

()() x xy y x y x y 22

32874

+-=+-

6.

()()

kx x x x k 25632236

+-=-+=

7.

()()

1819592

2

x x x m x m

-+=++,则m n

=-=-

51

三. 分解因式。

(1)()() 213

x x

+-

(2)()() 563 x x

--

(3)()() a b a b

+-

38

(4)()() x y x y

+++-

64

(5)

()()() 3311 2

x x x

++-

(6)()() x y x y

+++-

11

(7)()() ab a ab a +++-

11

(8)()() x y z x y z

+++-

(9)()() a b c a b c

+--+

(10)()() x x x

-++

16

2

四. 解答题。

1. 解:∵x xy y 2

2

235--= ∴()()x y x y -+=35

又∵x 、y 为整数

∴x y x y -+3、都为整数

则有x y x y -=+=???315或x y x y -=-+=-???315或x y x y -=+=???351或x y x y -=-+=-???351

解以上方程组得:

x y x y x y x y ==???=-=-???==-???=-=???41412121,,,

2. 解:()()()()A x x x x =+-+-+234549

()(

)

(

)

(

)

()

=----+=---+=--x x x x x x

x x x x 2

2

2

2

2

2

2

6204926169

13

∵x 为整数 ∴x x 2

13--必为整数

∴A 是一个完全平方数

分组分解法进行因式分解

分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式分解因式,所得的结果为() 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 例2. 分解因式 分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 2. 在几何学中的应用 例:已知三条线段长分别为a、b、c,且满足 证明:以a、b、c为三边能构成三角形 分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边” 证明: 3. 在方程中的应用 例:求方程的整数解

分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解 4、中考点拨 例1.分解因式:_____________。 说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。 例2.分解因式:____________ 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。 例3. 分解因式:____________ 说明:分组的目的是能够继续分解。 5、题型展示: 例1. 分解因式: 说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。 例2. 已知:,求ab+cd的值。

(完整版)因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 1.二次三项式 多项式ax2 bx c ,称为字母x的二次三项式,其中ax 2称为二次项,bx为一次项, c 为常数项.例如,x2 2x 3和x2 5x 6都是关于x的二次三项式. 在多项式x2 6xy 8 y2中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式2a2b2 7ab 3 中,把ab 看作一个整体,即2(ab)2 7(ab) 3,就是关于ab 的二次三项式.同样,多项式(x y)2 7(x y) 12 ,把x+y 看作一个整体,就是关于x +y 的二次三项式. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax+b)(cx+d)竖式乘法法则.它的一般规律是: (1)对于二次项系数为1 的二次三项式x2 px q ,如果能把常数项q 分解成两个因数a, b 的积,并且a+b 为一次项系数p,那么它就可以运用公式 2 x (a b)x ab (x a)( x b) 分解因式.这种方法的特征是“拆常数项,凑一次项” .公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是 1 的二次三项式ax2 bx c(a,b,c 都是整数且a≠0)来说,如果存在四个整数a1,a2,c1,c2,使a1 a2 a,c1 c2 c,且a1c2 a2c1 b, 3.因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一

十字相乘法因式分解练习题#精选、

因式分解详解——注意中间项的符号!最后的符号同十字相乘列式的符号~ 定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 有()()()b x a x ab x b a x+ + = + + + 2 注意:这里常数项是2,只有1×2。当常数项不是质数时,要通过多次拆分的尝试,直到符合要求为止。通常是拆分常数项,验证一次项 例1 把2x2-7x+3分解因式。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 × 1 2 × -3 2 × -1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3) =5 =7 =-5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解 2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之 积,即a=a 1a 2 ,常数项c可以分解成两个因数之积,即c=c 1 c 2 ,把a 1 ,a 2 ,c 1 ,c 2 排列如下: a 1 c 1 a 2× c 2 a 1c 2 + a 2 c 1 按斜线交叉相乘,再相加,得到a 1c 2 +a 2 c 1 ,若它正好等于二次三项式ax2+bx+c的一次项系 数b,即a 1c 2 +a 2 c 1 =b,那么二次三项式就可以分解为两个因式a 1 x+c 1 与a 2 x+c 2 之积,即 ax2+bx+c=(a 1x+c 1 )(a 2 x+c 2 )。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 × -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。 指出:通过例1和例2可以看到,运用十字相乘法把一个二镒项系数不是1的二次三贡式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。 对于二次项系数是1的二次三贡式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 × 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5)。 例3把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 × -4 1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y)。 指出:原式分解为两个关于x,y的一次式。 例4把(x-y)(2x-2y-3)-2分解因式。 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解。 问:两个乘积的历式有什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。 解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 1 -2 =2(x-y)2-3(x-y)-2 2 × +1 =[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3 =(x-y-2)(2x-2y+1)。 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

因式分解--十字相乘法练习题

十字相乘法分解因式练习题 1. 如果))((2b x a x q px x ,那么p 等于() A.ab B.a +b C.-ab D.-(a +b) 2. 如果 305)(22x x b x b a x ,则b 为() A.5 B.-6 C.-5 D.6 3. 多项式a x x 32可分解为(x -5)(x -b),则a ,b 的值分别为( ) A.10和-2 B.-10和2 C.10和2 D.-10和-2 4. 不能用十字相乘法分解的是 () A.22x x B.x x x 310322C.242x x D.2 2865y xy x [5. 分解结果等于(x +y -4)(2x +2y -5)的多项式是 () A. 20)(13)(22y x y x B.20)(13)22(2y x y x C.20)(13)(22y x y x D.20)(9)(22y x y x 6. 将下述多项式分解后,有相同因式 x -1的多项式有( ) ①672x x ;②1232x x ;③652x x ;④9542x x ;⑤823152x x ;⑥12 1124x x A.2个 B.3个 C.4个 D.5个7.10 32x x .8.6 52m m (m +a)(m +b).a =_____,b =__________. 9.3522x x (x -3)(). 10.2x ____22y (x -y)(__________). 11.1522x x =______________. 12. 当k =______时,多项式k x x 732有一个因式为__________. 13. 若x -y =6,3617 xy ,则代数式3 2232xy y x y x 的值为__________. 14. 把下列各式分解因式:

分组分解法因式分解(5课时)

(一)复习 把下列多项式因式分解 (1)2x2+10x (2)a(m+n)+b(m+n) (3)2a(x-5y)+4b(5y-x) (4)(x+y)2-2(x+y) (二)新课讲解 1.引入提问:如何将多项式am+an+bm+bn因式分解? 分析:很显然,多项式am+an+bm+bn中既没有公因式,也不好用公式法。怎么办呢?由于am+an=a(m+n),bm+bn=b(m+n),而a(m+n)+b(m+n)=(m+n)(a+b).这样就有: am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b) 利用分组来分解因式的方法叫做分组分解法。 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。 练习: 把下列各式分解因式 (1)20(x+y)+x+y (2)p-q+k(p-q) (3)5m(a+b)-a-b (4)2m-2n-4x(m-n) 2.应用举例 例1.把a2-ab+ac-bc分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,分别提出公因式a与c后,另一个因式正好都是a-b,这样就可以继续提公因式。 解:a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c) 例2:把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从两组中分别提出公因式2a与-b,这时另一个因式正好都是x-5y,这样就可继续提公因式。解:2ax-10ay+5by-bx=(2ax-10ay)+(5by-bx) =2a(x-5y)-b(x-5y)=(x-5y)(2a-b) 提问:这两个例题还有没有其他分组解法?请你试一试。如果能,请你看一下结果是否相同?练习:把下列各式分解因式 (1)ax+bc+3a+3b (2)a2+2ab-ac-2bc (3)a-ax-b+bx (4)xy-y2-yz+xz (5)2x3+x2-6x-3 (6)2ax+6bx+5ay+15by (7)mn+m-n-1 (8)mx2+mx-nx-n (9)8m-8n-mx+nx (10)x2-2bx-ax+2ab (11)ma2+na2-mb2-nb2 四、课外作业把下列各式分解因式 1.a(m+n)-b(m+n) ⒉xy(a-b)+x(a-b) 3.n(x+y)+x+y ⒋a-b-q(a-b) 5.p(m-n)-m+n ⒍2a-4b-m(a-2b) 7.a2+ac-ab-bc ⒏3a-6b-ax+2bx 9.2x3-x2+6x-3 ⒑2ax+6bx+7ay+21by ⒒xy+x-y-1 ⒓ax2+bx2 -ay2-by2 ⒔x3-2x2y-4xy2+8y3 ⒕3m-3y-ma+ay ⒖4x3+4x2y-9xy2-9y3⒗x3y-3x2-2x2y2+6xy

十字相乘法因式分解题型专项练习

十字相乘法因式分解题型专项练习 十字相乘法. 二次项系数为1的二次三项式 直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。 题型一 二次项系数为1的二次三项式 例 1分解因式:(1)652++x x (2)672+-x x 总结:用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。 【巩固】分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x 题型二 二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c 知识梳理

(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++ 例 2分解因式:101132+-x x 【巩固】分解因式:(1)6752-+x x (2)2732+-x x (3)317102+-x x (4)101162++-y y 题型三 二次项系数为1的齐次多项式 例 3分解因式:221288b ab a -- 【巩固】分解因式(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --

题型四 二次项系数不为1的齐次多项式 例 4(1)22672y xy x +- (2)2322+-xy y x 【巩固】分解因式:(1)224715y xy x -+ (2)8622+-ax x a 题型五 换元法 例 5分解因式(1)2005)12005(200522---x x (2)2)6)(3)(2)(1(x x x x x +++++ 【巩固】分解因式(1))(4)(22222y x xy y xy x +-++ (2)90)384)(23(22+++++x x x x

初中因式分解中的“分组分解法”

初二因式分解解读之六:编制人:平生曜曜 因式分解中的“分组分解法” 分组分解法的运用最能体现同学们对基础知识掌握程度,如何分组并非漫无目标地轮换重组,这需要讲究一些“可以掌控的”技巧,而技巧从懵懂到明晰都有待于通过解题训练与归纳总结去养成。 不废话!开始上菜,入席就吃。只要肯用心吃,终有一天会吃胖的! (1)、分解因式:a2 x -b2 x -a2 y + b2 y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉:原式由“①、a2 x,②、-b2 x,③、+ a2 y,④、+ b2 y”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”间有公因式,所以可考虑: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(a2 x -b2 x)+(-a2 y + b2 y) = x(a2 -b2)- y(a2 -b2) = (a2 -b2)(x -y) =(a + b)(a-b)(x -y) 第二种分组方式:①和③分为一组,②和④分为另一组。 解:原式=(a2 x -a2 y)+(-b2 x + b2 y) = a2(x - y )-b2(x -y) =(x -y)(a2 -b2) = (x -y)(a-b)(a + b) (2)、分解因式:x2 -4 + y2-2xy …………先………写………出………你………的………答………案………… 你的答案:______________________________________。

〈分析〉:原式由“①:x2”、“②:-4”、“③: +y2”和“④:-2xy”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”若组合在一起,就可以暂时先用提取公因式法,或者运用公式法,来作第一步分解,所以值得尝试: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(x2 -4)+(y2 -2x y) = (x - 2 )(x + 2)-y(y -2x) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种分组方式:①、③、④合为一组,②单独为另一组。 解:原式=(x2 + y2 -2x y )+(-4) =(x - y)2 -(2)2 =(x - y + 2)(x - y - 2) (3)、分解因式:x2 + 3x -y2 -3y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉: 第一种情况:尝试①、②合为一组,③、④合为另一组: 解:原式=(x2 + 3x )+(-y2 -3y) = x(x + 3)- y(y + 3) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种情况:尝试①、③合为一组,②、④合为另一组: 解:原式=(x2 -y2)+(3x-3y) =(x + y)(x - y)+ 3(x - y) =(x - y)(x + y + 3) 〈总结技巧之一〉:形如“平方和”的项,宜与“相应的交叉项”暂时凑成一组,然

七年级下册数学因式分解十字相乘练习题

初一数学因式分解专项训练 班级:__________ 姓名:__________ 学号:______ 一:用十字相乘法分解因式 (1) t 2-15t+36 (2) x 2-7x+6 (3) a 2-a-12 (4)m 2-8m-20 (5)x 2- 2x-3 (6)x 2-7x+6 (7)x 2-10x+24 (8) a 2+4a-21 (9) p 2-10p-11 (10)x 2-3x-28 (11)b 2+11b+28 (12)2x 2-6x-8 (13)2x 2+15x+7 (14)3a 2-8ab+4b 2 (15)4x 2y 2-5xy 2-9y 2 (16)4m 2+8mn+3n 2 (17)6x 2-11xy+3y 2 (18)a 4-13a 2+36 (19)2x 2-6x-8 (20)6x 2-13x+6 (21)2x 2+3x+1 (22)(x+y)2-5(x+y)-14 (23)ap 2-8ap+7a (24)a a a 12423+-- (25)24129x x -+ (26)24359a a -- (27)2 5()14()8x y x y -+-+ \

二:利用分组分解分解因式 (1) 3a-ax-3b+bx (2) 3ax+4by+4ay+3bx (3) xy-y2-yz+xz (4)20(x+y)+x+y (5)p-q+k(p-q) (6)ac+bc+2a+2b (7)a2+ab-ac-bc (8)x2-y2+ax+ay (9)4a2-b2+6a-3b (10) m2-n2+am+an (11)xy-xz+y-z(12) 4m2-4m+2n-n2 (13) 9y2+6y-4x-4x2(14) x2-6x+9-y2(15) 16a2+8a-b2+1 (16)x2-a2-2x-2a (17)4x2-y2+2x-y (18) x2y2-y2+1-x2(19)4x2-4xy+y2-a2 (20)x2-2xy-m2+y2 (21)1-a2+2ab-b2 (22)x2+2xy+y2-a2(23) 4xy-3xz+8y-6z (24) x2-4y2+x-2y (25)x2-y2-z2+2yz (26) 1-m2-n2+2mn (27)a2-2ab+b2-m2-2mn-n2

《因式分解-分组分解与十字相乘法》知识点归纳

《因式分解-分组分解与十字相乘法》知 识点归纳 ★★ 知识体系梳理 ◆ 分组分解法: 用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。 、分组后能提公因式; 2、分组后能运用公式 ◆ 十字相乘法: 、型的二次三项式因式分解: (其中,) 、二次三项式的分解: 如果二次项系数分解成、,常数项分解成、;并且等于一次项系数,那么二次三项式: 借助于画十字交叉线排列如下:

◆ 因式分解的一般步骤:一提二代三分组 ①、如果多项式的各项有公因式,那么先提取公因式; ②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法; ③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法; ④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。 ◆ 因式分解几点注意与说明: ①、因式分解要进行到不能再分解为止; ②、结果中相同因式应写成幂的形式; ③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。 ★★ 典型例题、解法导航 ◆ 考点一:十字相乘法 、型三项式的分解 【例1】计算:

(1) (2) (3) (4) 运用上面的结果分解因式: ①、 ②、 ③、 ④、 方法点金:型三项式关键是把常数分解为两个数之积(),而这两个数的和正好等于一次项的系数()。 ◎变式议练一: 、 2、已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数为( ) 、个 、个 、个 、个 3、把下列各式分解因式: ①、

十字相乘法进行因式分解(详案)

十字相乘法进行因式分解 【基础知识精讲】 (1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式; (4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2 ++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2 ,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2 b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.

因式分解之十字相乘法专项练习题

因式分解之十字相乘法专项练习题 (1) a 2-7a+6; (2)8x 2+6x -35; (3)18x 2-21x+5; (4) 20-9y -20y 2; (5)2x 2+3x+1; (6)2y 2+y -6; (7)6x 2-13x+6; (8)3a 2-7a -6; (9)6x 2-11x+3; (10)4m 2+8m+3; (11)10x 2-21x+2; (12)8m 2-22m+15; (13)4n 2+4n -15; (14)6a 2+a -35; (15)5x 2-8x -13; (16)4x 2+15x+9; (17)15x 2+x -2; (18)6y 2+19y+10; (19) 2(a+b) 2+(a+b)(a -b)-6(a -b) 2; (20)7(x -1) 2+4(x -1)-20; 1.232++x x 2.562++x x 3.11122++x x

4.17182++x x 5.342++x x 6.342+-x x 7.322-+x x 8.322--x x 9.672+-x x 10.652--x x 11.62-+x x 12.62--x x 13.22625a a +- 14.2024--x x 15.8624++x x 16. 42718x x +- 17.2223y xy x +- 18. 22149b ab a +- 19.8722--ax x a 20.10322-+mn n m 21. 223613b yb y +- 22. 9102+--a a 23. a a a 12423+-- 24. 222265x y x y x -- 25. 3)(4)(2++-+x b a b a 26. 10)2(3)2(2-+++y x y x

因式分解专题 用分组分解法 含答案

4、用分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( ) A a a B a a C a a D a a .().().().()22 2222221111+--+++-- 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式=+++++211242a a a a a (() =++++=+++++=++++=++a a a a a a a a a a a a a a a 4324322222222321 2221 21 1()()()()() 故选择C 例2. 分解因式x x x x x 54321-+-+- 分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1: 原式=-+--+=--+=-++-+()() ()() ()()()x x x x x x x x x x x x x 54323222111111 解法2:

因式分解的十二种方法

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4 b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a)

因式分解之十字相乘法几大类型

因式分解之十字相乘法几大类型 一. 基本十字相乘法 1、分解因式:2421x x --. 2、分解因式:2712x x -+. 3、分解因式:21118x x ++. 4、分解因式:2421a a --+. 5、分解因式:2522+-x x . 6、分解因式:2321a a --. 7、分解因式:23145b b +-. 8、分解因式: 2592a a -+. 二. 两个字母的十字相乘法. 9、分解因式:xy y x 2514422-+. 10、 分解因式:22152y ay a --. 11、 分解因式:2210116y xy x ++-. 12、 分解因式:()()2 20x y x y +++-. 13、 分解因式:2278a x ax +-. 14、 分解因式:222256x y x y x -+. 15、 分解因式:3)()(22-+++n m n m . 16、 分解因式:3)()(22----b a b a . . 三. 双十字相乘法 17、 分解因式:233222+++-+y x y xy x . 18、 分解因式:2023265622-++--y x y xy x . 19、 分解因式:y x y xy x 422322++++.

作业 1. 分解因式:20122-+-x x . 2. 分解因式:276x x -+. 3. 分解因式:2328b b --. 4. 分解因式:3522--x x 5. 分解因式:2257x x +-. 6. 分解因式:61362+-x x 7. 分解因式:226420x y xy ++- 8. 分解因式:2232x xy y -+ 9. 分解因式:3168)2(42++--y x y x . 10. 分解因式:)122()1)(1(22+++++y y x x y y . 11. 分解因式:)()()(b a ab a c ca c b bc +--++. 12. k 为何值时,k y x y x +-+-7322可以分解成两个一次因式的乘积? 13. 分解因式:1)1()2+-+ab b a (. 14. 已知a 、b 、c 为三角形的三条边,且027334222=+--++b bc ab c ac a ,求证: c a b +=2.

因式分解——十字相乘法、双十字相乘法

一、概念: a .十字相乘法 十字相乘法能把某些二次三项式ax 2+bx +c (a ≠0)分解因式。这种方法的关键是把二次项的系数a 分解成两个因数a 1,a 2的积a 1a 2,把常数项c 分解成两个因数c 1,c 2的积c 1c 2,并使a 1c 1+a 2c 1正好是一次项系数b ,那么可直接写成结果: ax 2+bx +c =(a 1x +c 1)(a 2x +c 2),在运用这种方法分解因式时,要注意观察、尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。对于二次三项式的分解因式,借用一个十字叉帮助我们分解因式,这种方法叫做十字相乘法。 b .双十字相乘法 形如22+++++Ax Bxy Cy Dx Ey F 的二元二次多项式的因式分解 双十字相乘法即运用两次十字相乘法,第一次运用十字相乘法将多项式中的二次齐次式分解因式,然后再运用一次十字相乘法。 其理论依据:若22+++++Ax Bxy Cy Dx Ey F 可分解为()()++++ax by c dx ey f ,则当c =f =0时,22+++++Ax Bxy Cy Dx Ey F 二、具体练习 例1:24146-+x x 例2:22276+--+-x xy y x y 例3:2231092-- ++-x xy y x y 因式分解-十字相乘法、 双十字相乘法

拓展1 满足0-+=x y z ,210--+=x y z 的任何x ,y ,z 的值也同时满足221++= ax by cz ,求常数a ,b ,c 的值。 复习:求解ax =b ,当a =0且b =0时,x 为任意值 拓展2 已知0127,,,…a a a a 使7767610(31)- =++…+x a x a x a x a 成立求1357+++a a a a 的值 拓展3 请多项式32321111()()++++++ax bx cx d a x b x c x d 中x 3系数x 3来源如下: 前一个因式 后一个因式 ax 2 d 1 bx 2 c 1x cx b 1x 2 d a 1x 3 故x 的系数为 三、作业 1.22267372---+-x xy y xz yz z 2.222311642-+---x xy y xz yz z 3.222064-+x xy y

因式分解中的“分组分解法”

解读因式分解系列之三编制人:平生曜曜 因式分解中的“分组分解法” 分组分解法的运用最能体现同学们对基础知识掌握程度,如何分组并非漫无目标地轮换重组,这需要讲究一些“可以掌控的”技巧,而技巧从懵懂到明晰都有待于通过解题训练与归纳总结去养成。 不废话!开始上菜,入席就吃。只要肯用心吃,终有一天会吃胖的! (1)、分解因式:a2 x -b2 x -a2 y + b2 y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉:原式由“①、a2 x,②、-b2 x,③、+ a2 y,④、+ b2 y”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”间有公因式,所以可考虑: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(a2 x -b2 x)+(-a2 y + b2 y) = x(a2 -b2)- y(a2 -b2) = (a2 -b2)(x -y) =(a + b)(a-b)(x -y) 第二种分组方式:①和③分为一组,②和④分为另一组。 解:原式=(a2 x -a2 y)+(-b2 x + b2 y) = a2(x - y )-b2(x -y) =(x -y)(a2 -b2) = (x -y)(a-b)(a + b) (2)、分解因式:x2 -4 + y2-2xy …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉:原式由“①:x2”、“②:-4”、“③: +y2”和“④:-2xy”这四部分组成,

十字相乘法因式分解练习题

十字相乘法因式分解练习题 一、选择题 1 . 如 果 ) )((2b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b ) 2 . 如 果 30 5)(22--=+++?x x b x b a x ,则b 为 ( ) A .5 B .-6 C .-5 D .6 3.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-2 4 . 不 能 用 十 字 相 乘 法 分 解 的 是 ( ) A .22-+x x B .x x x 310322+- C .242++x x D .22865y xy x -- 5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( ) A .20)(13)(22++-+y x y x B .20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .20)(9)(22++-+y x y x 6.将下述多项式分解后,有相同因式x -1的多项式有 ( )

①672+-x x ; ②1232-+x x ; ③652-+x x ; ④9542--x x ; ⑤823152+-x x ; ⑥121124-+x x A .2个 B .3个 C .4个 D .5个 二、填空题 7.=-+1032x x ___ ______. 8.=--652m m (m +a )(m +b ). a =__ ________,b =____ __ ____. 9.=--3522x x (x -3)(___ _______). 10.+2x _ ___=-22y (x -y )(_____ _____). 11.22____)(____(_____)+=++ a m n a . 12.当k =______时,多项式k x x -+732有一个因式为(________ __). 13.若x -y =6,36 17 =xy ,则代数式32232xy y x y x +-的值为_______ ___. 三、解答题 14.把下列各式分解因式: 2522++x x 3832-+x x 20322--x x 6732-+x x 25562--x x 2352--x x 6724+-x x ; 36524--x x ;

因式分解十字相乘法练习题含答案

十字相乘法因式分解练习题 1、=++232 x x 2、=+-672 x x 3、=--2142 x x 4、=-+1522 x x 9、=++342 x x 10、=++1072 a a 11、=+-1272 y y 12、=+-862 q q 13、=-+202 x x 14、=-+1872m m 15、=--3652p p 16、=--822t t 23、=++101132 x x 24、=+-3722 x x 25、=--5762x x 27、=++71522 x x 28、=+-4832a a 29、=-+6752 x x 33、=-+15442 n n 34、=-+3562l l 答案:1、)2)(1(++x x 2、)6)(1(--x x 3、)7)(3(-+x x 4、)5)(3(+-x x 5、)2)(4(2 2 ++x x 6、)3)(1(-+-+b a b a 7、)2)((y x y x -- 8、)7)(4(2-+x x x 9、)3)(1(++x x 10、)5)(2(++a a 11、)4)(3(--y y 12、)4)(2(--q q 13、)5)(4(+-x x 14、)9)(2(+-m m 15、)9)(4(-+p p 16、)4)(2(-+t t 17、)5)(4(2 2 -+x x 18、)8)(1(+-ax ax 19、)7)(2(b a b a -- 20、)9)(2(y x y x ++21、)6)(1(2-+y y x 22、)6)(2(+--a a a

23、)53)(2(++x x 24、)12)(3(--x x 25、)53)(12(-+x x 26、)45)(2(y x y x -+27、)7)(12(++x x 28、)23)(2(--a a 29、)35)(2(-+x x 30、)5)(25(+-ab ab 31、)5)(23(xy ab xy ab -- 32、)32)(32)(1(2 2 -++x x x y 33、)52)(32(n m n m +-34、)73)(52(-+l l 35、)2)(10(y x y x --36、)54)(32(n m n m -- 37、)35)(4)(1(2 -+++x x x x 38、)8)(2)(3(2 -++-x x x x

因式分解之十字相乘法分组分解专项练习题

因式分解-----十字相乘法 1.认识二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次 三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2 ,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2 (a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注

相关主题
文本预览
相关文档 最新文档