(x+a)(x+b)=x2+(a+b)x+ab X2+(a+b)x+ab=(x+a)(x+b) 二次三项式x2+(a+b)x+ab的特点: 1.二次项的系数是1. 2.常数项是两个数之积. 3.一次项系数是常数项的两个因数之和.
二次项系数为1的二次三项式x2+px+q,如果能够 把常数项q分解成两个因数a`b的积,并且a+b等 于一次项系数p,那么它就可以分解因式: 即x2+px+q= X2+(a+b)x+ab=(x+a)(x+b)
cd=(-2)x(-5)=10=C=原式中的常数项
解:原式=(x-2)(3x-5)
1 -2
3
-5
(2)
2
6x2-11x-10
-5
3
2
解:原式=(2x-5)(3x+2)
2 (11)3x -7x+2 2 (12)2x -x-3
(13)5x2+13x+6 2 (14)6x -2x-8 (15)10x2-15x+5 2 (16)3x +11x+10
2-5x-14 X
-14=(-1)×14 -14=1×(-14) -14=(-2)×7
x2+(a+b)x+ab=(x+a)(x+b)
a+b=-5,ab=-14
谁是a? 谁是b?
-14=2×(-7)
a= -7 b= 2
解:原式=(x-7)(x+2)
(1)
x2-5x+6
x2+(a+b)x+ab=(x+a)(x+b) a+b=-5 ab=6 a=-3 b=-2 解:原式=(x-3)(x-2)