概率论第二章3
- 格式:ppt
- 大小:832.00 KB
- 文档页数:25
第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。
即36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多.解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求 )31()1(≤≤X P )5.25.0()2(<<X P解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+=2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1)()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -. (2)0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。
第二章随机变量及其分布第一节随机变量1. 为什么引入随机变量?概率论是从数量上来研究随机现象统计规律性的,为了更方便有力的研究随机现象,就要用数学分析的方法来研究,因此为了便于数学上的推导和计算,就需将任意的随机事件数量化.当把一些非数量表示的随机事件用数字来表示时,就建立起了随机变量的概念.2. 随机变量的引入实例1 在一装有红球、白球的袋中任摸一个球,观察摸出球的颜色.实例2 抛掷骰子,观察出现的点数.二、随机变量的概念定义设随机试验E的样本空间是S = {e}, X = X (e)是定义在样本空间S 上的实值单值函数, 则我们称X = X (e)为随机变量.2.说明(1)随机变量与普通的函数不同随机变量是一个函数 , 但它与普通的函数有着本质的差别 ,普通函数是定义在实数轴上的,而随机变量是定义在样本空间上的 (样本空间的元素不一定是实数).(2)随机变量的取值具有一定的概率规律随机变量随着试验的结果不同而取不同的值, 由于试验的各个结果的出现具有一定的概率, 因此随机变量的取值也有一定的概率规律.(3)随机变量与随机事件的关系随机事件包容在随机变量这个范围更广的概念之内.或者说 : 随机事件是从静态的观点来研究随机现象,而随机变量则是从动态的观点来研究随机现象.下面我们举几个随机变量的例子:(1) n次射击命中目标的次数X (或随意抽验n件产品, 其中不合格品的件数), 它有n + 1个可能取值: 0, 1, 2, …, n.(2) 灯泡寿命X, 可以取[0, +∞)上的任意值.(3) 测量误差X, 可以取(-∞, +∞)上的任意值.有了随机变量, 随机试验中的各种事件, 就可以通过随机变量的关系式表达出来.例如, 从一批产品中任意取出10件, 若用X表示其中的废品数, 这时, {少于2件废品}、{恰有1件废品}两个事件, 就可以分别用{X < 2}、{X = 1}来表示.又如单位时间内电话交换台接到的呼唤次数用X 表示, 此时{接到不少于1次呼唤}、{没有接到呼唤}两个事件, 可以分别用{X ≥ 1}、{X = 0}来表示.再如, 上面(2)中事件{寿命不少于200小时而不超过1000小时}的事件, 就可用{200 ≤ X ≤ 1000}来表示.例1 “掷一颗骰子”是随机现象, 用随机变量X 表示出现的点数, 求(1) X 的取值范围; (2) 概率P{X ≤ 4}及P{X < 4}; (3) 概率P{X > 4}及P{2 ≤ X < 4}.引进了随机变量, 就可以通过随机变量来描述随机试验中各种事件, 全面反映试验的情况. 因此, 我们对随机现象统计规律性的研究, 就可以由对事件与事件的概率的研究扩大为对随机变量的研究.-∞第二节 离散型随机变量极其分布律如果随机变量它所有可能取的值是有限个或可列个值, 则我们就称之为离散型随机变量.设离散型随机变量X 的所有可能取值为x k (k = 0, 1, 2, ...), X 取各个可能值的概率, 即事件{X = x k }概率为 P{X = x k }= p k , k = 0, 1, 2, (1)则我们称(1)式为离散型随机变量X 的分布律或概率分布. 分布律也可以用表格的形式来表示:k 1︒ 0 ≤ p k ≤ 1, k = 0, 1, 2, …; 2︒ 11=∑∞=k k p .(2) 注: 凡满足(2)的函数p k 一定是某个离散型随机变量的分布律. 例1 (1) 设随机变量X 的分布律为k c k X P ⎪⎭⎫ ⎝⎛⋅==32}{, k = 1, 2, 3, 求常数c 的值. 3827 (2) 设随机变量X 的分布律为!}{k c k X P k λ⋅==, k = 0, 1, 2, …, λ > 0, 求常数c 的值. 1)1(--λe下面介绍三种重要的离散型随机变量.一、(0 - 1)分布(或两点分布)设随机变量X 只可能取0或1两个值, 它的分布律为k k p p k X P --==1)1(}{, k = 0, 1, (0 < p < 1), 或则称X 服从(0 - 1)分布 凡是只有两个结果的试验都可以用(0 - 1)分布来描述.二、伯努利试验、二项分布在实践中, 我们经常遇到下列类型的重复试验:(1) 每次试验的条件都相同, 且试验结果; 只有两个: A 及A , 且P(A) = p, P(A ) = q = 1 - p (0 < p < 1),(2) 每次试验的结果(即基本事件)是相互独立的.我们称之为n 重伯努利(Bernoulli)试验, 或伯努利概型.由于它是一个常见的、十分有用的概型, 所以在这里着重对它进行讨论.对于伯努利概型, 可以得到如下结果: 在n 次试验中事件A 出现k 次的概率为()(,,)k k n k n n P k b k n p C p q-==, k = 0, 1, 2, …, n. (3)事实上, 如将“第i 次试验中A 出现”的事件记为A i (i = 1, 2, …, n), 则由伯努利概型知, 在n 次试验中事件A 在指定的k 次试验中出现(如在前k 次出现), 其余n - k 次试验中不出现的概率为=+)(11n k k A A A A P =+)()()()(11n k k A P A P A P A P k k k k q p p p --=-11)1(.由于n 次试验中A 出现k 次的方式很多(在前k 次出现只是其中一种方式), 其总数相当于k 个相同的质点安排在n 个位置(每个位置只能安排一个质点)上的所有可能方式, 易知共应有k n C 种方式, 而它所对应的这k n C 个事件(即“n 次试验中A 出现k 次”这一事件)是不相容的, 故由概率的可加性得()(,,)k k n k n n P k b k n p C p q-==, k = 0, 1, 2, …, n.例3 设由四门高射炮同时独立地向一架敌机各发射一发炮弹, 若低机被不少于两发炮弹击中时, 就被击落. 设每门高射炮击中敌机地概率为0.6, 球敌机被击落地概率.解: 所求概率为 P = 1 - P 4(0) - P 4(1) = 0.8208.例4 甲、乙两乒乓球运动员实力相等, 连赛数局, 问哪一种结果的可能性大: 赛3局甲胜2局; 赛5局甲胜3局.解: 赛3局甲胜2局 83)2(3=P ; 赛5局甲胜3局 165)3(5=P .例5 某人有两盒火柴, 用时从任一盒中取一根火柴, 经过若干时间以后发现一盒火柴已经用完, 如果最初两盒中各有n 根火柴, 求这时另一盒中还有r 根火柴的概率.解: 发现一盒火柴已经用完, 而另一盒中还有r 根火柴, 这种情况一定是在第n + (n - r) + 1= 2n - r + 1次用时发现的. 设在前2n - r 次中此人恰有n 次取了第一盒, n - r 次取了第二盒, 而在第2n - r + 1次又取了第一盒, 发现它是空的, 这一事件的概率为 21)(21⋅=-n P p r n =2121212⋅⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--r n n n r n C =12221+--⎪⎭⎫ ⎝⎛r n n r n C 同理, 设在前2n - r 次中此人恰有n 次取了第二盒, n - r 次取了第一盒, 而在第2n - r + 1次又取了第二盒, 发现它是空的, 这一事件的概率为 122221+--⎪⎭⎫ ⎝⎛=r n n r n C p . 因此, 所求事件的概率为 r n n r n C p p P --⎪⎭⎫ ⎝⎛=+=222121.设X 表示n 重伯努利试验中事件A 发生的次数, 则X 是一个随机变量, 它的可能取值为0、1、2、…、n, 由前面的讨论, 我们有 {}k k n k n P X k C p q -==, k = 0, 1,2, …, n. (4) 显然, P{X = k} ≥ 0, k = 0, 1, 2, …, n; 0()1n k k n k n n k C p q p q -==+=∑即P{X = k}满足条件(2), 注意到k k n k n C p q -刚好是二项式n q p )(+的展开式中出现p k 的项,故我们称随机变量X 服从参数为n 、p 的二项分布, 记为X ~b (n, p).特别地, 当n = 1时, 二项分布即为(0 - 1)分布.例6 设有12台独立运转的机器, 在一小时内每台机器停机的概率为0.1, 试求在一小时内停机台数不超过2的概率.解: 设X 表示一小时内停机台数, 则X ~b (12, 0.1). 从而所求概率为P{X ≤ 2} = P{X= 0} + P{X= 1} + P{X= 2} = 0.2824 + 0.3766 + 0.2301 = 0.8891.例7 某车间有10台电机各为7.5千瓦的机床, 如果每台机床的工作情况是相互独立的, 且每台机床平均每小时开动12分钟, 问全部机床用电超过48千瓦的可能性有多少?解: 设X 表示正在工作的机床台数, 则)51,10(~b X , 用电超过48千瓦即有7台或7台以上的机床在工作, 则所求概率为377105451}7{⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=≥C X p +288105451⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C +⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛54519910C +10101051⎪⎭⎫ ⎝⎛C 11571≈. 从此例可看出, 当n 很大时, 计算k k k n q p C k X P -==1}{是十分麻烦的.为此, 我们有泊松(Poisson)定理 设λ > 0是一个常数, n 是任意正整数, 设np n = λ , 则对于任一固定的非负整数k, 有 !)1(lim k e p p C k k n n k n k n n λλ--∞→=-. 证: 由n p n λ=, 有 k n k k n n k n k n n n k n n n k p p C --⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+--=-λλ1)1()1(!1)1( k n k n n n k n n k -⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛----⋅-⋅=λλλ11)]11()21()11(1[! . 对于任意固定的k, 当n →∞时, 有 1)]11()21()11(1[→---⋅-⋅n k n n , λλ-→⎪⎭⎫ ⎝⎛-e n n 1, 11→⎪⎭⎫ ⎝⎛--k n λ. 故有 !)1(lim k e p p C k k n n k n k n n λλ--∞→=-. 可见, 当n 很大, p 很小时, 二项分布就可以用下列公式来近似计算: !)1(1k e p p C k k k k n λλ--≈- (λ = np) (5) 这就是著名的二项分布的泊松逼近公式.例8 某人进行射击, 每次命中率为0.02, 独立射击400次, 求命中次数X ≥ 2的概率.解: 显然, X ~ b(400, 0.02), 则P{X ≥2} = 1 - P{X = 0} - P{X =1}9970.091)98.0()02.0()98.0()02.0(183991140040000400≈-≈--=-e C C .这个概率接近于1, 它说明, 一个事件尽管它在一次试验中发生的概率很小, 但只要试验次数很多, 而且试验是独立进行的, 那么这一事件的发生几乎是肯定的, 所以不能轻视小概率事件. 另外, 如果在400次射击中, 击中目标的次数竟不到2次, 根据实际推断原理, 我们将怀疑“每次命中率为0.02”这一假设.例9 为保证设备正常工作, 需要配备适量的维修工人(工人配备多了就浪费, 配备少了要影响生产). 现有同类型设备300台, 各台工作与否是相互独立的, 发生故障的概率都是0.01, 在通常情况下, 一台设备的故障可由一人来处理(我们也只考虑这种情况), 问至少需配备多少工人, 才能保证当设备发生故障但不能维修的概率小于0.01?解: 设需要配备N 人, 记同一时刻发生故障的设备台数为X, 则X ~ b(300, 0.01), 所要解决的问题是确定N, 使得 P{X > N} < 0.01. 由泊松定理, λ = np = 3, }{1}{N X P N X P ≤-=>=∑=-⋅-N k k k k C 0300300)99.0()01.0(1∑∑∞+=-=-=-≈1303!3!31N k k N k k k e k e < 0.01. 查表知, 满足上式的最小的N 是8, 因此需配备8个维修工人.例10 在上例中, 若由一人负责维修20台设备, 求设备发生故障而不能及时处理的概率. 若由3人共同负责维修80台呢?解: 在前一种情况, 设备发生故障而不能及时处理, 说明在同一时刻设备有2台以上发生故障. 设X 为发生故障设备的台数, 则X ~ b(20, 0.01)且n = 20, λ = 0.2, 于是, 设备发生故障而不能及时处理的概率为 }2{1)99.0()01.0(}2{2020220<-==≥-=∑X P C X P k k k k ∑=--=102020)99.0()01.0(1k k k k C 0175.0!)2.0(1102.0=-≈∑=-k k k e . 若由3人共同负责维修80台, 设同一时刻发生故障的设备台数为X, 则X ~ b(80, 0.01), λ = 0.8, 故同一时刻至少有4台设备发生故障的概率为 k k k k C X P -=∑=≥8080480)99.0()01.0(}4{0091.0!)8.0(8048.0≈≈∑=-k k k e . 计算结果表明, 后一种情况尽管任务重了(平均每人维修27台), 但工作质量不仅没有降低, 相反还提高了, 不能维修的概率变小了, 这说明, 由3人共同负责维修80台, 比由一人单独维修20台更好, 既节约了人力又提高了工作效率, 所以, 可用概率论的方法进行国民经济管理, 以便达到更有效地使用人力、物力资源的目的. 因此, 概率方法成为运筹学的一个有力工具.三、泊松分布设随机变量X 的所有可能取值为0, 1, 2, …, 而取各个值的概率为 !}{k e k X P k λλ-==, k = 0, 1, 2, … 其中λ > 0是常数, 则称X 服从参数为λ的泊松分布, 记为X ~ π (λ).易验证, P{X = k}满足条件(2).例11 有一汽车站, 每天都有大量汽车通过. 设每辆汽车在一天中的某段时间内发生事故的概率为0.0001, 而在某天的该段时间内有1000辆汽车通过, 试求发生事故的次数X < 2的概率.解: 显然X ~ b(1000, 0.0001). 因n = 1000较大, p = 0.0001较小, 故可用泊松分布来计算, λ = np = 0.1, 从而 }1{}0{}2{=+==<X P X P X P 1.01.00!11.0!0)1.0(--+=e e 9953.01.11.0≈=-e . 泊松定理指明了以n 、p(np = λ)为参数的二项分布, 当n →∞时趋于以λ为参数的泊松分布, 这一事实也显示了泊松分布在理论上的重要性.具有泊松分布的随机变量在实际中存在相当广泛. 例如, 纺纱车间大量纱锭上的纺线在一个时间间隔内被扯断的次数; 纺织厂生产的一批布匹上的疵点个数; 电话总机在一段时间内收到的呼唤次数; 种子中杂草种子的个数; 一本书某页(或某几页)上印刷错误的个数; 在一个固定时间内从某块放射物质中发射出的α粒子的数目等都服从泊松分布.泊松分布通常适用于描绘大量重复试验中稀有事件(即每次试验中出现的概率很小的事件, 例如不幸事件、意外事故、非常见病、自然灾害等)出现的次数的概率分布.第三节 随机变量的分布函数对于非离散型随机变量X, 由于其取值不能一个个列举出来, 因此在一般情况下, 需研究随机变量取值落在任意区间(x 1, x 2)中的概率, 即求 P{x 1< X ≤ x 2}. 由于事件{x 1< X ≤ x 2}与事件{X ≤ x 1}互不相容, 且{x 1< X ≤ x 2}∪{X ≤ x 1}= {X ≤ x 2}, 因此有P{x 1< X ≤ x 2} = P{X ≤ x 2} - P{X ≤ x 1}.由此可见, 若对任何给定的实数x, 事件{X ≤ x}的概率P{X ≤ x}确定的话, 概率P{x 1< X ≤ x 2}也就确定了, 但概率P{X ≤ x}随着不同的x 而变化, 这个概率是x 的函数, 于是引进下面的分布函数的概念.定义 设X 是一个随机变量, x 是任意实数, 函数 F(x) = P{X ≤ x}(1)称为分布函数.注: 1︒ F(x)是一个普通实函数, 它的定义域是整个数轴, 故求分布函数时要就x 落在整个数轴上讨论, F(x)的值域是区间[0, 1]. 如果将X 看成是数轴上的随机点的坐标, 则分布函数F(x)在x 处的函数值就表示X 落在(-∞, x ]上的概率.2︒ 由上面的讨论, 有P{x 1< X ≤ x 2}= F(x 2) - F(x 1).例1 接连进行两次射击, 以X 表示命中目标的次数, 假设已知每次射击命中目标的概率为0.4, 求X 的分布律与分布函数.解: XX 的分布函数为 ⎪⎪⎩⎨≥<≤=.2,1,21,84.0)(x x x F 一般地, 设离散型随机变量X 的分布律为 P{X = x k }= p k , k = 1, 2, …, 则X 的分布函数为∑∑≤≤===≤=x x k x x k k k p x X P x X P x F }{}{)( (2)这里和式是对所有满足x k ≤ x 的k 求和. 此外, 分布函数F(x)在x = x k (k = 1, 2, …)处有跳跃, 其跳跃值为p k = P{X = x k }.例2求X 的分布函数}2{≤X P }21{≤<X P }21{≤≤X P 例3 向区间[a, b]上均匀地投掷一随机点, 以X 表示随机点的落点坐标, 求X 的分布函数. 解: ⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 分布函数F(x)具有以下一些性质:1︒ 0 ≤ F(x) ≤ 1 (-∞ < x < +∞);2︒ F(x)是单调不减函数, 即若x 1 < x 2, 则F(x 1) ≤ F(x 2);3︒ 0)(lim )(==-∞-∞→x F F x , 1)(lim )(==+∞+∞→x F F x ; 4︒ )()(lim )0(0000x F x F x F x x ==++→ (-∞ < x 0 < +∞), 即F(x)是右连续的.第四节 连续型随机变量极其概率密度在实际问题中, 除了离散型随机变量以外, 还有非离散型随机变量, 其中常用的是连续型随机变量. 如炮弹落地点和目标之间的距离. 尽管分布函数是描述各种类型随机变量变化规律的最一般的共同形式, 但由于它不够直观, 往往不常用. 如对于离散型随机变量, 用分布律来描述既简单又直观. 对于连续型随机变量我们也希望有一种比分布函数更直观的描述方式.定义 如果对于随机变量X 的分布函数F(x), 存在非负函数f (x), 使对任意实数x, 有 ⎰∞-=x dt t f x F )()( (1) 则称X 为连续型随机变量, 其中函数f (x)称为X 的概率密度函数, 简称概率密度.概率密度f (x)在几何上表示一条曲线, 称之为分布曲线. 分布函数F(x)的几何意义是分布曲线f (x)下从-∞到x 的一块面积, 这块面积随x 而改变.可以证明: 连续型随机变量的分布函数F(x)是连续函数.易知, 概率密度f (x)具有下列性质:1︒ f (x) ≥ 0; 2︒ 1)(=⎰∞+∞-dx x f ; 3︒ P{x 1< X ≤ x 2}= F(x 2) - F(x 1) =⎰21)(x x dx x f (x 1 ≤ x 2); 4︒ 若f (x)在点x 处连续, 则有)()(x f x F ='.注: (1) 若函数f (x)满足性质1︒、2︒, 则f (x)一定是某个连续型随机变量的概率密度.(2) 对于连续型随机变量X 来说, 它取任一指定实数a 的概率为0, 即P{X = a}= 0.事实上, 设X 的分布函数为F(X), ∆x > 0, 则由{X = a}⊂ {a - ∆x < X ≤ a}得 ⎰∆+=∆--=≤<∆-≤=≤x a a dx x f x a F a F a X x a P a X P )()()(}{}{0. 又0)(lim 0=⎰∆+→∆x a a x dx x f , 所以, P{X = a}= 0. 因此 P{a < X ≤ b} = P{a < X < b} = P{a ≤ X < b} = P{a ≤ X ≤ b} = F(b) - F(a).(3) 概率为0的事件不一定是不可能事件, 同样, 概率为1的事件也不一定是必然事件.(4) 连续型随机变量X 落在小区间(x, x + ∆x) (∆x > 0)上的概率为 =∆+≤<}{x x X x P dx x f dx x f x x x )()(≈⎰∆+. 乘积f (x)dx 称为概率微分, 上式表明, 连续型随机变量X 落在小区间(x, x + ∆x)上的概率近似地等于概率微分. f (x)dx 在连续型随机变量理论中所起的作用与概率P{X = x k } = p k 在离散型随机变量理论中所起的作用是类似的. 如果把x 看成质点的坐标, f (x)看成在x 处的线密度, 则P{x 1< X ≤ x 2}=⎰21)(x x dx x f 就可看成是分布在线段x 1x 2上的质量, 这就是称f (x)为概率密度的理由.例1 确定常数A, 使x Ae x f -=)((-∞ < x < +∞)为某一随机变量的概率密度. 21 例2 设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<≤-<≤=,,0,21,2,10,)(其它x x x x x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧><≤-+-<≤<=.2,1,21,122,10,2,0,0)(22x x x x x x x x F 求X 的分布函数F(x). 例3 设随机变量X 的概率密度x x e e A x f -+=)( (-∞ < x < +∞). 求 (1) 常数A; (2) 概率}3ln 210{<<X P ; (3) X 的分布函数F(x). 解: (1) 由12arctan )(===+∞∞-∞+∞-⎰A e A dx x f x π, 得 π2=A . (2) }3ln 210{<<X P =61arctan 23ln 0=x e π. (3) X 的分布函数F(x)为 x e x F arctan 2)(π= (-∞ < x < +∞). 例4 设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧><≤-+-<=,,1,,arcsin ,,0)(a x a x a a x B A a x x F 其中a > 0, 求 (1) 常数A 、B; (2) 概率}2{a X P <; (3) X 的概率密度f (x). 注: 若已知X 的概率密度f (x), 要求分布函数F(x), 用积分方法⎰∞-=x dt t f x F )()(, 当f (x)是分段函数时, 积分要分段讨论; 若已知X 的分布函数F(x), 要求概率密度f (x), 则用微分方法)()(x f x F =', 当F(x)是分段函数时, 在分段点处用导数定义求导, 当)(x F '不存在(个别点), 则可任意规定)(x F '的值(个别点的值不影响积分结果).下面介绍几个重要的连续型随机变量.一、均匀分布如果随机变量X 的取值范围是有限区间(a, b), 并且落在[a, b]中的任一小区间的概率只与这个区间的长度成正比, 而与该小区间的位置无关, 则称X 在(a, b)上服从均匀分布, 它的概率密度为 ⎪⎩⎪⎨⎧<<-=.,0,,1)(其它b x a a b x f 分布函数为⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 记为X ~ U (a, b). 例5 设随机变量X ~ U (0, 10), 求方程012=++Xx x 有实根的概率.解: ∆=042≥-X , X ≤ -2或X ≥ 2, 所以 P{X ≤ -2} + P{X ≥ 2} = 0.8.二、指数分布 如果连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧>=-.,0,0,1)(其它x e x f xθθ 其中θ > 0是常数, 则称X 服从参数为θ 指数分布, 其分布函数为⎪⎩⎪⎨⎧>-=-.,0,0,1)(其它x e x F x θ 指数分布有重要应用, 常用它来作为各种“寿命”分布的近似. 例如无线电元件的寿命、动物的寿命、电话问题中的通话时间、随机服务系统中的服务时间等都常假定服从指数分布.服从指数分布的随机变量X 具有以下有趣的性质:对于任意的s 、t > 0, 有P{X > s + t ∣X > s} = P{X > t}. 事实上 P{X > s + t ∣X > s} =}{}{}{)}(){(s X P t s X P s X P s X t s X P >+>=>>+> =}{)(1)(1t X P e e e s F t s F t s t s >===-+---+-θθθ. 此性质称为无记忆性. 如果X 是某一元件的寿命, 那么上式表明: 已知元件已使用了s 小时, 它总共能使用至少s + t 小时的条件概率, 与从开始使用时算起它至少能使用t 小时的概率相等. 这就是说, 元件对它已使用过s 小时没有记忆. 具有这一性质是指数分布有广泛应用的原因.三、正态分布 设连续型随机变量X 的概率密度为 222)(21)(σμσπ--=x e x f , (-∞ < x < +∞). 其中μ、σ (σ > 0)为常数, 则称X 服从参数为μ、σ 的正态分布或高斯(Gauss)分布, 记为X ~ N (μ、2σ). 其分布函数为 ⎰∞---=x t dt e x F 222)(21)(σμσπ (-∞ < x < +∞).可以证明, f (x)满足概率密度的两个性质. 事实上 ⎰∞+∞---dx e x 222)(21σμσπ(令σμ-=x t )= I dt e t =⎰∞+∞--2221π. 而=2I 22221⎪⎪⎪⎭⎫ ⎝⎛⎰∞+∞--dt e t π=⎰⎰∞+∞-∞+∞---⋅dy e dx e y x 22222121ππ=⎰⎰∞+∞-∞+∞-+-dxdy e y x )(212221π. 利用极坐标, 令x = rcos θ, y = rsin θ, 则 =2I ⎰⎰∞+-02021221πθπrdrd e r =1022=⎰∞+-dr re r , 由于I ≥ 0, 故有 1)(=⎰∞+∞-dx x f .正态分布的概率密度f (x)的图形称为正态曲线, 它具有以下性质:1︒ 曲线位于x 轴的上方, 以直线x = μ为对称轴, 即f (μ + x) = f (μ - x). 这表明对于任意的h > 0, 有P{μ - h < X ≤ μ}= P{μ < X ≤ μ + h}. 2︒ 当x = μ 时, 曲线处于最高点(σπμ21)(=f ), 当x < μ 时, f (x)单调增加; 当x > μ 时, f (x)单调减少, 即当x 向左右远离μ 时, 曲线逐渐降低, 整条曲线呈现“中间高, 两边低”的形状. 这表明对于同样长度的区间, 当区间离μ 越远, X 落在这个区间上的概率越小. 3︒ 在x = μ ±σ 处曲线有拐点, 并以x 轴为渐近线.4︒ 参数μ 确定了曲线的位置, σ 确定了曲线的形状. σ 越大, 曲线越平坦; σ 越小, 曲线越集中.特别地, 当μ = 0, σ = 1时, 称X 服从标准正态分布, 其概率密度和分布函数分别用ϕ(x)和Φ(x)表示, 即 2221)(x e x -=πϕ, ⎰∞--=Φx t dt e x 2221)(π.我们知道, 利用分布函数F(x)可以计算事件“X ≤ x ”的概率. 但当X ~ N (0, 1)时, 就无法用初等方法计算, 因此, 为计算方便, 人们编制了Φ(x)的函数表, 从表中可查出服从N (0, 1)的随机变量小于指定值x(x > 0)的概率P{X ≤ x} = Φ(x).因⎰⎰-∞--∞----==-Φx x t d t dt t x )()()()(ϕϕ=)(1)(1)(x dt t dt t x x Φ-=-=⎰⎰∞-∞+ϕϕ(ϕ(x)是偶函数), 所以, 当x < 0时, 只要查得Φ(-x), 即可求得Φ(x)的值.对一般的正态分布, 可利用变换σμ-=x t , 将其化成标准正态分布, 即有(){}x F x P X x μσ-⎛⎫=≤=Φ ⎪⎝⎭. 事实上, }{)(x X P x F ≤==⎰∞---x t dt e 222)(21σμσπ(令σμ-=t y )=⎰-∞--⎪⎭⎫ ⎝⎛-Φ=σμσμπx y x dy e 2221.对任意区间[x 1, x 2], 有 ⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=≤-≤=≤<σμσμ121221}{}{}{x x x X P x X P x X x P .例6 设X ~ N (0, 1), 求:(1) P{X ≤ 1.15}; 0.8749 (2) P{X ≤ -2.35}; 0.0094(3) P{0.02 < X ≤ 1.15}; 0.4821 (4) P{-1.85 < X ≤ 0.04}; 0.4838例7 设X ~ N (108, 9), 求: (1) P{101.1 < X < 117.6}; 0.9886(2) 求常数a, 使P{X < a} = 0.90; 111.84 (3) 求常数a, 使P{∣X - a ∣> a} = 0.01. 57.50例8 设),(~2σμN X , 求:(1) P{μ - σ < X < μ + σ}; 0.6826 (2) P{μ - 2σ < X < μ + 2σ}; 0.9544 (3) P{μ - 3σ < X < μ + 3σ}. 0.9974此例表明, 当时, X 以99.74%的概率落入区间(μ - 3σ , μ + 3σ)内, 即X 的可取值几乎全部在(μ - 3σ , μ + 3σ)内, 这就是统计中的3σ 原则.例9 公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的. 设男子身长X 服从μ = 170cm, σ = 6cm 的正态分布, 即)6,170(~2N X , 问车门高度应如何确定?解: 设车门高度为hcm. 按设计要求, P{X ≥ h} ≤ 0.10或P{X < h} ≥ 0.99. 因)6,170(~2N X , 故99.06170)(}{≈⎪⎭⎫ ⎝⎛-Φ==<h h F h X P , 查表得 Φ(2.33) = 0.9901 > 0.99, 所以, 33.26170=-h , h = 184cm.为了便于今后应用, 对于标准正态随机变量, 我们引入α分位点的概念.设X ~ N (0, 1), 对给定的数α, 0 < α < 1, 称满足条件 αϕαα==>⎰∞+z dx x z X P )(}{ 的数z α为标准正态分布的上(侧) α分位点(如图).对于给定的α, z α的值可这样求得; P{X > z α} = 1 - Φ( z α) = α , 从而, Φ( z α) = 1 - α , 查表可得. 如, z 0.05 = 1.645, z 0.3 = 0.52.一般地, 对随机变量X, 若对给定的数α, 0 < α < 1, 称满足条件P{X ≥ z α}= 1 - F(z α)的数z α为此概率分布的上(侧) α分位点(数).在自然现象和社会现象中, 大量随机变量服从或近似服从正态分布. 一般地, 只要某个随机变量是由大量相互独立、微小的偶然因素的总和所构成, 而且每一个别偶然因素对总和的影响都均匀地微小, 则可断定这个随机变量必近似服从正态分布.第五节 随机变量的函数的分布在微积分中, 函数y = g(x)是一个最基本的概念, 同样, 在概率论与数理统计中, 也常遇到随机变量的函数. 例如, 在测量圆轴截面面积的试验中, 所关心的随机变量−圆轴截面面积A 不能直接测量得到, 只能直接测量圆轴截面的直径d 这个随机变量, 再根据关系式 得到A, 这里随机变量A 是随机变量d 的函数.一般地, 设g(x)是定义在随机变量X 的一切可能取值x 的集合上的函数, 如果当X 取值为x 时, 随机变量Y 的取值为y = g(x), 则称Y 是随机变量X 的函数, 记为Y = g(X). 下面我们讨论如何由已知的随机变量X 的分布去求得它的函数的分布.一、X 是离散型随机变量设求 当X 取得它的某一可能值x i 时, 随机变量Y = g(X)取值y i = g(x i ) (i = 1, 2, …).如果诸i i i , 则把那些相等的值分别合并起来, 并根据概率可加性把对应的概率相加,就得到函数Y = g(X)的分布律.例求)2(-X 例求⎪⎭ ⎝=X Y 2sin 解: 因⎪⎩⎪⎨⎧-==-=-=⎪⎭⎫ ⎝⎛.34,1,2,0,14,12sin k n k n k n n π 所以, ⎪⎭⎫ ⎝⎛=X Y 2sin π只有三个可能取值: -1, 0, 1. 而取得这些值的概率分别是 152********}1{141173=+++++=-=- k Y P , 3121212121}0{2642=+++++== k Y P , 158********}1{3495=+++++==- k Y P . 所以, Y二、X 是连续型随机变量若X 是连续型随机变量. Y = g(X)是X 的函数, 则Y 也是随机变量, 这时如何求出Y = g(X)的分布呢? 先看一个例子.例3 已知),(~2σμN X , 求σμ-=X Y 的概率密度. 解: 设Y 的分布函数为F Y (y), 于是 F Y (y) = P{Y = y}=}{y X P ≤-σμ= P{X ≤ σ y + μ} = F X (σ y + μ). 其中F X (x)为X 的分布函数. 将上式两边对y 求导, 并利用概率密度是分布函数的导数的关系得 []σμσμσ⋅+='+==')()()()(y f y F y f y F y X Y Y . 再将222)(21)(σμσπ--=x e x f 代入, 有 22])[(2222121)(y y Y e e y f --+-=⋅=πσσπσμμσ, 这表明Y ~ N(0, 1).在以上推导过程中, 除去用到分布函数的定义以及分布函数和概率密度的关系之外, 还用到这样一个等式}{y X P ≤-σμ= P{X ≤ σ y + μ}. 表面上看, 只是把不等式“y X ≤-σμ”变形为“X ≤ σ y + μ”, 它们是同一个随机事件, 因而概率相等. 实质上关键在于把σμ-=X Y 的分布函数在y 的值F Y (y)转化为X 的分布函数在σ y + μ 的值F X (σ y + μ). 这样就建立了分布函数之间的关系, 然后通过求导得到Y 的概率密度. 这种方法叫做“分布函数法”, 按照上例的解题思路, 可得到下面的定理:定理 设随机变量X 具有概率密度f X (x), -∞ < x < +∞, 又设函数g (x)处处可导且有)(x g '> 0 (或恒有)(x g '< 0), 则Y = g(X)是连续型随机变量, 其概率密度为 ⎩⎨⎧<<'⋅=.,0,,)()]([)(其它βαy y h y h f y f XY 其中α = min{g(-∞), g(+∞)}, β =max{g(-∞), g(+∞)}, h(y)是g(x)的反函数.证: 对于任意x 有)(x g '> 0 (或)(x g '< 0). 因而g(x)单调增加(或单调减少), 它的反函数h(y)存在, 并且h(y)在(α,.β)内单调增加(或单调减少)且可导.设g(x)单调增加, Y 的分布函数为 ⎰∞-=≤=≤=≤=)()()}({})({}{)(y h X Y dx x f y h X P y X g P y Y P y F , 于是Y 的概率密度为 )()]([)()(y h y h f y F y f X Y Y '='=, g(-∞) < g(+∞), )0)((>'y h 设g(x)单调减少, Y 的分布函数为 ⎰∞+=≥=≤=≤=)()()}({})({}{)(y h X Y dx x f y h X P y X g P y Y P y F . 于是Y 的概率密度为 )()]([)()(y h y h f y F y f X Y Y '-='=, g(+∞) < g(-∞), )0)((<'y h 综合以上两种情形, 即得所要结论.注: 若f X (x)在有限区间[a, b]以外等于零, 则只需设在[a, b]上有> 0 (或< 0)., 此时α = min{g(a), g(b)}, β =max{g(a), g(b)}.例4 设随机变量X 具有概率密度f X (x), -∞ < x < +∞, 求线性函数Y = a + bX (a 、b 为常数, 且b ≠ 0)的概率密度.解: 因y = g(x) = bx + a, 故b a y y h x -==)(. 而b y h 1)(=', 由定理得⎪⎭⎫ ⎝⎛-=b a y f b y f Y 1)(,-∞ < y < +∞. 若),(~2σμN X , 则=)(x f X 222)(21σμσπ--x e (-∞ < x < +∞), 故Y 的概率密度为 ⎪⎭⎫ ⎝⎛-=b a y f b y f Y 1)(2222)(21σμσπb b a y e b ---. 因而),(~22σμb b a N Y +, 这就是说正态随机变量X 的线性函数仍服从正态分布, 只是参数不同而已.例5 设X 具有概率密度f X (x), -∞ < x < +∞, 求2X Y =的概率密度.解: 2x y =不是单调函数, 故不能用定理来求. 但可划分为两个单调区间(-∞, 0)和(0, +∞), 在这两个单调区间上它的反函数分别为y x -=与y x =. 对于y > 0, Y 的分布函数为 ⎰-=≤≤-=≤=y y X Y dx x f y X y P y Y P y F )(}{}{)( 由于02≥=X Y , 且P{Y = 0} = 0, 所以当y ≤ 0时, 其分布函数F Y (y) = 0, 于是Y 的概率密度为 ⎪⎩⎪⎨⎧≤>-+='=.0,0,0)],()([21)()(y y y f y f y y F y f X X Y Y 例如, 设X ~ N (0, 1), 其概率密度为2221)(x e x -=πϕ(-∞ < x < +∞), 则的概率密度为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>+=----.0,0,0,21.0,0,0),2121(21)(22122y y e y y y e e y y f y y y Y πππ 称Y 服从自由度为1的分布.习 题 课一、要点与要求本章主要内容是把随机事件数量化, 使得随机事件极其概率能够用随机变量极其分布函数来表示, 以便使用微积分等数学工具研究随机现象. 这一章是本课程的重点.1︒ 求离散型随机变量X 的分布律时, 首先要确定X 的取值, 然后求出对应于各取值的事件的概率, 要注意验证∑∞===11}{n k x X P , 否则不正确.两点分布、二项分布、泊松分布是三种常用离散型随机变量的概率分布.2︒ 使用概率密度f (x)描述连续型随机变量X, f (x)满足f (x) ≥ 0, ⎰∞+∞-=1)(dx x f . 对于任意(a, b), 有 ⎰=<<b a dx x f b X a P )(}{. 均匀分布、正态分布、指数分布是三种常用连续型随机变量的分布.3︒ 可以使用分布函数统一描述离散型随机变量和连续型随机变量. 当分布函数F(x)中含有待定常数时, 常利用0)(lim =-∞→x F x , 1)(lim =+∞→x F x 或F(x + 0) = F(x)来确定该常数. 而当概率密度f (x)及分布律中含有待定常数时, 常利用⎰∞+∞-=1)(dx x f 或∑∞===11}{n k x X P 来确定该常数. 有概率密度f (x)求分布函数F(x), 要在相应的区间段把F(x)写成f (x)的变上限积分, 利用公式)()(x f x F =', 可由分布函数F(x)求概率密度f (x).离散型随机变量的分布函数为分段函数, 若随机变量X 的取值为n 个, 则要分为n + 1段, 其图形是右连续的阶梯曲线.4︒ 对正态随机变量, 我们有Φ(-x) = 1 - Φ(x). 若),(~2σμN X , 则⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=<<σμσμa b b X a P }{. 5︒ 随机变量的函数是一个重要概念. 对连续型随机变量X 的函数Y = g(X), 要了解求Y 的分布的原理和方法, 当g(x)是严格单调函数时, Y 的概率密度可使用公式计算出来.本章中的概念比第一章少, 并且多数概念容易理解, 重点是计算问题. 对离散型随机变量, 求它的分布律实质上是第一章内容的继续, 要用到第一章中的许多内容; 对连续型随机变量, 在进行各种计算时, 涉及到高等数学中的知识, 主要是定积分的计算(其中包括无穷限的广义积分), 要牢记积分的基本公式, 掌握简单的换元积分法和分部积分法, 同时要掌握简单的极限计算.二、典型例题例1 选择题1. 设F 1(x)与F 2(x)分别为随机变量X 1与X 2的分布函数, 为使F(x) = a F 1(x) - b F 2(x)是某一随机变量的分布函数, 在下列给定的各组数值中应取(98数三)( ) A (A) 52,53-==b a ; (B) 32,32==b a ; (C) 23,21=-=b a ; (D) 23,21-==b a . 2.设X 1与X 2是任意两个相互独立的连续型随机变量, 它们的概率密度分别为f 1 (x)与f 2 (x), 分布函数分别为F 1(x)与F 2(x), 则(2002数一)( ) D(A) f 1 (x) + f 2 (x)必为某一随机变量的概率密度; (B) f 1 (x) f 2 (x)必为某一随机变量的概率密度;(C) F 1(x) + F 2(x)必为某一随机变量的分布函数; (D) F 1(x) F 2(x)必为某一随机变量的分布函数.3. 设随机变量X 服从正态分布),(2σμN , 则随σ 的增大, 概率P{|X - μ| < σ}(95)( ) C(A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.4. 设随机变量X 与Y 均服从正态分布, )4,(~2μN X , )5,(~2μN Y . 记p 1 = P{X ≤ μ - 4}, p 2 = P{Y ≥ μ + 5}, 则(93)。
第二章 随机变量的散布及其数字特点一、内容提要(一)随机变量及其散布函数 1.随机变量设随机实验E 的样本空间为Ω,若是关于每一个样本点Ω∈ω,有一个实数X (ω)与之对应,且对任意的实数x ,()X x ω≤的概率都存在,那么称X (ω)为随机变量,简记为X. 2.随机变量的散布函数设X 为随机变量,x 为任意实数,那么函数 F (x )=P{X≤x },-∞<x <+∞ 称为随机变量X 的散布函数. 散布函数F (x )的性质: (1)0≤F(x )≤1,-∞<x <+∞ (2)F (x )是x 的非减函数 (3)F(-)lim ()0,()lim ()1x x F x F F x →-∞→-∞∞==+∞==;(4)F (x+0)=F (x ),即F (x )关于x 右持续. (二)离散型随机变量的概率散布 1.离散型随机变量若是随机变量X 所有可能的取值为有限个或无穷可列个,那么称X 为离散型随机变量。
2.概率散布若是离散型随机变量X 所有可能的取值为x 1,x 2,…,x k ,…,且取这些值的概率为{},1,2,...k k P X x p k ===那么称{},(1,2,...)k k P X x p k ===为随机变量X 的概率散布或散布律.X 的概率散布,也经常使用表格形式表示,如表2-1所示.表 2-1X x 1 x 2 … k x … p kP 1P 2…p k…3.概率散布的性质(1)p k ≥0,k =1,2,…(2).11=∑∞=k kp4.散布函数离散型随机变量X 的散布函数是一个阶梯形右边续函数:{}{}∑∑≤≤===≤=xx kkxx k k px X P x X P x F )((三)持续型随机变量的密度函数 1.持续型随机变量及其密度函数设随机变量X 的散布函数为F (x ),假设存在非负可积函数f (x ),使对任意的实数x ,有{}⎰∞-=≤=dxx f x X P x F x )()(那么称X 为持续型随机变量,而且称f (x )为X 的密度函数. 2.密度函数的性质 (1)f (x )≥0,(-∞<x <+∞); (2)⎰=+∞∞-1)(dx x f ;(3)持续型随机变量X 取任一实数a 的概率为0,即P {X=a }=0; (4)P {a≤X≤b }=P {a≤X <b }=P {a <X≤b }= P {a <X <b }=F(b)-F (a )=⎰badxx f )((5)若是f (x )在点x 处持续,那么F ′(x )=f (x ); (6)持续型随机变量X 的散布函数F (x )是x 持续函数.3.标准正态散布变量的分位数设X~N (0,1).关于给定的α(0<α<1),假设存在u α,使得 {}αα-=≤1u X P那么称u α为标准正态散布的双侧分位数,当α=,,时,u α别离等于,,. (四)随机变量函数的散布 1.随机变量函数X 为随机变量,那么X 的函数Y=g (X )也是一个随机变量,且当X 取值x 时,Y 取值y=g(x ),称Y 为随机变量X 的函数. 2.离散型随机变量函数的概率散布的求法 设随机变量X 的概率散布如表2-2所示. 表 2-2 X x 1 x 2 … x k… p P P …p …那么随机变量函数Y=g (X )是离散型随机变量,Y 的概率散布可借助于X 的概率散布求得.求Y=g(X)的概率散布的方式步骤是:(1)确信Y 的所有可能取值y k =g(x k )(k =1,2,…)并列表,如表2-3所示. 表 2-3X y 1 y 2 … y k … p k P 1 P 2 … p k … (2)确信Y=g(X)的概率散布.1)若是对不同的x k ,y k =g (x k ),(k =1,2,…)的值各不相同,那么表2-3即为Y=g (X )的概率散布表。
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
第二章 随机变量及其分布第一节 离散型随机变量离散型随机变量:若随机变量的取的值是有限个或可列无限多个,就叫做离散型随机变量 离散型随机变量的分布律:1)等式形式{},1,2,===k k P X x p k 且11∞==∑kk p2)表格形式:分布律性质:1. 0,1,2.....≥=k p k 2. 11∞==∑kk p步骤:1.找到所有可能取值2.算出每种取值的概率3.概率相加为1 方法:1.定取值:取值点就是分断点.2.概率:挨着减.3.三种重要的离散型随机变量: 1.(0-1)分布{}1(1),0,1(01)-==-=<<k k P X k p p k p2.二项分布(,)XB n p1)背景:独立地重复进行n 次实验,成功的次数服从二项分布. 2)若(,)XB n p ,则1(,1)--XB n p定义:若随机变量X 的可能有取值为0.1.2…n,而X 的分布律为()(1),0,1,2,...-==-=k kn k n P X k C p p k n其中01,1<<+=P p q 则称X 服从参数为n,p 的二项分布,记为(,)X B n pn 重伯努利试验伯努利试验:设试验E 只有两个可能结果:A 及A ,则称E 为伯努利试验,设P(A)=p(0<p<1),此时P(A )=1-p. 二项分布的应用:产品的合格与不合格,机器故障等 3.泊松定理:当X 服从二项分布,(,)XB n p ,若:lim 0(为常数),λλ→+∞=>n n np 则有:2lim ()(1),0,1,2,...!()λ--→+∞==-==k kk n knn e P X k C p p k n k泊松分布X ~P(λ)设随机变量X 所以可能取的值为0,1,2,…,而取各个值的概率为{}!λλ-===k k e p P X k k ,k=0,1,2,……其中λ>0是常数,则称X 服从参数为λ的泊松分布,记为X ~P(λ) 泊松分布的应用:某一时段时段内某一事件所发生的次数 第二节 非离散型随机变量:非离散型随机变量取任一指定点的实数值的概率都等于01.分布函数:设X 是一个随机变量,x 是任意实数,函数F(x)=P{X ≤x},(,)∈-∞+∞x 称为X 的分布函数 对于任意实数1x ,2x (1x <2x ),有122121{}{}{}()()<≤=≤-<=-P x X x P X x P X x F x F x随机变量的分布函数:定义:设X 是一个随机变量,对于任意实数x,令{}(),=≤-∞<<+∞F x P X x x 称()F x 为随机变量的概率分布函数,简称分布函数.利用分布函数()=X f x 求各种随机事件的概率: 1.{}()≤=P X a F a2.{}{}11()>=-≤=-P X a P X a F a3. {}(0)lim ()-→<=-=x aP X a F a F a 4. {}{}11(0)≥=-<=--P X a P X a F a5. {}{}{}()(0)==≤-<=--P X a P X a P X a F a F a6. {}{}{}()()<≤=≤-≤=-P a X b P X b P X a F b F a7. {}{}{}(0)(0)≤<=<-<=---P a X b P X b P X a F b F a8. {}{}{}(0)()<<=<-≤=--P a X b P X b P X a F b F a 9.{}{}{}()(0)≤≤=≤-<=--P a X b P X b P X a F b F a2. 分布函数的基本性质: 1) 非负性:0()1≤≤F x2) 规范性:()lim ()0,()lim ()1→-∞→+∞-∞==+∞==x x F F x F F x3) 单调不减性:对任意1212,()()<≤x x F x F x (函的的单调性判断可通过求导:导数大0,增,小于0,减) 4) 右连续性:()(0)lim ()()+→=+=+=x F x F x F x x F x性质2.4可用来确定分布函数中的未知参数.(只要分布函数含有未知参数,就用这两条来推得) 1.2.3.4是一个函数能够成为某一随机变量分布函数的充要条件.(4条共用以判定是否为分布函数)已知X 的分布函数F(x),可求出:{}{}{}()()()1()≤=<≤=->=-P X b F b P a X b F b F a P X b F b第三节 连续型随机变量1. 连续型随机变量及其概率密度定义:若对于随机变量X 的分布函数F(x),存在非负函数f(x),使对于任意实数x 有()()-∞=⎰xF x f t dt,则称X 为连续型随机变量, 概率密度的性质:1.f(x)≥0,(-∞≤≤+∞x )(非负性)2.()1∞-∞=⎰f x dx (规范性)(作用:可用来定义未知参数)(介于()=y f x 与X 轴之间在面积等G .)(1.2是判断一个函数是否是密度函数的充要条件) 3.{}()()(),<≤=-=≤⎰ba P a Xb F b F a f x dx a b(作用:求概率)(落在区间(a.b ]的概率是曲边梯形的积) (不论区间开闭,都一样,离散型无这性质) 4.分布函数()()-∞=⎰x F x f t dt是连续函数.5.连续型随机变量在任意点0x 取值概率0{}0==P X x6.若f(x)在点x 处连续,则有F ′(x)=f(x)(结合变上限积分的求导法则()*()()()-∞'==⎰xf x f t dtF x )(可用于已知分段函数求概率密度) 注意: 1.()()-∞=⎰x F t f t dt()F t 一定连续,但()f t 不一定连续.2. 0()1≤≤F x ()f x 不是概率,概率密度.()∆f x x 是概率.3. ()f x 大小可以反映概率的大小.当()f x 为分段函数时,F(x)也是分段函数,二者有相同的分段点. 均匀分布~(a,b)X U密度函数 1,,()0,其它⎧≤≤⎪-⎨⎪⎩a xb f x b a~(a,b)X U ,≤<≤a c d b ,则()-<<=-d c P c x d b a分布函数0,F(),,0,其它<⎧⎪-⎪≤≤⎨-⎪⎪⎩x a x a x a x b b a指数分布~()λX E密度函数 ,0(),0,0λλ-⎧>=⎨≤⎩x e x f x x分布函数1,0(),0,0λ-⎧->=⎨≤⎩x e x F x x正态分布2~(,)μσX N )密度函数22()21(),,2μσπσ--=-∞<<∞x f x ex标准正态~(0,1)X N概率密度 ()ϕx =2212πx e ,(-∞<<∞x )分布函数()Φx =2212π-∞⎰t xe dt (-∞<<∞x )正态分布曲线的性质:a) 曲线关于直线=x u 对称.对于任何0>h ,有:{}{},-<≤=≤<+P u h X u P u X u hb) 当=x u 取到最大值的时候,1(),2πσ=f u 在σ=±x u 处,曲线有拐点,曲线以x 轴为渐近线.c) 当σ取定,12<u u 时,212222()21()221()21()2μσμσπσπσ----==x x f x ef x e两条曲线可互相沿着X 轴平行移动而得,不改变形状,可见正太分布典线的位置完全由u 决定.d) 当u 取定,12σσ<时,221222()231()2421()21()2μσμσπσπσ----==x x f x ef x e可见,当σ越小,图形越尖锐.σ越大,图形越平缓,可见σ值刻画了正态随机变量取值的分散程度,σ越小分散程度越小,σ越大分散程度越大.其分布函数为:22()21()2μσπσ--=-∞⎰t x F x e dt()ϕx 的图形关于Y 轴对称.()ϕx 在x =0时取得最大值12π.特例:2()-∞=-∞⎰x F x e dx (2=tx )222()()22()212212πππ---∞∞⇒⇒-∞-∞∞⇒⇒-∞⎰⎰⎰t t t ted e dte dt标准正态分布函数的性质: a) ()1()Φ-=-Φx x b) ()()ϕϕ-=x x c)1(0)2Φ=d) {}2()1≤=Φ-P X a a 解决正态分布的步骤:1) 正态标准化. 一般分布:X ~N(μ,2σ)通过线性变换:σ-=x uz 化成标准正态.2) 利用标准正态的对称性 3) 查表计算引理:若X ~N(μ,2σ),其分布函数为F(x),则: 1.{}()()σ-=≤=Φx uF x P X x (从一般正态到标准正态)2.{}{}{}{}()()σσ<≤=≤≤=≤<--=<<=Φ-ΦP a X b P a X b P a X b b ua uP a X b3. {}{}1()σ->=≥=-Φa uP X a P X a第四节 随机变量函数的概率分布1. 离散型随机变量函数的概率分布概率对应 顺序重排2. 连续型随机变量函数的概率分布其概率密度为 '[()](),(),0,其他αβ⎧<<⎪=⎨⎪⎩X Y f h y h y y f y()h y 是根据()=Y g x 所求得的反函数()=x h y()'h y 是对反函数求导。
概率论与数理统计第二章知识点一、知识概述《概率论与数理统计第二章知识点》①基本定义:概率论与数理统计第二章通常会涉及随机变量及其分布相关知识。
随机变量简单来说,就是把随机试验的结果用一个数值来表示。
比如扔硬币这个随机试验,我们规定正面为1,反面为0,这个1或者0就是随机变量的值。
②重要程度:这部分知识在整个学科里可以说是根基般的存在。
就像盖房子的砖头,后面很多章节的知识,像期望、方差等都依赖这些内容进行构建。
③前置知识:得对基本的概率概念有认识,像样本空间、事件、古典概型等基础知识要掌握。
如果这些搞不清楚,那学随机变量就像没地基想盖楼。
④应用价值:在实际生活中有很多应用。
比如保险公司确定保险费用,不同人的健康情况这些不确定因素就可以看成随机变量,然后根据这些变量出现的概率分布来制定保险费。
二、知识体系①知识图谱:在学科中,这部分是承上启下的作用。
承接着概率基础,开启后面关于数字特征等更深层次知识的大门。
②关联知识:和第一章概率的基本概念联系紧密,同时也是后续关于多维随机变量、数字特征等知识的重要铺垫。
③重难点分析:掌握难度中等。
难点在于理解随机变量的分布函数概念,关键点是要理解分布函数在描述随机变量取值规律中的作用。
④考点分析:考试特别重要。
考查方式有让你根据已知条件求随机变量的分布函数、概率密度(如果是连续型随机变量)等。
三、详细讲解【理论概念类】①概念辨析:随机变量分为离散型和连续型两种。
离散型随机变量就是取值是可以一一列举出来的,像扔骰子得到的点数。
连续型随机变量取值是某个区间内的任意值,比如测量人的身高。
②特征分析:离散型随机变量有概率分布列,能清楚展示每个取值对应的概率。
连续型随机变量有概率密度函数,它的图形和面积有特殊意义,代表着取值在某个区间的概率。
③分类说明:从取值类型就是离散型和连续型区分。
从分布类型又有很多,像离散型的二项分布,在多次独立重复试验中出现的次数服从这个分布。
比如做10次抛硬币试验,正面出现的次数可能服从二项分布。
第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =两点分布的方差:()(1)D X p p =-(2)二项分布: 若一个随机变量X 的概率分布由式{}(1),0,1,...,.k k n k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k e k k λλλ-==>=则称X 服从参数为λ的泊松分布,记为X~P(λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k e k k λλλ-==>=泊松分布的期望:()E X λ=泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt -∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度: 均匀分布的期望:()2a bE X +=均匀分布的方差:2()()12b a D X -=(2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩则称X 服从参数为λ的指数分布,记为 X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f ⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a ab x f指数分布的期望:1()E X λ=指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X 的概率密度为22()21()x f x ex μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()21()x f x ex μσ--=-∞<<+∞正态分布的期望:()E X μ=正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==2222()()x t xx ex e dt ϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。