语音编码分类及编解码标准
- 格式:doc
- 大小:70.50 KB
- 文档页数:23
语音编码的基本方法
语音编码是将语音信号转换成数字形式以便于存储、传输和处理的过程。
以下是一些常见的语音编码方法:
1. 脉冲编码调制(PCM):
• PCM是一种最基本的语音编码方法,它将模拟语音信号在时间上均匀采样,并将每个样本的振幅量化为数字形式。
•采样率和量化位数是PCM中的两个重要参数,它们决定了数字表示的精度和数据量大小。
2. 自适应差分脉冲编码调制(ADPCM):
• ADPCM是一种通过对语音信号进行预测和差分编码来减小数据量的方法。
它利用前一个采样的信息来预测当前采样,并只编码预测误差。
•由于只需要编码误差,ADPCM相比于PCM可以实现更高的压缩比。
3. 线性预测编码(LPC):
• LPC是一种基于声道建模的编码方法,它假设语音信号是由声道和激励信号的组合产生的。
• LPC通过对语音信号进行分析,提取声道特征,并将其参数化以减小数据量。
4. 矢量量化:
•矢量量化是一种高效的无损压缩方法,通过将一组相邻的样本映射到一个矢量码本中的一个向量,从而减小数据量。
5. 变换编码:
•将语音信号通过某种变换(如傅立叶变换)转换到频域,然后对频域信息进行编码。
其中,MP3是一种常见的基于变换编码的方法。
6. 深度学习方法:
•近年来,深度学习技术在语音编码领域取得了显著进展。
循环神经网络(RNN)和卷积神经网络(CNN)等模型被用于语音特征提取和编码。
这些方法有各自的优点和适用场景,选择合适的编码方法通常取决于应用需求、带宽要求以及对音频质量的要求。
语音编码总结一、历史与概念1、模拟的声音信号话音信号:(口语发声的)200Hz~3400Hz调幅广播信号:(无线广播)50Hz到7000Hz调频广播信号:(无线广播)20Hz到16000Hz激光唱机信号(CD):10Hz~20000Hz2、话音编码技术的历史回顾10 20 50 200 3400 7000 1600 20000 Hz话音编码研究的历史表明,这一领域的研究成果直接为通信产业发展提供了源动力。
目前IP电话所用的编码的标准有G.723.1, G.728, G.729。
具有低延迟、低码率、低复杂性、高音质的话音编码算法将是未来IP电话网络的奠基石。
3、若干概念术语(1)数字信号:标称的不连续信号。
它可以用离散的步差从一个状态转变到另一个状态。
(2)采样:按周期T对模拟信号进行测量,称为采样。
采样频率Fs=1/T.在满足奈奎斯特定理时,从采样值可准确的恢复原信号。
(3)量化用数字信号表示话音的过程称为量化。
(4)非均匀量化非均匀量化可以兼顾动态范围和小信号的系统精度。
Reeves提出概念。
即对大信号取较大的量化步长。
对小信号取较小的量化步长。
二、矢量量化将k个样点构成的有序集(信源矢量集合)映射为M个恢复失量构成的有限集A(码书,码本)中的某个矢量Yi(码字,码元)的映射,称为矢量量化,它是对标量量化在K维空间的一个推广。
在一维幅度轴上划分有限个区间 1=[a0 a1)…n=[an-1 an)在每个区间里,选一个代表值 fi i I=1,2,…n 在每个子空间里,选一个代表矢量Yi={Yi1,Yi2,Yii} Yi{Si} i=1,2,…M对任一模拟信号,当其标称值属于区间i时,就用数字信号fi代表值。
语音编码格式名词解释
语音编码格式是指将语音信号转换为数字信号的过程,以便在数字通信系统中传输和存储。
以下是一些常见的语音编码格式及其解释:
1. PCM(脉冲编码调制):将模拟语音信号转换为数字信号的最基本方法,每秒钟采样8000次,每次采样用8位或16位表示。
2. ADPCM(自适应差分脉冲编码调制):采用自适应算法对PCM信号进行压缩,从而减少传输带宽和存储空间。
3. MP3(MPEG音频层3):一种有损压缩格式,通过去除人耳听不见的音频信号来减小文件大小。
4. AAC(高级音频编码):一种有损压缩格式,比MP3更高效,可以实现更高质量的音频传输和存储。
5. Opus:一种开放源代码的音频编码格式,支持低延迟和高质量的音频传输。
学习技巧:
1. 熟悉常见的语音编码格式,了解它们的特点和适用场景。
2. 学习数字信号处理和音频编码的基本原理,包括采样、量化、压缩等。
3. 练习使用相关的工具和软件,如Audacity、FFmpeg等,实践音频编码和解码的过程。
4. 参考相关的文献和教程,了解最新的音频编码技术和发展趋势。
通信领域中语音编码技术综述语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段,也是人类进行思维的一种依托。
语音业务的传输始终是通信系统中最重要、最基本的核心功能之一,即便是在倡导多媒体业务的第三代甚至第四代数字移动通信系统中,语音业务也仍然是其主导业务。
语音编码是语音信号处理的一个重要方面,它和通信领域联系最为密切。
而语音识别、语音合成、语音增强等方面在理论和方法上与语音编码有很多相通之处。
因此,系统、全面地了解当今语音信号压缩编码的原理和方法,对语音通信领域工作的开展具有重要意义。
语音编码技术大致可以分为三种方式:波形编码、参数编码和混合编码。
1、波形编码波形编码一般分为时域波形编码和变换域波形编码。
1) 时域波形编码时域波形编码不基于声学模型,只针对语音波形进行编码。
这种方法在降低量化每个语音样本比特数的同时又保持了相对良好的语音质量,波形编码主要有脉冲编码调制(PCM)、增量调制 (DM)、自适应增量调制(ADM)、自适应差分脉码调制 (ADPCM)、自适应预测编码(APC)等。
线性PCM是用同等的量化级进行量化,没有利用声音的性质,所以信息没有得到压缩,对数PCM利用了语音信号幅度的统计特性,对幅度按对数变换压缩,将压缩的结果作线性编码,在接收端解码时,按指数进行扩展,这种方法在数字电话通信中得到了广泛的应用,现有的PCM采用编码速率为64kbps的A律、μ律对数压扩方法。
由于对数PCM广泛应用于通信系统中,而线性PCM可以直接进行二进制运算,所以一般速率低于64Kbps的语音编码系统多是先进行对数PCM-线性PCM变换后,再进行语音信号数字处理。
PCM最大缺点是数码率高,在传输时所占频带较宽。
差分脉码调制(DPCM)是根据相邻采样值的差值信号进行编码,ADPCM是在DPCM的基础上发展起来的,其量化器与预测器的参数能根据输入信号的统计特性自适应于最佳或接近于最佳参数状态。
GSM语音编码方案1. 引言GSM(Global System for Mobile Communications,全球移动通信系统)是目前全球主流的第二代数字移动通信标准。
GSM网络提供低功率的无线通信服务,被广泛应用于手机通信、无线数据传输、短信及多媒体信息传递等领域。
在GSM网络中,语音编码方案是非常关键的部分。
本文将介绍GSM语音编码方案的基本原理,主要特点和应用。
2. 基本原理GSM语音编码方案基于线性预测编码(Linear Predictive Coding,简称LPC)和自适应多速率编码(Adaptive Multi-Rate,简称AMR)技术。
LPC是一种基于信号采样的编码技术,通过对语音信号进行分析和压缩,实现对语音信号的传输和存储。
它利用线性预测模型对语音信号进行建模,然后通过削减模型中的冗余信息,降低信号的冗余度,以达到压缩数据的目的。
LPC编码主要分为分帧、预加重、自相关和线性预测系数计算等几个步骤。
AMR则是一种自适应多速率编码技术,它根据通信环境的质量要求自动选择合适的压缩比率。
AMR提供了多个不同比特率的编码模式,从4.75 kbps到12.2 kbps不等。
低比特率提供的音质较差,但传输开销较低,适用于网络带宽较低的环境,而高比特率则提供更好的音质和更高的保真度。
3. 主要特点GSM语音编码方案具有以下几个主要特点:3.1 低比特率GSM语音编码方案的比特率通常在8 kbps左右,远低于CD音质的128 kbps。
这使得GSM网络在有限的频谱资源下能够支持更多的用户同时通信,有效提高了系统的容量。
3.2 低延迟GSM语音编码方案具有较低的编解码延迟,通常在20毫秒左右。
这使得用户在通话中感觉到的延迟较小,提供了良好的实时通话体验。
3.3 压缩效率高GSM语音编码方案通过LPC技术对语音信号进行压缩,实现了较高的压缩效率。
相同比特率下,GSM语音编码方案相比其他编码方案具有更好的音质和保真度。
语⾳压缩编码语⾳编码第⼀章⾳频1.1 ⾳频和语⾳的定义声⾳是携带信息的重要媒体,是通过空⽓传播的⼀种连续的波,叫声波。
对声⾳信号的分析表明,声⾳信号有许多频率不同的信号组成,这类信号称为复合信号。
⽽单⼀频率的信号称为分量信号。
声⾳信号的两个基本参数频率和幅度。
1.1.1声⾳信号的数字化声⾳数字化包括采样和量化。
采样频率由采样定理给出。
1.1.2声⾳质量划分根据声⾳频带,声⾳质量分5个等级,依次为:电话、调幅⼴播、调频⼴播、光盘、数字录⾳带DAT(digital audio tape)的声⾳。
第⼆章语⾳编码技术的发展和分类现有的语⾳编码器⼤体可以分三种类型:波形编码器、⾳源编码器和混合编码器。
⼀般来说,波形编码器的话⾳质量⾼,但数据率也很⾼。
⾳源编码器的数据率很低,产⽣的合成话⾳⾳质有待提⾼。
混合编码器使⽤⾳源编码器和波形编码器技术,数据率和⾳质介于⼆者之间。
语⾳编码性能指标主要有⽐特速率、时延、复杂性和还原质量。
其中语⾳编码的三种最常⽤的技术是脉冲编码调制(PCM)、差分PCM(DPCM)和增量调制(DM)。
通常,公共交换电话⽹中的数字电话都采⽤这三种技术。
第⼆类语⾳数字化⽅法主要与⽤于窄带传输系统或有限容量的数字设备的语⾳编码器有关。
采⽤该数字化技术的设备⼀般被称为声码器,声码器技术现在开始展开应⽤,特别是⽤于帧中继和IP上的语⾳。
在具体的编码实现(如VoIP)中除压缩编码技术外,⼈们还应⽤许多其它节省带宽的技术来减少语⾳所占带宽,优化⽹络资源。
静⾳抑制技术可将连接中的静⾳数据消除。
语⾳活动检测(SAD)技术可以⽤来动态跟踪噪⾳电平,并将噪⾳可听度抑制到最⼩,并确保话路两端的语⾳质量和⾃然声⾳的连接。
回声消除技术监听回声信号,并将它从听话⼈的语⾳信号中清除。
处理话⾳抖动的技术则将能导致通话⾳质下降的信道延时与信道抖动平滑掉。
2.1波形编码波形编解码器的思想是,编码前根据采样定理对模拟语⾳信号进⾏采样,然后进⾏幅度量化与⼆进制编码。
语音编码简论摘要:现代通信的重要标志是实现数字化,而要实现数字化首先得把模拟信号转变为数字信号,这种变化对语音信号来说就是语音编码,它提高了语音信号传输的有效性和可靠性。
语音编码可分为三类:波形编码、参量编码、混合编码。
本文对这三种编码方式分别进行讨论。
关键词:编码数字速率Abstruct:Abstract: The modern communication flag is digitized, and to achieve the digitized first have to change the analog signal to a digital signal, this change is the speech coding on the speech signal, it improves the effectiveness and reliability of the voice signal transmission. The speech coding can be divided into three categories: waveform coding and parametric coding, hybrid coding. Encoding these three were discussed.Keywords:Coded digital rate一、语音编码的概念及分类语音编码就是将模拟语音信号数字化,数字化之后可以作为数字信号传输、存储或处理,可以充分利用数字信号处理的各种技术。
它分为波形编码、参量编码、混合编码。
1波形编码波形编码是将时间域信号直接变换为数字进行传输,即将语音信号作为一般的波形信号来处理,力图保持重建的语音波形与原语音信号的波形一样的一种方式。
其信号处理过程可分为三步:(1)抽样:把模拟信号用时间域上离散时间点的振幅值来表示。
(2)量化:把连续取值的样值用离散的幅度值来近似表示。
语音编码分类及编解码标准将音频或视频信号在模拟格式和数字格式之间转换的硬件(编码器/解码器);压缩和解压缩音频或视频数据的硬件或软件(压缩/解压缩);或是编码器/解码器和压缩/解压缩的组合。
通常,编码解码器能够压缩未压缩的数字数据,以减少内存使用量。
编解码器(codec)指的是一个能够对一个信号或者一个数据流进行变换的设备或者程序。
这里指的变换既包括将信号或者数据流进行编码(通常是为了传输、存储或者加密)或者提取得到一个编码流的操作,也包括为了观察或者处理从这个编码流中恢复适合观察或操作的形式的操作。
编解码器经常用在视频会议和流媒体等应用中,通常主要还是用在广电行业,作前端应用。
G.711类型:Audio制定者:ITU-T所需频宽:64Kbps特性:算法复杂度小,音质一般优点:算法复杂度低,压缩比小(CD音质>400kbps),编解码延时最短(相对其它技术)缺点:占用的带宽较高应用领域:voip版税方式:Free备注:70年代CCITT公布的G.711 64kb/s脉冲编码调制PCM。
G.721类型:Audio制定者:ITU-T所需频宽:32Kbps特性:相对于PCMA和PCMU,其压缩比较高,可以提供2:1的压缩比。
优点:压缩比大缺点:声音质量一般应用领域:voip版税方式:Free备注:子带ADPCM(SB-ADPCM)技术。
G.721标准是一个代码转换系统。
它使用ADPCM转换技术,实现64 kb/s A律或μ律PC M速率和32 kb/s速率之间的相互转换。
G.722类型:Audio制定者:ITU-T所需频宽:64Kbps特性:G722能提供高保真的语音质量优点:音质好缺点:带宽要求高应用领域:voip版税方式:Free备注:子带ADPCM(SB-ADPCM)技术G.723(低码率语音编码算法)类型:Audio制定者:ITU-T所需频宽:5.3Kbps/6.3Kbps特性:语音质量接近良,带宽要求低,高效实现,便于多路扩展,可利用C5402片内16kRAM实现53coder。
达到ITU-TG723要求的语音质量,性能稳定。
可用于IP电话语音信源编码或高效语音压缩存储。
优点:码率低,带宽要求较小。
并达到ITU-TG723要求的语音质量,性能稳定。
缺点:声音质量一般应用领域:voip版税方式:Free备注:G.723语音编码器是一种用于多媒体通信,编码速率为5.3kbits/s和6.3kbit/s的双码率编码方案。
G.723标准是国际电信联盟(ITU)制定的多媒体通信标准中的一个组成部分,可以应用于IP电话等系统中。
其中,5.3kbits/s码率编码器采用多脉冲最大似然量化技术(MP-MLQ),6.3kbits/s码率编码器采用代数码激励线性预测技术。
G.723.1(双速率语音编码算法)类型:Audio制定者:ITU-T所需频宽:5.3Kbps(22.9)特性:能够对音乐和其他音频信号进行压缩和解压缩,但它对语音信号来说是最优的。
G.723.1采用了执行不连续传输的静音压缩,这就意味着在静音期间的比特流中加入了人为的噪声。
除了预留带宽之外,这种技术使发信机的调制解调器保持连续工作,并且避免了载波信号的时通时断。
优点:码率低,带宽要求较小。
并达到ITU-TG723要求的语音质量,性能稳定,避免了载波信号的时通时断。
缺点:语音质量一般应用领域:voip版税方式:Free备注:G.723.1算法是ITU-T建议的应用于低速率多媒体服务中语音或其它音频信号的压缩算法,其目标应用系统包括H.323、H.324等多媒体通信系统。
目前该算法已成为IP电话系统中的必选算法之一。
G.728类型:Audio制定者:ITU-T所需频宽:16Kbps/8Kbps特性:用于IP电话、卫星通信、语音存储等多个领域。
G.72 8是一种低时延编码器,但它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。
G.728还采用了自适应后置滤波器来提高其性能。
优点:后向自适应,采用自适应后置滤波器来提高其性能缺点:比其它的编码器都复杂应用领域:voip版税方式:Free备注:G.728 16kb/s短延时码本激励线性预测编码(LD-CEL P)。
1996年ITU公布了G.728 8kb/s的CS-ACELP算法,可以用于IP电话、卫星通信、语音存储等多个领域。
16 kbps G.728低时延码激励线性预测。
G.728是低比特线性预测合成分析编码器(G.729和G.723.1)和后向ADPCM编码器的混合体。
G.728是LD-CELP编码器,它一次只处理5个样点。
对于低速率(56~128kbps)的综合业务数字网(I SDN)可视电话,G.728是一种建议采用的语音编码器。
由于其后向自适应特性,因此G.728是一种低时延编码器,但它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。
G. 728还采用了自适应后置滤波器来提高其性能。
G.729类型:Audio制定者:ITU-T所需频宽:8Kbps特性:在良好的信道条件下要达到长话质量,在有随机比特误码、发生帧丢失和多次转接等情况下要有很好的稳健性等。
这种语音压缩算法可以应用在很广泛的领域中,包括IP电话、无线通信、数字卫星系统和数字专用线路。
G.729算法采用“共轭结构代数码本激励线性预测编码方案”(CS-ACELP)算法。
这种算法综合了波形编码和参数编码的优点,以自适应预测编码技术为基础,采用了矢量量化、合成分析和感觉加权等技术。
G.729编码器是为低时延应用设计的,它的帧长只有10ms,处理时延也是10ms,再加上5ms的前视,这就使得G.729产生的点到点的时延为25ms,比特率为8 kbps。
优点:语音质量良,应用领域很广泛,采用了矢量量化、合成分析和感觉加权,提供了对帧丢失和分组丢失的隐藏处理机制缺点:在处理随机比特错误方面性能不好。
应用领域:voip版税方式:Free备注:国际电信联盟(ITU-T)于1995年11月正式通过了G. 729。
ITU-T建议G.729也被称作“共轭结构代数码本激励线性预测编码方案”(CS-ACELP),它是当前较新的一种语音压缩标准。
G. 729是由美国、法国、日本和加拿大的几家著名国际电信实体联合开发的。
G.729A类型:Audio制定者:ITU-T所需频宽:8Kbps(34.4)特性:复杂性较G.729低,性能较G.729差。
优点:语音质量良,降低了计算的复杂度以便于实时实现,提供了对帧丢失和分组丢失的隐藏处理机制缺点:性能较G.729差应用领域:voip版税方式:Free备注:96年ITU-T又制定了G.729的简化方案G.729A,主要降低了计算的复杂度以便于实时实现,因此目前使用的都是G.729 A。
GIPS类型:Audio制定者:瑞典Global IP Sound公司所需频宽:特性:GIPS技术可根据带宽状况自动调节编码码率,提供低码率高质量的音频。
GIPS的核心技术(网络自适应算法,丢包补偿算法和回声消除算法)可很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果。
优点:很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果缺点:不是Free应用领域:voip版税方式:每年支付一笔使用权费用备注:GIPS音频技术是由来自瑞典的全球顶尖的语音处理高科技公司--"GLOBAL IPSOUND"提供的专用于互联网的语音压缩引擎系统。
GIPS技术可根据带宽状况自动调节编码码率,提供低码率高质量的音频。
GIPS的核心技术(网络自适应算法,丢包补偿算法和回声消除算法)可很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果。
Apt-X类型:Audio制定者:Audio Processing Technology 公司所需频宽:10Hz to 22.5 kHz,56kbit/s to 576 kbit/s(16 bit 7.5 kHz mono to 24-bit, 22.5kHz stereo)特性:主要用于专业音频领域,提供高品质的音频。
其特点是:①采用4:1:4的压缩与放大方案;②硬件低复杂度;③极低的编码延迟;④由单芯片实现;⑤单声道或立体声编解码;⑥只需单设备即可实现22.5kHz的双通道立体声;⑦高达48kHz的采样频率;⑧容错性好;⑨完整的AUTOSYNC™编解码同步方案;⑩低功率消耗优点:高品质的音频,硬件复杂度低,设备要求低缺点:不是Free应用领域:voip版税方式:一次性付费备注:子带ADPCM(SB-ADPCM)技术NICAMNICAM(Near Instantaneous Companded Audio Multiplex 准瞬时压扩音频复用)类型:Audio制定者:英国BBC广播公司所需频宽:728Kbps特性:应用范围及其广泛,可用它进行立体声或双语广播优点:应用范围及其广泛,信噪比高,动态范围宽、音质同C D相媲美,故名丽音,因此NICAM又称为丽音缺点:不是Free,频宽要求高应用领域:voip版税方式:一次性付费备注:NICAM也称丽音,它是英文Near-Instantaneously Co mpanded Audio Multiplex的缩写,其含义为准瞬时压扩音频复用,是由英国BBC广播公司开发研究成功的。
通俗地说NICAM技术实际上就是双声道数字声技术,其应用范围及其广泛,最典型的应用便是电视广播附加双声道数字声技术,利用它进行立体声或双语广播,以充分利用电视频道的频谱资源。
这是在常规电视广播的基础上无需增加许多投资就可以实现的。
在进行立体声广播时,它提高了音频的信号质量,使其接近CD的质量。
而且还可以利用NICAM技术进行高速数据广播及其他数据传输的增殖服务,这在当今的信息化社会中似乎就显得尤为重要了!MPEG-1 audio layer 1类型:Audio制定者:MPEG所需频宽:384kbps(压缩4倍)特性:编码简单,用于数字盒式录音磁带,2声道,VCD中使用的音频压缩方案就是MPEG-1层Ⅰ。
优点:压缩方式相对时域压缩技术而言要复杂得多,同时编码效率、声音质量也大幅提高,编码延时相应增加。
可以达到“完全透明”的声音质量(EBU音质标准)缺点:频宽要求较高应用领域:voip版税方式:Free备注:MPEG-1声音压缩编码是国际上第一个高保真声音数据压缩的国际标准,它分为三个层次:--层1(Layer 1):编码简单,用于数字盒式录音磁带--层2(Layer 2):算法复杂度中等,用于数字音频广播(DAB)和VCD等--层3(Layer 3):编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍MUSICAM(MPEG-1 audio layer 2,即MP2)类型:Audio制定者:MPEG所需频宽:256~192kbps(压缩6~8倍)特性:算法复杂度中等,用于数字音频广播(DAB)和VCD等,2声道,而MUSICAM由于其适当的复杂程度和优秀的声音质量,在数字演播室、DAB、DVB等数字节目的制作、交换、存储、传送中得到广泛应用。