二阶常微分方程边值问题的数值解法
- 格式:doc
- 大小:661.94 KB
- 文档页数:24
第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1)(2)解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
常微分方程的基本概念与解法常微分方程是数学中的一个重要分支,它研究的是描述变化规律的方程中出现的微分项。
本文将介绍常微分方程的基本概念和解法。
一、常微分方程的基本概念常微分方程是指未知函数的导数和自变量之间的关系方程。
一般形式可以表示为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,y为未知函数,x为自变量,y',y'',...,y^(n)为y的一阶、二阶,...,n阶导数,n为正整数。
常微分方程的阶数指的是方程中最高阶导数的阶数。
例如一阶常微分方程只包含y',二阶常微分方程包含y'和y'',依此类推。
常微分方程可以分为常系数微分方程和变系数微分方程。
常系数微分方程中的系数是常数,变系数微分方程中的系数可以是关于自变量x 的函数。
二、常微分方程的解法常微分方程的解法可以分为初值问题和边值问题。
1. 初值问题初值问题是指在方程中给定自变量x的某个初始值和未知函数y在该点的初值。
对于一阶常微分方程,求解初值问题的基本步骤如下:(1) 将一阶常微分方程改写成dy/dx = f(x, y)的形式;(2) 使用分离变量、全微分或变量代换等方法将方程转化为可分离变量的形式;(3) 对变量进行积分,得到通解;(4) 将初始条件代入通解中,求解常数,得到特解。
对于高阶常微分方程,可以通过转化为一阶常微分方程组的形式,然后利用类似的方法求解。
2. 边值问题边值问题是指在方程中给定自变量x在两个不同点上的值,要求找到满足这些条件的未知函数y。
对于二阶线性常微分方程的边值问题,可以使用常数变易法或格林函数法等求解方法。
三、常微分方程的应用常微分方程在科学和工程领域中具有广泛的应用。
以下是常见的几个应用领域:1. 物理学常微分方程在描述物理系统的运动规律中起着重要的作用。
例如,牛顿第二定律可以表示为二阶线性常微分方程。
二阶常系数非齐次线性微分方程解法及例题在数学领域,微分方程一直是研究的重点。
特别是在物理、化学、生物等领域,微分方程的研究具有重要的实际意义。
本文将重点探讨二阶常系数非齐次线性微分方程的解法及实例分析。
我们来了解一下二阶常系数非齐次线性微分方程的基本概念。
二阶常系数非齐次线性微分方程是指形如:y'' + p(x)y' + q(x)y = 0的方程,其中p(x)和q(x)是关于x的二阶常系数函数。
这类方程的解法通常有三种:分离变量法、特征线法和参数变换法。
下面我们分别介绍这三种方法。
一、分离变量法分离变量法是一种基本的解二阶常系数非齐次线性微分方程的方法。
它的思想是将方程中的齐次项和非齐次项分开处理。
具体步骤如下:1. 将方程变形为:dy/dx = y[p(x) q(x)]/(y'' + p(x))2. 将两边同时积分,得到:ln|y(x)| = ∫[p(x) q(x)]dt + C13. 根据需要,可以求出原方程的通解或特解。
这种方法的优点是简单易行,但缺点是可能存在多个解,且求解过程较为繁琐。
二、特征线法特征线法是一种直观的解二阶常系数非齐次线性微分方程的方法。
它的思想是通过绘制方程的特征线,找到特征线的交点,从而求得方程的解。
具体步骤如下:1. 根据方程的特点,选择合适的参数值,使得方程具有特征线。
例如,当p(x) = 1时,特征线为直线y = ±x。
2. 通过绘制特征线,找到交点,进而求得方程的解。
需要注意的是,特征线的交点可能有多个,因此需要根据实际情况进行判断。
这种方法的优点是直观易懂,但缺点是对于复杂的二阶常系数非齐次线性微分方程,可能难以找到合适的参数值,导致无法绘制出特征线。
三、参数变换法参数变换法是一种将非线性微分方程转化为线性微分方程的方法。
它的思想是通过对原方程进行一系列的参数变换,将非线性问题转化为线性问题。
具体步骤如下:1. 选择一个合适的参数t,将原方程变形为:y'' + p(t)y' + q(t)y = c(t)e^(at)2. 对上式进行积分,得到:dy/dx = y[p(t) q(t)]/(y'' + p(t)) + c'(t)e^(at)3. 将两边同时积分,得到:ln|y(x)| = ∫[p(t) q(t)]dt + ∫c'(t)e^(at)dt + C14. 根据需要,可以求出原方程的通解或特解。
i 摘 要 本文主要研究二阶常微分方程边值问题的数值解法。对线性边值问题,我们总结了两类常用的数值方法,即打靶法和有限差分方法,对每种方法都列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这两类方法的优缺点进行了细致的比较。
关键字:常微分方程边值问题;打靶法;差分法; ii ABSTRACT This article mainly discusses the numerical methods for solving Second-Order boundary value problems for Ordinary Differential Equations. On the one hand, we review two types of commonly used numerical methods for linear boundary value problems, i.e. shooting method and finite difference method. For each method, we give both the exact calculating steps , we compare the advantages and disadvantages in detail of these two methods through a specific numerical example.
Key words:Boundary-Value Problems for Ordinary Differential Equations;Shooting Method;Finite Difference Method; 湖南科技大学本科生毕业设计(论文)
iii 目 录
第一章 引言 ................................................................................................................... - 1 - 第二章 二阶线性常微分方程 .................................................................................. - 2 - 2.1试射法(“打靶”法) ............................................................................................ - 3 - 2.1.1简单的试射法 ............................................................................................ - 3 - 2.1.2 基于叠加原理的试射法 ........................................................................... - 4 - 2.2 有限差分法 ......................................................................................................... - 10 - 2.2.1 有限差分逼近的相关概念 ...................................................................... - 11 - 2.2.2 有限差分方程的建立 ............................................................................. - 13 - 2.2.3 其他边值条件的有限差分方程 ............................................................. - 14 - 2.2.4 有限差分方程的解法 ............................................................................. - 16 -
第三章 二阶非线性微分方程 ........................................................ 错误!未定义书签。 3.1基于牛顿迭代法的打靶法 .......................................................... 错误!未定义书签。 3.1.1 第一类边值条件推导 ..................................................... 错误!未定义书签。 3.1.2 其他边值条件的推导 ................................................... 错误!未定义书签。 3.1.3 算法及程序代码 ........................................................... 错误!未定义书签。 3.2 基于改进的牛顿迭代法的打靶法 ............................................. 错误!未定义书签。 3.2.1 算法的推导 ................................................................... 错误!未定义书签。 3.2.2 算法及代码 ................................................................... 错误!未定义书签。
第四章 改进算法的算例 ................................................................. 错误!未定义书签。
第五章 总结 ................................................................................................................... - 20 - 参考文献 .......................................................................................................................... - 21 - 致谢............................................................................................................ 错误!未定义书签。 湖南科技大学本科生毕业设计(论文)
- 1 - 第一章 引言 微分方程是现代数学中一个很重要的分支,从早期的微积分时代起,这个学科就成为了理论研究和实践应用的一个重要领域。在微分方程理论中,定解条件通常有两种提法:一种是给出了积分曲线在初始时刻的性态,相应的定解条件称为初值问题;另一种是给出了积分曲线首末两端的性态,这类条件则称为边界条件,相应的定解问题称为边值问题。 常微分方程边值问题在应用科学与工程技术中有着非常重要的应用,例如工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题[12]的求解。文献[9]给出了边值问题求解的方法,虽然求解常微分方程边值问题有很多解析方法可以求解,但这些方法只能用来求解一些特殊类型的方程,对从实际问题中提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的研究显得尤为重要。经典的数值方法主要有:试射法(打靶法)和有限差分法,见文献[2]。对于二阶线性边值问题,差分法的优点在于稳定性较好,但它的精度不高。而用打靶法求解线性问题时,解的精度较高,这是因为打靶法将边值问题的求解转化为相应的初值问题的求解,因而可以使用具有较高精度的Runge-Kutta法(见文献[1]),但是算法稳定性较差。 在本文中,我们首先总结了二阶线性边值问题的数值算法:打靶法、有限差分法。对每种方法都列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这两类方法的优缺点进行了细致的比较。由于简单的打靶法过分依赖经验,我们考虑了基于线性叠加原理的打靶法,将线性边值问题转化为两个初值问题,并通过线性叠加得到原边值问题的解。 湖南科技大学本科生毕业设计(论文)
- 2 - 第二章 二阶线性常微分方程 二阶常微分方程一般可表示成如下的形式: ),,()(yyxfxy, bxa (1)
边值条件有如下三类[9]: 第一类边值条件
)(ay, )(by (2)
第二类边值条件 )(ay, )(by (3)
第三类边值条件[19] )()(10ayay, )()(10byby (4)
其中010, 010, 010, 010。 在对边值问题用数值方法求解之前,应该从理论上分析该边值问题的解是否存在,若问题的解不存在,用数值方法计算出来的数据没有任何意义。下面的定理给出了边值问题存在唯一解的充分条件。
定理1.1设方程(2.1)中的函数f及yf,yf在区域
},,|),,{(yybxayyx 内连续,并且 (ⅰ),0),,(yyyxf ),,(yyx;
(ⅱ) yyyxf),,(在内有界,即存在常数M,使得 Myyyxf
),,(
, ),,(yyx, 则边值问题(2.1)-(2.4)的解存在且唯一[18]。 本章我们假设函数),,(yyxf可以简单地表示成
)()()(),,(xryxqyxpyyxf,