井下节流工具说明书
- 格式:doc
- 大小:277.00 KB
- 文档页数:15
井下工具目录打捞类工具1、公锥2、母锥3、滑块捞矛4、分瓣捞矛5、TFLM-T提放式可退捞矛6、提放式分瓣捞矛7、可退捞矛8、伸缩捞矛9、二用伸缩捞矛10、可退式螺旋卡瓦捞筒11、可退式蓝式卡瓦捞筒12、卡瓦捞筒13、弯鱼头打捞筒14、提放式可退捞筒15、短鱼头打捞筒16、电泵捞筒17、可退式螺旋卡瓦电泵捞筒18、活页式捞筒19、不可退式抽油杆捞筒20、弯抽油杆捞筒21、组合式抽油杆捞筒22、提放式抽油杆捞筒23、三球打捞器24、抽油杆接箍捞矛25、多用打捞筒26、颠倒式抽油杆捞筒27、蓝式抽油杆捞筒28、螺旋式抽油杆捞筒29、偏心式抽油杆接箍捞筒30、提放式倒扣捞矛31、可胀式倒扣捞矛32、倒扣捞矛33、倒扣捞筒34、提放式倒扣捞筒35、反循环打捞蓝36、局部反循环打捞蓝37、开窗捞筒38、缆绳打捞钩39、外钩40、内钩41、内外组合钩42、活齿钩43、一把抓44、磁力打捞器45、测井仪器打捞器46、弹簧打捞筒47、老虎嘴整形类工具48、梨形涨管器49、偏心辊子整形器50、长锥面涨管器51、三锥辊整形器52、旋转震击式整形器53、楔形涨管器54、偏心涨管器55、球形涨管器56、顿击器57、复合式鱼顶修整打捞器58、鱼顶修整器震击类工具59、开式下击器60、润滑式下击器61、液压式上击器62、液压加速器切割类工具63、水力式外割刀64、机械式内割刀65、机械式外割刀钻、磨、铣类工具66、三刮刀钻头67、十字钻头68、鱼尾刮刀钻头69、尖钻头70、偏心钻头71、三牙轮钻头72、平底磨鞋73、凹面磨鞋74、梨形磨鞋75、滚球式平底磨鞋76、内铣鞋77、外齿铣鞋78、柱形铣鞋79、锥形铣鞋80、领眼磨鞋81、套铣筒82、扶正器83、滚动扶正器84、恒定加压器85、钻廷套管刮削类工具86、弹簧式套管刮削器87、防脱式套管刮削器88、胶筒式套管刮削器控制类工具89、偏心配水器90、偏心配产器91、K344-110封隔器92、K344-114封隔器93、Y341-114-X封隔器94、Y341-114封隔器95、XYQ-100泄压器96、CMB超越式油管锚97、RCM型软油管锚98、节流器99、支撑卡瓦100、锯齿形安全接头101、方扣形安全接头102、倒扣安全接头103、游车大钩104、水龙头105、气动卡盘106、多用途油管卡盘107、自封封井器108、半封封井器109、全封封井器110、加压支架111、加压吊卡112、分段加压吊卡113、安全卡瓦114、修井吊钳115、油管吊钳116、油管钳117、活门吊卡118、月牙吊卡119、活动肘节120、丢手接头121、倒扣器122、管式抽油泵123、杆式抽油泵124、单螺杆抽油泵125、抽油杆吊卡126、抽油泵脱接器127、铅印128、单臂吊环129、双臂吊环130、羊角吊卡131、修井转盘132、螺杆钻具133、液压动力钳134、解卡机公锥SY5114—921 名称公锥备注2 型号 GZ—NC31(△)3 技术规范参数 1.规范:∮105mm×∮25mm×∮80mm×1110mm2.连接螺纹:NC31 规范不同打捞管柱不同4 主要结构它是长锥形整体结构,可分成接头和打捞丝扣两部分5 技术性能要求 1、打捞螺纹表面硬度:HRC60—652、冲击韧性≥58.8J/cm2,3、抗拉极限≥932KN6 用途及使用范围专门从落物内孔进行造扣打捞,在∮140mm套管内打捞∮30mm—∮75mm带接箍油管和钻杆7 原理当公锥进入落物内孔之后,加以适当的钻压并转动钻具,迫使打捞丝扣挤压吃入落鱼内壁进行造扣,当所造扣能承受一定拉力和扭矩时,则可采取上提或倒扣的办法将落物全部或部分捞出母锥SY5115--921 名称母锥备注2 型号 MZ—NC313 技术规范参数 1、规范:∮114mm×∮97mm×∮62mm×720mm2、连接扣型NC31 规范不同打捞管径不相同4 主要结构它是长筒型整体结构,由接头、本体两部分组成5 技术性能要求 1、打捞螺纹表面硬度HRC=60--652、冲击韧性≥543、抗拉极限≥932kN6 用途及使用范围专门从落物处壁进行造扣打捞的工具,在∮140mm套管内打捞∮92mm—∮67mm管、杆落物7 原理当落物进入母锥之后,加适当钻压,并转动钻具迫使打捞丝扣挤压吃入落物外壁进行造扣,当所造扣能承受一定拉力和扭距时,则可采取上提或倒扣办法将落物或部分捞出滑块捞矛SY/T5069—20001 名称滑块捞矛备注2 型号 LM—D105×73×800 D—代表单滑块S—代表双滑块DSO—代表单滑块带水眼NSO—代表三滑块引—代表引鞋筒的滑块规范不同所捞管柱不同3 技术规范参数 1、规范:∮105mm×800mm2、连接螺纹:NC313、打捞内径:∮58mm~∮62mm4 主要结构上接头、矛杆、滑牙块、锁块、螺钉5 技术性能要求许用拉力440KN6 用途及使用范围它是从鱼腔内进行打捞的工具,在∮140mm套管内打捞∮73mm带接箍油管7 原理当滑块进入鱼腔内后,滑块依靠自重向下滑动,使其打捞尺寸加大,直至与鱼腔内壁接触为止,上提矛杆时,斜面向上运动所产生的径向分力迫使滑块咬入落物内壁抓住落物。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN107503718A(43)申请公布日 2017.12.22(21)申请号CN201710868466.7(22)申请日2017.09.22(71)申请人中国石油集团西部钻探工程有限公司地址830026 新疆维吾尔自治区乌鲁木齐市经济技术开发区中亚南路326号西部钻探钻井工程技术研究院科技管理科(72)发明人李晓军;段文广;罗顺;邓毅;叶安臣(74)专利代理机构乌鲁木齐合纵专利商标事务所代理人蔡体慧(51)Int.CI权利要求说明书说明书幅图(54)发明名称井下节流器(57)摘要本发明涉及节流器技术领域,是一种井下节流器,其包括防砂罩、胶筒套管、密封推套、气嘴剪钉、下胶筒座、胶筒本体、上胶筒座、锥体帽、投送帽、丢手销和投送接头,防砂罩上部内侧套装有密封推套,密封推套底端中部设有安装槽,安装槽内通过气嘴剪钉固定安装有气嘴封堵总成;密封推套上部伸出防砂罩外,中部外侧套装有胶筒套管,胶筒套管外侧由下至上依次套装有下胶筒座、胶筒本体、上胶筒座和锥体帽,提拉套筒外侧由内至外依次套装有卡瓦撑套、环形锥体和卡瓦本体,对应环形锥体上方的卡瓦本体和卡瓦撑套限位安装。
本发明结构合理而紧凑,使用方便,其密封可靠,无需打捞,不影响其它井下作业的进行,具有安全、省力、简便、高效的特点。
法律状态法律状态公告日法律状态信息法律状态2017-12-22公开公开2017-12-22公开公开2017-12-22公开公开2018-01-16实质审查的生效实质审查的生效2018-01-16实质审查的生效实质审查的生效2019-10-29专利申请权、专利权的转移专利申请权、专利权的转移权利要求说明书井下节流器的权利要求说明书内容是....请下载后查看说明书井下节流器的说明书内容是....请下载后查看。
气井生产系统节点分析发布:多吉利来源:减小字体增大字体气井生产系统节点分析提示生产系统分析,也称节点分析,其思想于1954年由吉尔伯特(Gilbert)首先提出。
该方法是运用系统工程理论将地层流体的渗流、举升管垂直流动和地面集输系统管道流动视为一个完整的采气生产系统,进行整体优化分析,使整个气井生产系统不仅在局部上合理,而且在整体上处于最优状态。
因此,它是优化气井生产系统的一种综合分析方法,可以用于设计和评价气井生产系统中各部件的优劣。
本章在介绍气井生产系统基础上,重点介绍气井节点分析理论、方法、用途和节点分析步骤,结合例题详细介绍普通节点和函数节点分析,气井生产动态预测方法见第八章。
第一节气井生产系统分析一、气井生产系统气井生产系统由储层、举升油管、针形阀、地面集气管线、分离器等多个部件串联组成,典型气井生产系统如图6-1所示。
气流从储层流到地面分离器一般要经历多个流动过程。
不同的流动过程遵循不同的流动规律,它们相互联系,互为因果地处于同一气动力学系统。
气体的流动包括从气藏外边界到钻开的气层表面的多孔介质中的渗流,从射孔完井段到井底的、并沿着管柱向上到达井口的垂直或倾斜管流,从井口经过集气管线到达分离器的水平或倾斜管流。
由于流动规律不同,各个部分的压力损失不一样,而且与内部参数有关,气井生产系统分析方法正是利用这一思想来进行研究的。
因此,这种方法属于一种压力分析方法。
1. 气藏中气体向气井的渗流气井一旦投入生产,气体将在气藏中通过孔隙或裂缝向井底流动。
不同孔隙介质,不同流体介质(单相气流、气水两相流、气油两相流),不同方式(驱动)类型和驱动机理,不同开采方式,渗流阻力不一样,压力损失也就不同。
影响这一阻力的因素相当多,同时还要考虑气体的非达西渗流,因此描述这一渗流过程相当复杂。
这一渗流过程的特性称为气井流入动态,它描述了气层产量与井底流压的基本关系,反映了气层向井供气的能力,对气井生产系统分析至关重要。
存储式井下流量计说明书适用范围本说明书涵盖的产品范围是存储式井下流量计产品系列,按测量原理分为电磁式和超声波式两类,按测试工艺分为注水井或注聚井流量测量和封隔器检漏(验封)两类。
电缆直读式井下流量计及其它产品系列见附录。
电磁式工作原理根据法拉第电磁感应定律,当导体做切割磁力线运动时,导体上能感应出与 速度成正比的电压,由此定律可推导出流体的体积流量:式中: B 为磁场强度; Ue 为感应电压;D 为管道内径。
由上式可知,只要测得感应电压就可以得到相应的流速,并换算出流量。
被测流体的温度、压力、密度和电导率等参数的变化不影响流量的测量,所以电磁流量计具有其它流量计无可比拟的优点UeB4D Q π=电磁式工作原理图仪器简介该型仪器是依据标准《Q/74690855-7·1—2004》生产的,主要用于油田注水井和注聚井的分层流量测试,并有以下一些特点:a)被测流体的温度、压力及电导率的变化不影响流量的测量。
能完成每秒数毫米至数十米的流速范围内,井深达数千米的注水井、注聚井的分层流量测量,能满足偏心井、空心井的测量要求,也可用于检漏;b)灵敏度高,测量精度高,零点漂移小,启动排量小,量程范围宽(0~1000 m3/d),还可指示反向流量,探头无机械运动部件,可靠性好,无砂卡;c)操作简便、一次下井即可完成多个压点的测试;d)数据处理软件的兼容性强(适应本公司的多种仪器),人机界面友好。
存储电磁式井下流量计采用微处理器和永久存储技术,系统由井下流量计和井上处理软件两部分组成。
流量计采用充电电池(普通型)或高温电池(高温型)供电,钢丝下井;测量结束后,用计算机回放测量数据,经软件处理后,显示测量结果、生成数据报表,并完成测井资料的保存和打印。
ZDLⅢ-C系列为第三代(一体化型)存储电磁式井下流量计,与二代产品相比,主要进行了以下几个方面的改进:a)将流量、压力(选配)和温度测量集成为一体;b)缩短仪器长度,原长为1100mm ,现长为860 mm;c)存储区增为23个,在总工作时间22小时内,以加电次数(超过5分钟为一次)为标志,数据区循环使用,每个数据区长度按实际测试时间动态分配,最短为5分钟、最长至22小时;d)采用可抽取式电池仓的新结构,仪器工作更加可靠;改进了探头结构,可靠性得到提高。
井下节流工具说明书编写:张金德余瑜勘探开发研究院2003.2目录一、油气井井下节流的机理1.1概述1.2油气混合物通过油嘴流动的热力学基础1.3井下节流与自喷管举升效率的关系1.4地面油嘴与井下节流工具的比较二、新型井下节流工具介绍2.1应用范围:2.2主要规格及技术参数2.3现场应用三、经济效益分析3.1经济效益3.2社会效益四、结论4.1井下节流的作用4.2性能及特点油气井井下节流说明书一.油气井井下节流的机理1.1、概述油、气、水合物从油(气)藏到分离和储存系统,为了控制油、气、水经多孔介质渗流(流入动态)、垂直管流及水平或起伏管流的流动型态,使井按预期的要求生产,必须施加相应的机械条件,这些机械条件是:⑴、从产层到井筒的设备如套管、油管、封隔器、井下节流工具等。
其中井下节流工具是自喷井最重要的井下控制器。
⑵、从井口到地面集输系统的设备,如井口装置、出油管线、地面油嘴等,其中地面油嘴又是自喷井最重要的地面控制器。
⑶、各种地面设施,如油气(或气水)分离器、储罐等。
由此可见,地面油嘴和井下节流工具就是在多相流程的不同部位设置的节流器。
在井口管线上安装地面油嘴,能够产生井口压力降,以增大井口的安全程度和减少分离器的压力;而在井下安装井下节流工具,则可产生井筒压力降,调节举升管中地层能量的利用,从而调节地层气液流体的产量。
地面油嘴与井下节流工具的比较见表一。
1.2、油气混合物通过油嘴流动的热力学基础气体(或可压缩气、液混合物流体)在节流嘴中流动时,由于流速极快(可达声速),流动介质(气、液混合物)与外界(如油管环空、套管水泥环以及地层等所组成的多壁层之间)来不及进行热交换,这一过程可视为绝热膨胀过程。
对该流动系统而言,气液混合流体在通过节流嘴的瞬间,与外界无热交换,内能的减少全部用于动能的增加。
内能消耗的结果使气液混合物流经油嘴瞬间的温度急剧下降,这就是为何节流易出现冻堵的缘故。
水合物冻堵现象发生在地面油嘴,而井下节流工具却能避免的原因主要有两点:①由于井内自下而上压力下降幅度较小,而井内温度下降幅度较大;②气液混合物经井下节流工具节流后在管线流动与外界油管、环空、套管、地层等所组成的多层壁之间进行热交换,温度升高。
而气液混合物经地面油嘴节流后在管线流动时与外界油管、空气之间进行热交换,温度不一定升高,地面与井下热交换场所的环境温度相差很大,特别是北方冬季。
因此,井下节流工具安装在一定的深度后,能达到防止井下冻堵的目的。
1.3、井下节流与自喷管举升效率的关系无论是从地下采出原油或天然气,多数情况下都伴随产出气、液两相或多相混合物,对油井,除油和地层水之外,尚有溶解气等。
对气井,液相物质可能是借助于气体膨胀而被带出地面的。
试验研究表明气体举液所需最小产量随井口压力的降低而减少。
因此采用井下节流工具节流时,由于井口压力下降很大,因而提高了气体的举液能力。
该实验研究结论在现场已得到证实。
一些井口压力较高的出水气井,在采用井下节流工具后,不仅提高了井口出气温度,消除了冻堵,而且增强了井的排水能力,若在套管环空定期注入泡排剂,效果更明显,能消除或减缓气井的井筒积液降低液面上升速度,从而延长了气井的生产周期。
井底节流不能改变产层的油气比,但是由于自喷管流速的增加,气体举液能力提高,气液相间滑脱减小。
因而沿垂直管的举升更为有效。
因此地面油气比相应稳定或略有下降。
这与小油管排液机理大致相同。
如果说小油管是以减小垂直管流通面积来获得举液所需气流速度,那么井下节流则是变压力能为速度能以获得气体排液最小流速的。
同样与连续气举或间歇气举排液机理大致相同。
表一:地面油嘴与井下节流工具的比较表1.4、地面油嘴与井下节流工具的比较在前面已提到地面油嘴与井下节流工具的一些异同点。
现将两者在流动特征、水动力学原理、热力学过程、地热环境功能与优点等方面作比较(见表一),综合上述各种情况,可将地面油嘴与井下节流工具最根本的异同点归纳为:(1)前者处于地面,后者处于井下,从热力学观点看,两种节流的绝热膨胀过程的环境不同,因而对地热条件的利用不同。
面确有些差异,即地面油嘴属于水平管喷嘴流动;井下节流工具属于垂直管喷嘴流动。
二、新型井下节流工具介绍2.1、应用范围:适用于Φ73mm油管的自喷油气井。
2.2、主要规格及技术参数1、井下节流工具总成长度310mm2、最大外径Φ54mm和Φ57mm两种,3、耐压25Mpa, 油嘴孔径Φ2-Φ11.0mm;4、投放防喷管(油管短节)长度1.0m,防喷管耐压50MPa;5、投放工具串长度1米:绳帽+加重杆+井下节流工具。
6、打捞工具串长度1.6米:绳帽+加重杆+打捞工具+井下节流工具。
2.3、现场应用(见表二:井下节流工具现场应用施工统计表)1、青海油田东气公司涩北气田采用地面集气站集中节流、加热、分离,井口至集气站注醇防冻的工艺进行生产。
所注甲醇为剧毒、费用高(单井每日注醇量140公斤,平均年注醇量50吨),而且高压注醇系统经常出故障,若两小时内不注醇生产,井口至集气站管线将发生冻堵,不及时发现将导致管线破裂事故的发生。
气井生产常因注醇故障而关井停产。
99年8月在涩4-10井进行投放井下节流工具获得成功。
该井地层压力为15MPa、地层温度为56℃、套压14.5 MPa,陶瓷油嘴嘴径Φ4.5mm,座封位置为1350米,配产每天5万方。
节流后油压为7MPa,日产气量为4.7万方,夏季井口温度最高达20℃,冬季井口温度最低为15℃,集气站温度为19—12℃。
邻井采用地面节流注醇防冻,一级节流后油压为7MPa、温度为-8℃。
涩4-10井采用井下节流工具生产,不需注醇防冻、不形成水合物冻堵,也未发生出砂等不正常现象。
,生产管理十分方便。
目前该井套压13.5 Mpa,日产气量5.8万方。
已累计生产22个月,累计生产天然气3300万方,节约甲醇92.4吨,节约费用13.8万元。
2、吐哈油田丘东采油厂温1井采用井场加热炉加热后节流,进集气站集中分离,节流角阀至集气站输压7.8 Mpa。
冬季加热炉至井口管线常出现冻堵,采用人工将加热炉热水浇在冻堵管线、角阀和压力表上,以解除冻堵。
工人劳动强度大、管理不方便。
2000年12月19日在温1井进行投放井下节流工具获得成功。
该井地层压力为18.3MPa、地层温度为75℃、套压14.5 MPa,设计井下节流工具嘴径Φ6.0mm,座封位置为1780米,配产每天6万方。
节流后油压为7.6MPa,日产气量为6万方、日产凝析油12吨。
冬季井口温度最低为27℃,地面盘管炉加热至60℃,进站正常生产,加热炉至井口管线再不出现冻堵。
4月份以后不用地面盘管炉加热,即可进站正常生产。
生产管理十分方便。
3、采油三厂小拐作业区拐1109采用地面节流、加热炉加热、间歇式开井生产,含水从2.4逐渐升高至67.5,气油比从478上升至2591,频繁出现井下及井口冻堵。
2000年4月13日在G1109井投入井下节流工具获得成功,井下节流工具坐封于1350m 处,地层温度28℃,陶瓷油嘴嘴径Ф4.0mm,套压16.5 Mpa,井下节流后油压1.5 Mpa、管线回压0.4 Mpa,投产初期日产气量4万方,井口温度7℃(高于水合物冻堵温度),开井生产至2002年2月累计采出液量14517吨,其中产油量13875吨、产水量1642吨。
累计产气量672万方。
含水从67.5下降至4,气油比从170下降至68,即使在冬季也能正常生产不冻堵和积液,油管内不结蜡。
井下节流工艺使该井出液由气大、水多、油少转为气小、水少、油多、能自喷生产不积液。
目前该井日产油15吨、日产水0.3吨、日产气1100方。
同时延长自喷期18个月。
4、石西作业区SH1143井基本数据如下:套压23 Mpa,油压23 Mpa,输压1.4 Mpa,采用地面节流、盘管炉加热,开井后管线产生冻堵,无法正常生产。
2000年9月投入井下节流工具获得成功,井下节流工具施工参数如下:长度360mm、外径Ф57.5mm、陶瓷油嘴嘴径Ф4.0mm、座封深度1800m。
2001年4月1日开井生产情况:套压19 Mpa、油压9.5 Mpa(井口角阀控制)、输压1.35 Mpa、日产气量3.6万方、日产凝析油5.6吨。
地面盘管炉加热,即可正常生产。
减少地面建设费用50万,缩短工期两个月。
5、采油五厂夏子街作业区夏1010井井深1500米,射孔下油管至700米出现井喷,抢坐井口。
地面节流生产,井场无加热炉,地面管线工作压力1.5 Mpa,开井后井口出现冻堵。
2000年10月在夏1010投入井下节流工具获得成功,井下节流工具坐封于700m处,陶瓷油嘴嘴径Ф3.5mm,套压8 Mpa,井下节流后油压2 Mpa、管线回压1.2 Mpa,投产初期日产气量0.8万方,井口温度8℃(高于水合物冻堵温度)。
在冬季没有加热炉的情况下,能正常生产不冻堵。
减少地面建设费用50万,缩短工期两个月。
6、井下节流工具打捞在青海涩北气田涩4-10井和涩4-14井用打捞井下节流工具两井次获得成功。
采油五厂夏子街作业区夏1094井用Ф2.6mm钢丝打捞井下节流工具二井次获得成功。
采油三厂小拐作业区G1154油井用Ф2.6mm钢丝打捞井下节流工具获得成功。
经济效益分析3.1、经济效益1、简化地面流程:新投产气井,不需井口加热或注醇防冻工艺,每口井减少投资达50万元。
2、去掉加热炉,减少生产耗气。
节约能源,每台炉每天耗气量为300方,按每年点炉300天计算,每台加热炉年耗气量为9万方,按每方天然气0.6元计算,单炉年节约费用5.4万元。
每井按两台炉计算可节约费用10.8万元。
3、不需注醇,单井每天注醇140公斤,按每年注醇360天计算,共减少注醇50.4吨,按每吨1500元计算,单井节约注醇费用7.56万元,减少注醇系统维修费用2.8万元,单井节约费用10.36万元。
3、方便管理,大大降低了采气工人的劳动强度。
去掉水套炉,也就不存在水套炉的加水、点火、巡回检查等一系列繁杂的日常管理,对边远、零散井其优越性更为明显,单井每年可减少管理费用10万元。
4、不用水套加热炉加温,使用井下节流工具生产,就能保证气井不发生冻堵并维持正常生产,减少解冻、停产费用10万元。
5、单井经济效益达85万元,按年施工30井次计算,共节约费用2550万元。
3.2、社会效益1、高气油比井采用井下节流工艺,能有效利用地层能量,延长自喷期,合理、高效地开发我局天然气资源。
2、简化地面流程:新投产气井,不设水套炉和节流装置,加快了气井工程建设,缩短工期,投产速度快。
3、可增强气井自身带液能力,提高产液量,天然气气流在生产管柱内经过井下节流工具节流后,压力降低,体积膨胀,提高了气体流速,增强了天然气的带液能力,使产液量较低的气井生产更趋平稳。