DH4512系列霍尔效应实验仪(改图)n
- 格式:doc
- 大小:1.72 MB
- 文档页数:17
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
DH-MF-SJ 组合式磁场综合实验仪使用说明书一、概述DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场 , 可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。
二、主要技术性能1、环境适应性:工作温度10 ~ 35℃;相对湿度 25 ~ 75%。
2、通用磁学测试仪2.1可调电压源: 0~15.00V、 10mA;2.2可调恒流源: 0~5.000mA 和 0~9.999mA可变量程,为霍尔器件提供工作电流,对于此实验系统默认为0-5.000mA 恒流源功能;2.3电压源和电流源通过电子开关选择设置,实现单独的电压源和电流源功能;2.4电流电压调节均采用数字编码开关;2.5数字电压表: 200mV、2V 和 20V 三档,4 位半数显,自动量程转换。
3、通用直流电源3.1 直流电源,电压0~30.00V 可调;电流 0~1.000A 可调;3.2 电流电压准确度: 0.5%±2 个字;3.3 电压粗调和细调,电流粗调和细调均采用数字编码开关。
4、测试架4.1底板尺寸: 780*160mm;4.2载物台尺寸: 320*150mm,用于放置螺线管和双线圈测试样品;4.3螺线管:线圈匝数 1800 匝左右 , 有效长度 181mm,等效半径 21mm;4.4双线圈:线圈匝数1400 匝( 单个 ) ,有效直径 72mm,二线圈中心间距 52mm;下表为电流与磁感应强度对应表( 双个线圈通电 ) :电流值( A)0.10.20.30.40.5中心磁感应强度( mT) 2.25 4.50 6.759.0011.254.5移动导轨机构:水平方向 0~60cm可调;垂直方向 0~36cm可调,最小分辨率 1mm;5、供电电源: AC 220V± 10%,总功耗: 60VA。
三、仪器构成及使用说明DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。
霍尔效应的研究及利用霍尔效应测磁场实验报告指导老师:姓名:学号:实验日期:一、实验目的1、理解霍尔效应的原理,研究霍尔效应的应用;2、掌握DH4501N型三维亥姆霍兹线圈磁场实验仪的用法;3、利用霍尔效应法测量磁场大小,并且研究亥姆霍兹线圈的磁场分布规律;二、实验仪器DH4501N三维亥姆霍兹线圈磁场实验仪(仪器由信号源和测试架两大部分组成)A.仪器面板为三大部分,见下图(1) 。
(1)实验仪面板图1、励磁电流I M输出:前面板右侧,三位半数显电流表,显示输出电流值I M(A),直流恒流输出可调,接到测试架的励磁线圈,提供实验用的励磁电流。
2、霍尔片工作电流I S输出:前面板左侧,三位半数显电流表,显示输出电流值I S(mA),直流恒流输出可调,用于提供霍尔片的工作电流。
以上两组直流恒源只能在规定的负载范围内恒流,与之配套的“测试架”上的负载符合要求。
若要作它用时需注意。
提醒:只有在接通负载时,恒流源才有电流输出,数显表上才有相应显示。
3、V H、Vσ测量输入:前面板中部,三位半数显表显示输入值(mV),用于测量霍尔片的霍尔电压V H及霍尔片长度L方向的电压降Vσ。
使用前将两输入端接线柱短路,用调零旋钮调零。
提醒:I S霍尔片工作电流输出端与V H、Vσ测量输入端,连接测试架时,与测试架上对应的接线端子一一对应连接(红接线柱与红接线柱相连,黑接线柱与黑接线柱相连)。
励磁电流I M输出端连接到测试架线圈时,可以选择接单个线圈与双个线圈。
接双个线圈时,将两线圈串联,即一个线圈的黑接线柱与另一线圈的红接线柱相连。
另外两端子接至实验仪的I M端。
4、二个换向开关分别对励磁电流I M,工作电流I S进行正反向换向控制。
5、一个转换开关对霍尔片的霍尔电压V H与霍尔片长度L方向的电压降Vσ测量进行转换控制。
B. DH4501N三维亥姆霍兹线圈磁场测试架图(2)三维亥姆霍兹线圈磁场实验仪测试架本测试架的特点是三维可靠调节,见图(2)。
霍尔效应测磁场霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
【实验目的】1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。
3.学习利用霍尔效应测量磁感应强度B及磁场分布。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
【实验原理】霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。
由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、霍尔电流等物理量。
二、实验原理当电流 I 沿垂直于外磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场方向的两侧面 a、b 之间会产生一个电势差 UH,这一现象称为霍尔效应。
UH 称为霍尔电压。
霍尔效应是由于运动电荷在磁场中受到洛伦兹力的作用而产生的。
设半导体薄片的厚度为 d,宽度为 b,载流子浓度为 n,载流子的电荷量为 q,它们定向移动的速度为 v,则有:洛伦兹力 F = qvB当载流子受到的洛伦兹力与电场力平衡时,有:qE = qvB其中 E 为电场强度,由于电场强度 E = UH / b,所以:UH = vBb又因为电流 I = nqbdv,所以:v = I /(nqbd)将 v 代入 UH = vBb 中,可得:UH = BI /(nqd)上式表明,霍尔电压 UH 与电流 I 和磁感应强度 B 成正比,与薄片的厚度 d 和载流子浓度 n 成反比。
通过测量霍尔电压 UH、电流 I 和磁感应强度 B,可以计算出霍尔系数 RH = 1 /(nq),从而确定载流子的浓度 n。
三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、数字电压表等。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪、直流电源、数字电压表等仪器。
确保连接正确无误,接触良好。
2、调整仪器参数打开直流电源,调节电流输出为一定值,例如 5mA。
同时,使用特斯拉计测量磁场强度,并记录下来。
3、测量霍尔电压将霍尔元件放入磁场中,分别测量不同磁场强度下的霍尔电压。
改变磁场方向,再次测量霍尔电压,以消除副效应的影响。
4、改变电流方向改变电流的方向,重新测量霍尔电压,进一步减小测量误差。
5、数据记录与处理将测量得到的数据记录在表格中,包括电流 I、磁场强度 B、霍尔电压 UH 等。
根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
实验报告霍尔效应一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中,当在薄片的纵向通以电流时,在薄片的横向两侧会产生一个电位差,这种现象称为霍尔效应。
这个电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的产生是由于运动的载流子在磁场中受到洛伦兹力的作用而发生偏转,在薄片的两侧积累了正负电荷,从而形成了电场。
当电场力与洛伦兹力达到平衡时,电荷的积累停止,霍尔电压达到稳定值。
2、霍尔电压的计算设半导体薄片的厚度为$d$,载流子的浓度为$n$,电流为$I$,磁感应强度为$B$,则霍尔电压$U_H$ 可以表示为:\U_H =\frac{1}{nq}IBd\其中,$q$ 为载流子的电荷量。
3、测量磁场如果已知半导体薄片的参数(如载流子浓度$n$、薄片厚度$d$)以及通过的电流$I$,测量出霍尔电压$U_H$,就可以计算出磁感应强度$B$:\B =\frac{nqdU_H}{I}\三、实验仪器1、霍尔效应实验仪,包括霍尔元件、电磁铁、电源、电压表、电流表等。
2、特斯拉计,用于测量磁场强度。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪的各个部分,确保连接正确无误。
2、调整磁场打开电磁铁电源,逐渐增加电流,使磁场强度逐渐增大。
使用特斯拉计测量磁场强度,并记录下来。
3、测量霍尔电压(1)保持磁场强度不变,改变通过霍尔元件的电流$I$,分别测量不同电流下的霍尔电压$U_H$,记录数据。
(2)保持电流$I$ 不变,改变磁场强度,测量不同磁场强度下的霍尔电压$U_H$,记录数据。
4、数据处理(1)根据测量的数据,绘制霍尔电压$U_H$ 与电流$I$ 的关系曲线。
(2)绘制霍尔电压$U_H$ 与磁场强度$B$ 的关系曲线。
(3)根据实验原理中的公式,计算出半导体薄片的载流子浓度$n$ 和薄片厚度$d$。
毕业设计题目:霍尔效应测试仪目录1绪论 (1)1.1霍尔效应的发现 (1)1.2霍尔效应的应用 (1)1.3霍尔效应的应用方面的展望 (1)1.3.1新的霍尔元件结构 (1)1.3.2微型化 (2)1.3.3高灵敏度 (2)2霍尔效应测试仪工作原理 (2)3软件部分 (5)3.1流程图 (5)3.2软件程序 (6)4致谢 (1)5参考文献 (2)1绪论1.1霍尔效应的发现1879 年, 作为美国普多金斯大学研究生的霍尔, 在研究载流导体在磁场中的受力性质时, 发现了霍尔效应. 当一电流垂直于外磁场方向而流过导体时, 在垂直于电流和磁场的方向导体的两侧会产生一电势差, 这种现象称为霍尔效应, 而所产生的电势差称为霍尔电压.霍尔元件是根据霍尔效应原理制成的磁电转换元件.如图 1 所示.将一块半导体薄片放在垂直于其表面的磁场 B 中, 在其1, 2, 3, 4 侧面分别引出两对接线, 当沿4, 3 方向( x 方向) 通以电流I 时, 就会在1, 2 两面对称的位置上产生霍尔电压V H:V H = I B/ ( qnd ) = K HI B 式中K H = 1/ ( gnd ) 称为霍尔元件灵敏度, 单位为V / A T ; V H 称为霍尔电压, 若知道了霍尔元件的K H, 测出I 和V H, 就可算出磁场B 的大小, 这就是霍尔元件测磁场的基本原理。
1.2霍尔效应的应用定义霍尔电阻为横向的霍尔电势与外加的纵向电流之比, 可以很容易地发现, 在经典的霍尔效应里, 霍尔电阻与外加磁场的磁感应强度成正比关系. 利用霍尔效应原理可以测量某点或缝隙中的磁场、半导体中载流子迁移率和浓度及判别材料的导电类型; 此外, 还可利用霍尔效应制成多种测量器件, 称为霍尔器件, 例如测量磁场磁感应强度的特斯拉计、测量电流的电流计、测量电功率的瓦特计、测量磁场方向的磁罗盘和单向传递信息的隔离器等. 此外, 利用霍尔效应原理还可以测量时间、长度变化等物理量.1.3霍尔效应的应用方面的展望1.3.1新的霍尔元件结构常规霍尔元件要求磁场垂直于霍尔元件,且在整个霍尔元件上是均匀磁场。
【数据处理】 (100分)1.保持励磁电流I M =0.45A 不变,测绘U H -I S 曲线,计算R H 和载流子浓度n 。
◆ (10)根据相关的实验数据,绘制U H -I S 曲线,图上标注清楚坐标轴等相关信息。
◆ (10) 由图知或求斜率k 。
(excel 作图,可由图直接显示斜率;手工制图,需图上取点求斜率) k =U H /I S =2.6099 ◆ (10) 由斜率求霍尔系数R H (m 3/C)。
R H =U H ·d / (I S ·B) =k ·d /B =0.0060◆ (10)据(+I S +I M )时小磁针N 极指向及霍尔电压U H 的正负判断样品导电类型 P 。
◆ (10) 载流子的浓度n (1021/m 3)。
n =1/(R H ·|e| ) = 1.042 ◆ (7)由测量条件及U H -I S 曲线,简述可得到什么实验结论?当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。
2.由零磁场下取I S =0.10mA 时测的不等势电压U AC ,求电导率σ;求载流子迁移率µ。
◆ (10) 样品电导率σ(S /m)。
σ =(Is·L )/(U AC ·b·d ) = 9.56 ◆ (10) 载流子迁移率µ(m 2/(V·s)) 。
μ=σ·R H =0.057y = 2.6099x -0.0459R² = 0.999524681012140246I U H (m V )IS (mA)图表标题系列1线性(系列1)3.保持样品工作电流I S=4.50mA不变,测绘U H-I M曲线。
◆(10)根据相关的实验数据,绘制U H-I M曲线,图上标注清楚坐标轴等相关信息。
通过霍尔效应测量磁场【实验目的】了解霍尔效应的实验原理,通过用霍尔元件测量磁场,判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,以及了解霍尔效应测试中的各种副效应及消除方法。
霍尔效应和霍尔法测量磁场 DH4512系列霍尔效应实验仪 (实验讲义)
使 用 说 明 书
杭州大华科教仪器研究所 杭州大华仪器制造有限公司 DH4512型 霍尔效应实验仪使用说明 一、概 述 DH4512型霍尔效应实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 DH4512采用双个圆线圈产生实验所需要的磁场(对应实验一内容); DH4512B型采用螺线管产生磁场(对应实验一、实验二的内容)。
图1-1 DH4512 霍尔效应双线圈实验架平面图 图1-2 DH4512 霍尔效应螺线管实验架平面图 二、仪器构成 DH4512型霍尔效应实验仪由实验架和测试仪二个部分组成。图1-1为DH4512型霍尔效应双线圈实验架平面图,图1-2为DH4512型霍尔效应螺线管实验架平面图;图1-3为DH4512型霍尔效应测试仪面板图。
三、主要技术性能 1、环境适应性:工作温度 10~35℃; 相对湿度 25~75%。 2、DH4512型霍尔效应实验架(DH4512、DH4512A) 二个励磁线圈:线圈匝数1400匝(单个); 有效直径72mm;二线圈中心间距 52mm 下表为电流与磁感应强度对应表(双个线圈通电): 电流值(A) 0.1 0.2 0.3 0.4 0.5 中心磁感应强度(mT) 2.25 4.50 6.75 9.00 11.25 移动尺装置:横向移动距离70mm,纵向移动距离25mm,距离分辨率0.1mm。 霍尔效应片类型:N型砷化镓半导体 3、DH4512型霍尔效应螺线管实验架(DH4512A 、DH4512B): 线圈匝数1800匝,有效长度181mm,等效半径21mm。 移动尺装置:横向移动距离235mm,纵向移动距离20mm,距离分辨率0.1mm 霍尔效应片类型:N型砷化镓半导体 4、DH4512型霍尔效应测试仪 DH4512型霍尔效应测试仪主要由0~0.5A恒流源、0~3mA恒流源及20mV量程三位半电压表组成。 a)霍尔工作电流用恒流源Is 工作电压24V,最大输出电流3mA,3位半数字显示,输出电流准确度为0.5%。 b)磁场励磁电流用恒流源IM 工作电压24V,最大输出电流0.5A,3位半数字显示,输出电流准确度为0.5%。 c)霍尔电压测量用直流电压表
图1-3 DH4512系列霍尔效应测试仪面板 19.99mV量程,3位半LED显示,分辨率10μV, 测量准确度为0.5% 5、电源 AC 220V±10%,功耗:50VA 6、外形尺寸 测试架:320×270×250mm,测试仪:320×300×120mm 四、使用说明 1、测试仪的供电电源为交流220V,50Hz,电源进线为单相三线。 2、电源插座安装在机箱背面,保险丝为1A,置于电源插座内,电源开关在面板的左侧。 3、实验架各接线柱连线说明如图1-3。 1) 连接到霍尔片的工作电流端(红色插头与红色插座相联, 黑色插头与黑色插座相联) 2) 连接到测试仪上霍尔工作电流端(红色插头与红色插座相联, 黑色插头与黑色插座相联) 3) 连接到测试仪上霍尔电压输入端(红色插头与红色插座相联, 黑色插头与黑色插座相联) 4) 用一边是分开的接线插、一边是双芯插头的控制连接线与测试仪背部的插孔相连接(红色插头与红色插座相联, 黑色插头与黑色插座相联) 5) 连接到霍尔片霍尔电压输出端(红色插头与红色插座相联, 黑色插头与黑色插座相联)
图1-4 实验架各接线柱连线说明图 6) 方向切换开关 7) 连接到磁场励磁线圈端子,出厂前已在内部连接好 8) 连接到测试仪磁场励磁电流端(红色插头与红色插座相联, 黑色插头与黑色插座相联) 4、测试仪面板上的“Is输出”“IM输出”和“VH输入”三对接线柱应分别与实验架上的三对相应的接线柱正确连接。 5、将控制连接线一端插入测试仪背部的二芯插孔,另一端连接到实验架的控制接线端子上。 6、 仪器开机前应将Is、IM调节旋钮逆时针方向旋到底,使其输出电流趋于最小状态,然后再开机。 7、仪器接通电源后,预热数分钟即可进行实验。 8、 “Is调节”和“IM调节”分别来控制样品工作电流和励磁电流的大小,其电流随旋钮顺时针方向转动而增加,细心操作。 9、 关机前,应将“Is调节”和“IM调节”旋钮逆时针方向旋到底,使其输出电流趋于零,然后才可切断电源。 10 、继电器换向开关的使用说明 单刀双向继电器的电原理如图1-5所示。当继电器线包不加控制电压时,动触点与常闭端相连接;当继电器线包加上控制电压时,继电器吸合,动触点与常开端相连接。
图1-5 继电器工作示意图 实验架中,使用了三个双刀双向继电器组成三个换向电子闸刀,换向由接钮开关控制。电原理图如图1-5所示。 当未按下转换开关时,继电器线包不加电,常闭端与动触点相连接;当按下按钮开关时,继电器吸合,常开端与动触点相连接,实现连接线的转换。由此可知,通过按下、按上转换开关,可以实现与继电器相连的连接线的换向功能。 五、仪器使用注意事项 1.当霍尔片未连接到实验架,并且实验架与测试仪未连接好时,严禁开机加电,否则,极易使霍尔片遭受冲击电流而使霍尔片损坏。 2.霍尔片性脆易碎、电极易断,严禁用手去触摸,以免损坏!在需要调节霍尔片位置时,必须谨慎。 3.加电前必须保证测试仪的“Is调节”和“IM调节”旋钮均置零位(即逆时针旋到底),严防Is、IM电流未调到零就开机。 4.测试仪的“Is输出”接实验架的“Is输入”,“IM输出”接“IM输入”。 决不允许将“IM输出”接到“Is输入”处,否则一旦通电,会损坏霍尔片! 5.为了不使通电线圈过热而受到损害,或影响测量精度,除在短时间内读取有关数据,通过励磁电流IM外,其余时间最好断开励磁电流。 6.注意:移动尺的调节范围有限!在调节到两边停止移动后,不可继续调节,以免因错位而损坏移动尺。 六、仪器成套性
1、DH4512霍尔效应实验仪包括以下部分: a DH4512霍尔效应实验仪测试仪 b DH4512霍尔效应实验仪实验架(双线圈产生磁场,包含霍尔片) c 实验讲义 1份 d 交流电源线 1根 e 专用控制插座线 1根 f 测试线 6根 2、DH4512A霍尔效应实验仪包括以下部分: a DH4512霍尔效应实验仪测试仪 b DH4512霍尔效应实验仪实验架(双线圈产生磁场,包含霍尔片) c DH4512螺线管霍尔效应实验架(包含霍尔片) d 实验讲义 1份 e 交流电源线 1根 f 专用控制插座线 1根 g 测试线 6根 3、DH4512B霍尔效应实验仪包括以下部分: a DH4512霍尔效应实验仪测试仪 b DH4512螺线管霍尔效应实验架(包含霍尔片) c 实验讲义 1份 d 交流电源线 1根 e 专用控制插座线 1根 f 测试线 6根 实验一 霍尔效应实验和霍尔法测量磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
[实验目的] 1、霍尔效应原理及霍尔元件有关参数的含义和作用 2、测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is、磁感应强度B及励磁电流IM之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、学习用“对称交换测量法”消除负效应产生的系统误差。
[实验仪器] DH4512系列霍尔效应实验仪 [实验原理] 霍尔效应从本质上讲,是运动的带 电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图2-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载 图2-1 流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力 f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场EH,相应的电势差称为霍尔电势VH。 设电子按均一速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-eVB 式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为: f EHHeVeEl 式中:EH为霍尔电场强度,VH为霍尔电势,l为霍尔元件宽度 当达到动态平衡时: f L=-f E VB=VH/l (1) 设霍尔元件宽度为l,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为 ldVneIs (2)
由(1)、(2)两式可得:
dIsBRdIsBnelEVHHH1 (3)
即霍尔电压VH (A、B间电压)与Is、B的乘积成正比,与霍尔元件的厚度成反比,比例系数 neRH1称为霍尔系数(严格来说,对于半导体材料,在弱磁场下应引入一个修正因子 ,从而有 ),它是反映材料霍尔效应强弱的重要参数,根据材料的电导率ne的关系,还可以得到: pRH/或HR (4) 式中:为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用N型半导体材料。 当霍尔元件的材料和厚度确定时,设: nedldRKHH// (5) 将式(5)代入式(3)中得: IsBKVHH (6)