基于步进电动机的引信安全系统控制电路
- 格式:pdf
- 大小:291.77 KB
- 文档页数:4
步进电机的控制原理步进电机是一种高精度的电动执行器,具有定位准确、不需反馈器和转矩、速度和位置控制的特点,广泛用于数码设备、计算机和机器人控制等领域。
步进电机的控制原理包括三部分:输入信号、驱动电路和电机转动。
一、输入信号步进电机的输入信号有两种:脉冲信号和方向信号。
脉冲信号是由控制器发送给驱动电路的,用来控制电机的转动步数和速度。
步进电机的每一步运动需要一定的脉冲信号,具体步数由控制器编程决定。
方向信号则表示电机转动的正、反方向,一般由控制器通过电平高低来控制。
输入信号是步进电机运动的基础,只有正确的输入信号才能实现精准控制。
二、驱动电路步进电机的控制需要依赖驱动电路,一般为双H桥驱动电路。
它能够根据输入信号的变化,控制步进电机的相序和电流大小,从而实现电机的精准控制。
驱动电路是整个控制系统的核心部分,不同类型的步进电机需要不同的驱动方式,因此制定相应的驱动电路是十分重要的。
三、电机转动步进电机的转动是由驱动电路提供的电流产生的磁场、轴承和转子间的相互作用实现的。
不同类型的步进电机其转动的方式也不同,如单相、两相、五相、六相等。
不同类型的步进电机也需要不同的驱动方式,否则会导致控制不准确或失步。
综上所述,步进电机的控制原理需要在三个方面进行开展:输入信号、驱动电路和电机转动。
只有以正确的方式输入信号,配合正确的驱动电路和电机类型,才能实现精准的电机控制。
在实际应用中,我们需要根据具体情况来选择不同类型的步进电机和相应的控制方式,以实现最优控制效果。
基于L297+L298步进电机驱动与控制采用L297+L298构成的步进电机驱动如图5.5.3所示。
PCB图如图5.5.14所示。
L298N可以驱动直流电机和两个二相电机,也可以驱动一个四相电机,可直接通过电源来调节输出电压。
最大输入电流DC 2A,最高输入电压为DC 50V。
最大输出功率25W。
L297译码器能将控制器的控制信号译成所需的相序,再将产生的四相A、B、C、D或抑制线INH1和INH2输入到L298N进行功率放大。
(1)隔离电路设计一般步进电机转速不超过1000r/s,查询资料可得TLP521响应10μs。
计算公式如下:f =v=则选用TL521系列即可达到设计要求,如需提高电机转速,则只需将CLK端的光耦更换为高速光耦。
图中R7~R11为限流电阻,阻值为1K。
光耦的引脚端2、4、6、8、10分别接微控制器的4个I/O 12。
光耦的引脚端20、18、16、14、12与L297连接;当控制I/O口输出低电平时,光耦内部发光二极管导通发光,使光敏三极管导通从而使光耦的引脚端19、17、15、13、11输出低电平,这样就通过光耦将控制器与驱动电路相隔离,起到了保护微控制器的作用。
(2)驱动电路设计步进电机驱动电路采用L297+L298N构成。
L297的基准电压端V REF输入电压的大小控制步进电机输入电流,为保证步进电机最大的额定电流1.5A,如果选择V REF为1V,则要求R12~R15选用10/2W 的电阻。
L297的引脚端功能如下:引脚端10(使能端EN)为芯片的片选信号,高电平有效;引脚端20(复位RST),低电平有效;引脚端19(HALF/FULL)和引脚端17(CW/CCW)都通过上拉电阻链接到高电平;引脚端18(时钟输入CLK)的最大输入时钟频率不能超过5KHz,控制时钟的频率,即可控制电机转动速率;引脚端19(HALF/FULL)决定电机的转动方式,HALF/FULL=0,电机按整步方式运转;HALF/FULL=1,电机按半步方式运转;引脚端17(CW/CCW)控制电机转动方向;CW/CCW=1,电机顺时针旋转;CW/CCW=0,电机逆时针旋转。
基于STM32的步进电机控制系统沈阳航空航天大学2010年6月摘要本文的主要工作是基于STM32步进电机控制系统的设计。
随着越来越多的高科技产品逐渐融入了日常生活中,步进电机控制系统发生了巨大的变化。
单片机、C语言等前沿学科的技术的日趋成熟与实用化,使得步进电机的控制系统有了新的的研究方向与意义。
本文描述了一个由STM32微处理器、步进电机、LCD显示器、键盘等模块构成的,提供基于STM32的PWM细分技术的步进电机控制系统。
该系统采用STM32微处理器为核心,在MDK的环境下进行编程,根据键盘的输入,使STM32产生周期性PWM信号,用此信号对步进电机的速度及转动方向进行控制,并且通过LCD显示出数据。
结果表明该系统具有结构简单、工作可靠、精度高等特点.关键词:STM32微处理器;步进电机;LCD显示;PWM信号;细分技术AbstractAs well as the high-tech products gradually integrated into the daily life,servo control system has undergone tremendous changes.SCM and C language of the frontier disciplines such mature technology and practical,steering control system is a new research direction and meaning.This paper describes a STM32 microprocessors, steering, LCD display and keyboard, Based on the STM32 servo control system of PWM signal,This system uses STM32 microprocessor as the core, MDK in the environment, according to the keyboard input , STM32 produce periodic PWM signal, with this signal to the velocity and Angle of steering gear control, and through the LCD display data. The features of the simple hardware, stable operation and high precision are incarnated in the proposed system.Keywords:STM32 microprocessors; Steering system; LCD display;pulse width modulation signal;Subdivide technology目录第1章绪论 (1)1.1 课题背景 (1)1.2 课题目标及意义 (2)1.3 课题任务及要求 (3)1.4 课题内容分析与实现 (3)1.5 课题论文安排介绍 (3)第2章步进电机控制系统的总体方案论证 (5)2.1 总体方案 (5)2.2 步进电机控制系统硬件方案 (5)2.3 步进电机控制系统软件方案 (6)第3章系统的硬件设计 (7)3.1 STM32开发板简介 (7)3.2 步进电机模块 (8)3.2.1 步进电机驱动模块 (8)3.2.2 步进电机驱动控制模块 (10)3.2.3 步进电机的一些特点 (11)3.2.4 步进电机的一些基本参数 (12)3.2.5 步进电机的驱动方法 (13)3.3 A/D转换模块 (13)3.3.1 模拟/数字转换(ADC)介绍 (13)3.3.2 模拟/数字转换(ADC)主要特性 (13)3.3.3 模拟/数字转换(ADC)功能描述 (14)3.4 LCD显示模块 (16)3.5 硬件电路 (17)第4章控制系统软件设计 (18)4.1 控制系统软件设计步骤 (18)4.2 Keil for ARM软件开发环境 (19)4.3 PWM细分技术简介 (20)4.3.1 PWM细分技术简介 (20)4.3.2 PWM细分技术驱动原理 (20)4.3.3 PWM细分调压调速原理 (22)4.4 主程序设计 (23)4.5 各模块程序设计 (25)4.5.1系统初始化 (25)4.5.2A/D转换程序设计 (26)4.5.3 PWM细分程序设计 (29)4.5.4电机控制程序设计 (30)4.5.5 LCD显示程序设计 (32)第5章步进电机控制系统综合调试与分析 (33)5.1 硬件电路调试 (33)5.2 软件电路调试 (34)5.3 系统联调结果与分析 (34)结论 (35)社会经济效益分析 (36)参考文献 (37)致谢 (38)附录I 电路原理图 (39)附录Ⅱ程序清单 (41)附录IV 元器件清单 (56)第1章绪论随着电力电子技术、微电子技术、控制理论以及永磁材料的快速发展,步进电机得以迅速发展。
基于PLC步进电机控制系统的设计基于PLC步进电机控制系统的设计摘要随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。
研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。
使转轴步进一个步距角增量,输出角位移与输入脉冲数成正比,转速与输入脉冲频率成正比。
步进电机的控制方式简单,属于开环控制,且无累积定位误差,有较高的定位精度,而PLC作为一种工业控制微机,是实现电机一体化的有力工具,因此基于PLC的步进电机控制技术已广泛用于数字定位控制中。
本设计将步进电机控制系统用于控制数控机床滑台。
本控制系统的设计,由硬件设计和软件设计两部分组成。
其中,硬件设计主要包括步进电机的工作原理、步进电机的驱动电路设计、PLC的输入输出特性、PLC的外围电路设计以及PLC与步进电机的连接与匹配等问题的实现。
软件设计包括主程序以及各个模块的控制程序,最终实现对步进电机转动方向及转动速度的控制。
本系统具有智能性、实用性及可靠性的特点。
关键词:步进电机、PLC、转速控制、方向控制Stepping motor control system based on PLCAbstractWith the development of microelectronics and computer technology, the stepper motor is increasing demanded, which is widely used in printers, electric toys and other consumer products, and CNC machine tools, industrial robots, medical equipment and other electrical machinery products, and is applied in the national economy in various fields. Researching of stepper motor control system to improve the control accuracy and response speed, energy conservation is so important.Stepper motor is a device which will transform electrical pulses into mechanical angular displacement so that Shaft of each pulse to a step angle stepping increment, SO output angular displacement is proportional to the input pulses, speed is proportional to the input pulse speed and speed is proportional to input pulse frequency. Stepper motor control is simple, is open-loop control, and no accumulation of positioning error, a high positioning accuracy,and the PLC as an industrial control computer, is a powerful tool for the integration of the motor, Therefore, the stepper motor control based on PLC technology has been widely used for digital positioning control.The control system consists of hardware and software design of two parts. Among them, the hardware design includes the working principle of stepper motor, stepper motor drive circuit design, PLC input and output characteristics, PLC and PLC external circuit connection with the stepper motor and matching Problem. Software design, including the main program and each module of the control program, ultimately realizes on the stepper motor rotation direction and rotation speed control This system has the intelligence, practicality and reliability features.Keywords:Stepper motor, PLC, speed control, direction control目录基于PLC步进电机控制系统的设计 (I)摘要 (I)Stepping motor control system based on PLC ................................ I I Abstract .................................................................. I I 第一章绪论 (1)1.1 PLC的发展及应用前景 (1)1.1.1 可编程控制器(PLC)的发展趋势. 11.1.2 可编程控制器(PLC)的应用领域. 11.1.3 PLC的应用前景 (2)1.2 提出问题 (2)1.2.1 机床滑台类型及控制 (3)1.2.2 本文的工作目的及意义 (4)1.2.3 本文的主要目的及意义 (4)1.3 系统功能 (4)第二章 PLC概述 (5)2.1 PLC的产生与发展 (6)2.1.1 PLC的产生及定义 (6)2.1.2 PLC的发展 (7)2.2 PLC的特点与功能 (8)2.2.1 PLC的特点 (8)2.2.2 PLC的功能 (9)2.3 PLC的结构 (10)2.4 PLC的编程语言 (10)2.4.1 梯形图 (10)2.4.2 语句表 (13)2.4.3 顺序功能图 (13)第三章步进电机概述 (14)3.1 步进电机工作原理 (14)3.2 步进电机的特性 (14)3.3 步进电机的分类 (15)3.4 步进电机驱动器的直流供电电源的确定 (16)3.5 步进电机使用时的注意事项 (17)3.6 步进电机驱动器的细分原理及一些相关说明 (17)3.7 反应式步进电机 (18)3.8本设计所用步进电机 (21)4.1数控滑台的控制方法 (22)4.1.2进给速度控制 (22)4.1.3 进给方向控制 (23)4.2 PLC控制系统设计 (23)4.3 PLC控制系统的接地方法 (24)4.4步进电机的控制 (24)4.4.1步进电机的起停控制 (24)4.4.2步进电机的加减速控制 (24)4.4.3 步进电机的换向控制 (26)4.5 本章小结 (26)第五章数控滑台的设计 (27)5.1总体设计方案的确定 (27)5.2 机械部分设计计算 (28)第六章设计硬件电路 (43)6.1 硬件电路总体分析 (43)6.2总体设计分析图 (44)6.3电路总体设计 (44)6.4步进电机的驱动电路 (46)第七章软件设计 (52)7.1 可编程控制器(PLC)的工作原理 (52)7.2存储空间的计算 (56)7.3可编程控制器(PLC)提供的编程语言 (56)7.4 PLC编程中难点介绍 (58)7.4.1驱动电源的特殊性 (59)7.4.2用功能指令构建控制程序的有关问题597.5 PLC梯形图 I/O分配表 (60)第8章 GX Developer软件程序模拟运行 (61)8.1 程序运行图文说明 (61)结论 (80)附录 (82)1、流程图 (82)2、控制系统设计步骤 (83)参考文献 (85)1、参考资料 (85)2、参考论文 (87)外文文献 (89)中文翻译 (93)致谢 (97)第一章绪论1.1 PLC的发展及应用前景PLC 工艺自从出现一直到今天,已经由最初的接线逻辑发展到了储存逻辑,目前被大量的应用到众多的行业之中。
基于stm32的步进电机控制系统设计与实现基于STM32的步进电机控制系统设计与实现1. 概述步进电机是一种非常常见的电动机,在许多自动化系统和工控设备中得到广泛应用。
它们具有精准的定位能力和高效的控制性能。
本文将介绍如何使用STM32微控制器来设计和实现步进电机控制系统。
2. 硬件设计首先需要确定步进电机的规格和要求,包括步距角、相数、电流和电压等。
根据步进电机的规格,选择合适的驱动器芯片,常见的有L298N、DRV8825等。
接下来,将选定的驱动器芯片与STM32微控制器相连。
通常,步进电机的控制信号需要使用到微控制器的GPIO引脚,同时由于步进电机的工作电流比较大,需要使用到微控制器的PWM输出信号来调节驱动器芯片的电流限制。
除此之外,还需要一个电源电路来提供驱动器和步进电机所需的电源。
可以选择使用一个电源模块,也可以自行设计电源电路。
3. 软件设计软件设计是步进电机控制系统的核心部分,主要包括步进电机驱动代码的编写和控制算法的实现。
首先,需要在STM32的开发环境中编写步进电机驱动代码。
根据所选的驱动器芯片和步进电机规格,编写相应的GPIO控制代码和PWM输出代码。
同时,可以添加一些保护性的代码,例如过流保护和过热保护等。
接下来,需要设计和实现步进电机的控制算法。
步进电机的控制算法通常是基于位置控制或速度控制的。
对于位置控制,可以使用开环控制或闭环控制,闭环控制通常需要使用到步进电机的编码器。
对于开环控制,可以通过控制步进电机的脉冲数来控制位置。
通过控制脉冲的频率和方向,可以实现步进电机的转动和停止。
这种方法简单直接,但是定位精度有限。
对于闭环控制,可以使用PID控制算法或者更高级的控制算法来实现位置控制。
通过读取步进电机的编码器反馈信号,可以实时调整控制输出。
这种方法可以提高定位精度和抗干扰能力,但是算法实现相对复杂。
4. 系统实现在完成硬件设计和软件设计后,可以进行系统的调试和实现。
(完整版)基于PLC的步进电动机的控制系统毕业设计基于PLC的步进电动机的控制系统学院:继续教育学院专业:机械设计制造及自动化学生姓名:吴延东指导教师:张辉2014 年8 月毕业设计(论文)答辩成绩评定专业毕业设计(论文)第答辩委员会于年月日审定了班级学生的毕业设计(论文)。
设计(论文)题目:设计(论文)共页。
毕业设计(论文)答辩委员会意见:成绩:专业毕业设计(论文)答辩委员会主任委员(签字)摘要本课题使用PLC为西门子S7-200 CN系列PLC-CPU224XPCN AC/DC/RLY。
其基本情况为:CPU224XPCN,24VDC电源,24VDC 输入,24VDC输出,6ES7 214-2AD23-0XB8,集成14输入/10输出共24个数字量I/O点,2输入/1输出共3个模拟量I/O点,可连接7个扩展模块,最大扩展至168路数字量I/O点或38路模拟量I/O点。
22K字节程序和数据存储空间,6个独立的高速计数器(100KHz),2个100KHz的高速脉冲输出,4个上升沿和4个下降沿边沿中断,2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。
本机还新增多种功能,如内置模拟量I/O,位控特性,自整定PID功能,线性斜坡脉冲指令,诊断LED,数据记录及配方功能等,是具有模拟量I/O 和强大控制能力的新型CPU,用于控制步进电机或伺服电机实现定位任务。
关键词:步进电动机PLC 正反转与加减速控制Ⅰ目录第1章引言 (1)1.1 PLC的介绍 (1)1.2步进电机的介绍 (1)第2章步进电机 (2)2.1步进电机工作原理 (2)2.1.1步进电机结构 (2)2.1.2旋转过程 (4)2.1.3力矩 (5)2.1.4步进电机的分类 (5)3.2 步进电机控制方式及运行方式 (6)3.3 脉冲和角度的关系 (7)第3章步进电机控制系统设计 (8)3.1步进电机模拟控制 (8)3.1.1控制流程分析 (8)3.1.2 I/O 分配表 (9)3.2步进电机流程图 (10)3.3步进电机接线图 (11)3.4梯形图的设计 (12)第4章结论 (23)参考文献 (24)致谢 (25)Ⅱ第1章引言1.1 PLC的介绍可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。
文章标题:基于51单片机的步进电机红外控制系统的设计引言在现代科技发展迅速的时代,控制系统已经被广泛应用于各个领域。
其中,基于51单片机的步进电机红外控制系统的设计,不仅在工业领域有着重要的作用,同时也在家电领域、智能家居等方面得到了广泛的应用。
本文将从步进电机控制系统的设计原理、红外控制的基本概念以及基于51单片机的系统设计方案等方面展开深入探讨。
一、步进电机控制系统的设计原理步进电机是一种将电脉冲信号转换为机械位移的执行元件,其控制系统设计原理是核心。
以步进电机为执行元件的控制系统通常包括电脉冲发生电路、电流驱动电路、位置控制逻辑电路以及接口电路等模块。
在系统设计中,需要考虑步进电机的类型、工作方式、转动角度以及控制精度等因素,以选择合适的控制方案和相关元器件。
针对步进电机的控制系统设计,首先需要从硬件电路和软件控制两个方面进行综合考虑。
硬件方面需要设计合适的脉冲发生电路和驱动电路,并根据具体场景考虑相关的接口电路,以实现步进电机的控制和驱动。
而软件控制方面,则需要编写相应的控制程序,使得系统能够根据具体的控制要求进行精准的控制和调节。
二、红外控制的基本概念红外控制是一种常见的无线遥控技术,通过使用红外线传输信号来实现对设备的控制。
通常包括红外发射器和红外接收器两个部分,发射器将控制信号转换成红外信号发送出去,接收器接收红外信号并将其转换成电信号进行处理。
在实际应用中,红外控制技术已经被广泛应用于各种家电遥控器、智能家居系统以及工业自动化领域。
红外控制的基本原理是在发射器和接收器之间通过红外线进行双向通信,通过调制解调的方式进行信号的传输和解析。
设计基于红外控制的步进电机系统需要考虑红外信号的发射和接收过程,以及相关的解析算法和信号处理。
信号的稳定性、抗干扰能力以及传输距离等也是需要考虑的重要因素。
三、基于51单片机的系统设计方案在步进电机红外控制系统的设计中,选择合适的控制芯片和处理器是至关重要的。
基于 PLC的步进电机控制系统设计摘要:步进电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。
本研究以PLC为控制核心,通过PLC向步进电机输出方向信号、脉冲信号,分别控制步进电机的方向和角位移,实现对步进电机的时间和角度两种模式控制,并通过组态王上位机软件实现对电机的监控。
该套设备运用于实验室立体仓库教学设备,对控制立体仓库XYZ三轴运动的准确定位起到了关键作用。
关键词:PLC;步进电机;模式控制;组态王软件1步进电机的工作机理步进电机是机电控制系统中的一种常用执行机构,主要是通过对每相线圈中的电流和顺序切换来使电机作步进式旋转。
一般来说,机电控制系统中的驱动电路由脉冲信号来控制,调节脉冲信号的频率便可改变步进电机的转速,达到调速的目的。
步进电机三相六拍运行的供电方式为A—AB—B—BC—C—CA—A,每一循环换接6 次,共有6 种通电状态。
当A 相通电时,转子齿1、3 和定子磁极A、A'对齐。
当控制绕组A 相B 相同时通电时,转子齿2、4 受到反应转矩使转子逆时针方向转动,转子逆时针转动后,转子齿1、3 与定子磁极A、A'轴线不再重合,从而转子齿1、3 也受到一个顺时针的反应转矩,当这2 个方向相反的转矩大小相等时,电机转子停止转动。
当A 相控制绕组断电而只由B 相控制绕组通电时,转子又转过一个角度使转子齿2、4 和定子磁极B、B'对齐,三相六拍运行方式两拍转过的角度刚好与三相单三拍运行方式一拍转过的角度一样,即三相六拍运行方式的步距角为15°。
接下来的通电顺序为BC—C—CA—A,运行原理和步距角与前半段A—AB—B 一样,即通电方式每变换一次,转子继续按逆时针转过一个步距角。
如果改变通电顺序,按A—AC—C—CB—B—BA—A 顺序通电,则步进电机顺时针一步一步转动,步距角也是15°。
基于STM32的步进电机控制系统设计与实现1. 引言步进电机是一种常见的电动机类型,具有定位准确、结构简单、控制方便等优点,在自动化控制领域得到广泛应用。
本文将介绍基于STM32单片机的步进电机控制系统设计与实现,包括硬件设计、软件开发和系统测试等内容。
2. 硬件设计2.1 步进电机原理步进电机是一种将输入脉冲信号转换为角位移的设备。
其工作原理是通过改变相邻两相之间的电流顺序来实现转子旋转。
常见的步进电机有两相、三相和五相等不同类型。
2.2 STM32单片机选择在本设计中,我们选择了STM32系列单片机作为控制器。
STM32具有丰富的外设资源和强大的计算能力,非常适合用于步进电机控制系统。
2.3 步进电机驱动模块设计为了实现对步进电机的精确控制,我们需要设计一个步进电机驱动模块。
该模块主要包括功率放大器、驱动芯片和保护电路等部分。
2.4 电源供应设计步进电机控制系统需要稳定可靠的电源供应。
我们设计了一个电源模块,用于为整个系统提供稳定的直流电源。
3. 软件开发3.1 开发环境搭建在软件开发过程中,我们需要搭建相应的开发环境。
首先安装Keil MDK集成开发环境,并选择适合的STM32单片机系列进行配置。
3.2 步进电机控制算法步进电机控制算法是实现步进电机精确控制的关键。
我们可以采用脉冲计数法、速度闭环控制等方法来实现对步进电机的位置和速度控制。
3.3 驱动程序编写根据硬件设计和步进电机控制算法,我们编写相应的驱动程序。
该程序主要负责将控制信号转换为驱动模块所需的脉冲信号,并通过GPIO口输出。
3.4 系统调试与优化在完成软件编写后,我们需要对系统进行调试和优化。
通过调试工具和示波器等设备,对系统进行性能测试和功能验证,以确保系统工作正常。
4. 系统测试与评估在完成硬件设计和软件开发后,我们需要对系统进行全面的测试和评估。
主要包括功能测试、性能测试和稳定性测试等内容。
4.1 功能测试功能测试主要验证系统是否按照预期工作。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 步进电机控制电路的设计仿真与制作初始条件:集成译码器、计数器、555定时器、移位寄存器、LED和必要的门电路或其他器件。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对步进电机的设计、仿真、装配与调试。
2、技术要求:错误!未找到引用源。
能控制步进电机正转和反转及运行速度,并由LED显示运行状态;错误!未找到引用源。
设计步进电机工作方式为单四拍或双四拍。
A.单四拍方式,通电顺序为A—B—C—D—AB.双四拍方式,通电顺序为AB—BC—CD—DA—AB③确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1)第1-2天,查阅相关资料,学习设计原理。
2)第3-4天,方案选择和电路设计仿真。
3)第4-5天,电路调试和设计说明书撰写。
4)第6天,上交课程设计成果及报告,同时进行答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日摘要关键词:步进电机,工作方式,驱动步进电机是一种将电能转化为角位移的装置。
当它接收到一个脉冲信号,步进电机按设定的方向转动一个固定的角度。
本次课程设计采用分离的数字电路元件来驱动步进电机。
控制电路由三部分组成:第一部分为脉冲信号发生器,由555构成的多谐振荡器来实现;第二部分为步进电机工作方式的控制电路,由计数器来控制单四拍的运行,由D触发器来控制双四拍的运行;第三部分为步进电机的驱动部分,由移位寄存器和一些门电路组成来控制步进电机的正常工作。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。