当前位置:文档之家› 整车部设计手册-H点设计、人机布置分析

整车部设计手册-H点设计、人机布置分析

整车部设计手册-H点设计、人机布置分析
整车部设计手册-H点设计、人机布置分析

H点设计、人机布置分析

汽车H点是与操作方便性及坐姿舒适性相关的车内尺寸的基准点,驾驶员以正常姿势入座后,其体重的大部分通过臀部由座椅和坐垫制成,一部分通过脚作用于汽车地板上。在汽车的这种特定的约束坐姿下,驾驶员在操作时省去上部的活动必然是绕通过H点的转动。并且H点是确定眼椭圆的基准点,汽车H点还影响驾驶员的手控界面,并且是许多法规项目的基准,也是汽车部分操作性和舒适性设计的基准,所以正确的确立H点对整车设计十分重要。

1.1H点设计

1.1.1与H点设计相关尺寸:

a.H点

b.H点高度(H30)

c.方向盘直径(W9)

d.加速器跟点(AHP)

e.座椅参考点(SgRP)

1.1.2汽车的分类

A类车辆——H点高度(H30)小于405mm,方向盘直径(W9)小于450mm。?此类汽车包括乘用车、多用乘用车和轻型客车。

B类车辆——H点高度(H30)在405mm和530mm之间,方向盘直径(W9)在450mm和560mm 之间。此类车辆包括中型、重型卡车和公共汽车。

1.1.3H点的设定

1.1.3.1 初选汽车H点的高度

根据经验初定一个H点的高度。

初定H点方法

⑴首先建立整车坐标系,通常情况下,X与车身纵向相同的水平面,0点为前轮中心从车头到车尾方向为X轴正向;Y与X水平垂直,通常选择车身下横梁比较平整的面,Y向O面为车身对称中心面,向右为正,向左为负;Z向垂直于XY面,向上为正,向下为负。

⑵确定前轮心的X值和Z值。前轮心基本与X方向0点坐标一致,Z向可近似于Z轴0点一致。

⑶确定防火墙的位置。轮心确定后,需按车型定义选择相应的轮胎型号,得出轮胎半径,通常情况下,前置前驱的车型,防火墙位置在前轮后部相切的位置,前置后驱车型应考虑发动机纵置占

用的空间和变速器占用的空间,这样既可估算出防火墙的位置。此外,车辆的级别和动力总成大小,以及动力总成布置形式位置对防火墙的确定都有一定的影响,这些因素在设计时应充分考虑。1.1.3.4 踵点基准点的确定

防火墙位置确定、轮胎大小确,在这两项基础上基本就可以大概确定踵点和加速踏板的位置。1.1.3.5 H30的确定

H30为驾驶员踵点到H点的高度,H30需根具车辆种类的不同确定,主要有轿车类、SUV类、跑车类,跑车H30值较小,SUV较大,轿车类在跑车和SUV之间。

1.1.3.6 确定踏平面角θ

踏板平面和水平地板面的夹角,是人体模型几何的一个函数——95百分点腿部联结和87

°足部角,H点在95百分点,选择座椅位置曲线在规定H点高度(H30)上。踏板平面角θ由以下方程确定:

θ=78.96-0.15z-0.0173z2方程1

足点——在足点与人体模型鞋子底部相切的直线上一点,距离加速器跟点203mm

踏板平面——在侧视方向为一条与加速器踏板相切的直线,并表现了二维人体模型的鞋子的底部。

1.1.4 A类车辆的定位程序

A类车辆布置工具参考线——二维侧视曲线,定义水平参考点作为H点高度的函数到哪个驾驶员工作空间布置工具可以在汽车内定位。线适当的参考工作空间来布置男女比例为1:1的驾驶员人群。参考线可以由以下方程确定:

X=793.7+0.903387z-0.00225518z2方程2在此:

x是水平参考位置,以mm为单位,在布置球和足部参考之后;z是H点高度,以mm为单位,在布置脚跟参考点(H30)的上方。

百分点选择座椅位置曲线——一条二维的侧视曲线,表示了在足点参考后的驾驶员选择座椅位置作为汽车H点高度的一个函数,适合95百分点布置。曲线可以由以下方程确定:

x95=913.7+0.672316z-0.0019553z2方程3在此:

x是足点后95百分点H点的位置,单位为mm,z是加速器跟点上(H30)上H点的高度,单

1.1.5 H点的设计经验数据供参考

H点位置

轿车车中心至H点

紧凑型轿车315

小轿车 335

中型轿车 365

大型轿车380

1.1.6 H点的约束

H点并不是独立存在的一个点,H点与驾驶员踵点、方向盘中心点互相也有联系,这3个点相互联系有相互制约,主要关系到乘员的驾驶舒适性和前方视野。

1.2人机布置分析

人机布置分析包括驾驶员驾驶舒适性,驾驶操作性,后排乘员乘坐舒适性,乘员进出方便性、内部空间分析等等,

1.2.1 主要内部空间分析

包括:

肩部空间(W3)——通常情况下前排肩部空间由驾驶员坐垫宽度+副驾驶坐垫宽度+副仪表台(乘员部分)宽度+2*(110-130)mm。坐垫的宽度和副仪表台的宽度按整车定义确定,同时参考整车宽度确定此值。主要按车型级别确定适合的尺寸,例如A级车此类宽度较小,依次类推B、C、D、E等车型尺寸不同程度增加。此后排肩部宽度与前排定义基本相同。

臀部空间(W5)——通常情况下前排肩部空间由驾驶员坐垫宽度+副驾驶坐垫宽度+副仪表台(乘员部分)宽度+2*60mm。坐垫的宽度和副仪表台的宽度按整车定义确定,同时参考整车宽度确定此值。主要按车型级别确定适合的尺寸,例如A级车此类宽度较小,依次类推B、C、D、E等车型尺寸不同程度增加。此后排肩部宽度与前排定义基本相同。一些较特殊的设计,后排乘员布置在两轮中间,则臀部空间为白车身轮罩距离减去内饰厚度。

头部空间(H61)——H点到顶棚内饰距离(与竖直面8deg夹角)+254mm。

进入高度-前:从前H点X平面至H点位置上方装饰车身开启处的垂直尺寸。

进入高度-后:从后H点至H点前方330mm的一个截面上部装饰车身开启处的垂直尺寸。

图1进入高度

·进入高度-前:770-800mm

·进入高度-后:760-810mm

·出口高度-后:710-780mm

头部侧向空间(W27、W35)——根据车型不同具体确定,通常情况下W27大于50mm。

前后乘员H点距离(L50)——要考虑座椅靠背空间与后排乘员的乘坐姿态,通常情况下小型车。此参数较小,尺寸大的车较大,也有个别特苏车型,主要一产品定义为主要设计参考。

1.2.2视野分析

⑴仪表眩目:仪表发光点不能通过风挡玻璃反射在99%眼椭圆+40mm的区域内。

⑵车门玻璃眩目:车内发光点不能通过车门玻璃反射在99%眼椭圆+40mm的区域内

⑶前方视野:能看到前方12m远处5m高的路示牌;同常情况下可以看到前方8-9米处的地面。

⑷仪表视野舒适性:仪表位于驾驶员视野舒适区域内

图2人眼视线舒适区域

1.2.3操作性分析

CD操作、空调面板操作、四门控制操作、仪表台按钮操作、变速器换档杆操作、驻车制动操作、头上部操作区、下部控制操作区、发动机盖操作区、后背箱盖操作区等。

⑴其中CD操作、空调面板操作、四门控制操作、仪表台按钮操作根据SAEJ287文件制作手控保络线。

⑵变速器换档手柄操作区

图3变速器换档手柄舒适区

⑶前车门操作区

图4 前门操作舒适区⑷后门操作区

图5后门操作舒适区⑸下部操作区域

图6 坐垫下方随座椅移动控制器的手控界线

图7坐垫下方安装在车门或地板上而且不随座椅移动控制器的手控界线(6)发动机盖开启操作区域

图8 发动机盖开启⑺后背箱盖开启操作区域

图9 后背箱盖开启⑻侧门开启操作区域

图10 侧门开启角度

⑼头上部控制区域

图11 头部上部手控舒适区

1.2.4舒适性分析

⑴座椅舒适性分析,主要包括座椅的坐垫深度(480-550mm),坐垫宽度(350-550mm),座椅靠背角度(设计值20-27deg),坐垫压缩量(20-40mm),靠垫压缩量(10-25mm)

轿车座椅调节轨距(mm)

微型轿车160-180

小轿车 180-200 中型轿车 200

大型轿车≥200

⑵人体坐姿。

图12人机角度示意图

---95%美国男性

---5%美国女性

舒适角度最佳角度

H:胯点20°<A1<30°25°

G: 膝关节95°<A2<110° 95°

CH:踝关节 95°

E:肩部点 85°

C:肘关节25°

P:腕关节 80°

M:指关节170°

腿部空间头部空间臀部角度膝关节

紧凑型轿车1055970 90°-95°115°-120°

小型轿车1065 970 95°125°

中型轿车107597595°-100°125°-130°

大型轿车1085 975-980 100°130°

⑵俯首舒适区域

(吉利)整车部设计手册-人机校核

整车集成篇 第二章人机校核 2.1 人体乘坐舒适性 2.1.1 人体姿态角度 Ramsis里面的二维人体模型是95%SAE人体,其默认最舒适角度如下图1所示: 图1 RAMSIS默认舒适角度 Ramsis中的靠背角调节角度是5°-40°,躯干角是60°-130°,膝盖角是80°-180°,踝角是87°-135°,基本上能够反映大部分人体常规姿态。而实际在汽车设计当中,人体有一个设计舒适角度,见表1和图2示意。 表1舒适角度 舒适角度最佳角度 20°

臀部角度膝关节 紧凑型轿车90°-95°115°-12 0° 小型轿车95°125° 中型轿车95°-100°125°-130° 大型轿车100°130° 在实际的人机校核当中,一般根据上述经验角度来验证人体姿态的舒适性,如果超出了舒适范围,则在有足够布置空间的状态下,考虑适当调整人体。 2.1.2 座椅使用舒适性 一般座椅的设计H点位置与人体的H点轨迹是一致的,因此首先可以查看座椅行程轨迹的可行性。一般情况下,汽车设计当中驾驶员座椅主要考虑5%女性-95%男性之间所有的人体情况。因此,座椅的位置,必须至少包含这个范围,也就是座椅设计H点的轨迹必须包括这个范围内的所有SgRp点(如果是紧凑型轿车,也可以选择座椅轨迹两端为座椅实际轨迹),也就是大致包括所有范围的人体。滑轨角度为3°-5°,普通轿车高度方向调节量为35mm左右(X向接近时候测量),人体设计R点在高度调节范围内的中间位置,见图3。 图3 座椅轨迹范围 一般后排乘客的膝部与前排靠背的间隙最小要保证51mm(95%SAE人体的腿部粗),见图4。 图4 膝部间隙

吉利整车部设计手册间隙面差

整车集成篇 第一章DTS 1.1 间隙及面差定义 1.1.1间隙、面差定义的意义及基本要求 1.1.1.1 意义 对整车进行外表面及内表面的间隙面差定义,从而通过对整车外观间隙、面差的控制,使得整车能够实现预期的外观要求。 1.1.1.2 基本要求 间隙、面差定义主要依据竞品车间隙面差测量、现有车型数据库积累,并充分对比市场上竞争车型的间隙、面差水平结合我们自身的工艺制造能力进行制定。 1)整车的间隙、面差应能在竞品车中处于领先水平并考虑实际的制造工艺要求; 2)间隙、面差定义应符合工程要求并能在后期的数据设计阶段中体现; 3)间隙面差定义文件中对应位置处的间隙面差定义应有断面简图,以表明该处的结构。 1.1.2 整车间隙、面差的定义

1.1. 2.1 相关输入及流程 为了保证后期产品质量,并满足工艺及外观要求对整车的间隙、面差进行定义。整车间隙面差定义开始于造型设计阶段,根据新产品的造型输入,并对比竞品车、结合公司工艺制造水平进行整车间隙面差定义。 需要的相关输入如下: 1)车型效果图(第二版)。该效果图要分缝明确,以根据分缝形式及位置进行间隙、面差定义。 2)车型CAS数据(第一版)。内、外CAS都要分缝明确。 3)竞品车间隙及面差分析报告。应包括竞品车车身表面及内饰表面主要断面及搭接处的间隙、面差统计及分析。该报告可以作为新车型间隙、面差定义的参考。 间隙、面差定义流程如下: 通过上述输入,科室内完成的间隙面差的定义,并需要与相关部门一起对定义进行评审。评审通过的定义需要在CAS及A面中体现。后期三维数据的制作、工程车制造生产均要以此为标准。间隙面差定义及控制流程见图1-1。评审材料为PPT格式,实例见附录A-1。

吉利整车部设计手册人机校核

整车集成篇 第二章人机校核 2.1 人体乘坐舒适性 2.1.1 人体姿态角度 Ramsis里面的二维人体模型是95%SAE人体,其默认最舒适角度如下图1所示: 图1 RAMSIS默认舒适角度 Ramsis中的靠背角调节角度是5°-40°,躯干角是60°-130°,膝盖角是80°-180°,踝角是87°-135°,基本上能够反映大部分人体常规姿态。而实际在汽车设计当中,人体有一个设计舒适角度,见表1和图2示意。 表1 舒适角度 舒适角度最佳角度 20°<A1<30°25° 95°<A2<110°95° 95°<A3<135°125° 85°<A4<110°87° 25°<A5<60° 80°<A6<165° 170°<A7<190° 图2 人体姿态角度示意 当然,设计值并非一成不变的,对于微型车以及后排乘客而言,某些角度是能够在上述舒适角度范围之外的,特别是臀部角度以及后排乘客的踝角。 比如还有一种设计,根据车型种类来定义人体角度,见表2。 表2 根据车型定义人体舒适角度范围 臀部角度膝关节 紧凑型轿车90°-95°115°-120° 小型轿车95°125°

中型轿车95°-100°125°-130° 大型轿车100°130° 在实际的人机校核当中,一般根据上述经验角度来验证人体姿态的舒适性,如果超出了舒适范围,则在有足够布置空间的状态下,考虑适当调整人体。 2.1.2 座椅使用舒适性 一般座椅的设计H点位置与人体的H点轨迹是一致的,因此首先可以查看座椅行程轨迹的可行性。一般情况下,汽车设计当中驾驶员座椅主要考虑5%女性-95%男性之间所有的人体情况。因此,座椅的位置,必须至少包含这个范围,也就是座椅设计H点的轨迹必须包括这个范围内的所有SgRp点(如果是紧凑型轿车,也可以选择座椅轨迹两端为座椅实际轨迹),也就是大致包括所有范围的人体。滑轨角度为3°-5°,普通轿车高度方向调节量为35mm左右(X向接近时候测量),人体设计R点在高度调节范围内的中间位置,见图3。 图3 座椅轨迹范围 一般后排乘客的膝部与前排靠背的间隙最小要保证51mm(95%SAE人体的腿部粗),见图4。 图4 膝部间隙 座椅的压缩量设计舒适值见图5,可以根据这些值验证座椅的压缩量的合理性。

全新整车项目车开发过程

新车型的研发是一个非常复杂的系统工程,以至于它需要几百号人花费上3、4年左右的时间才能完成。不同的汽车企业其汽车的研发流程有所不同。 本文主要向大家介绍汽车研发中的核心流程,也就是专业的汽车设计开发流程,这一流程的起点为项目立项,终点为量产启动,主要包括5个阶段: 一、方案策划阶段 一个全新车型的开发需要几亿甚至十几亿的大量资金投入,投资风险非常大,如果不经过周密调查研究及论证,就草率上马新项目,轻则会造成产品先天不足,投产后问题成堆;重则造成产品不符合消费者需求,没有市场竞争力。因此市场调研和项目可行性分析就成为了新项目至关重要的部分。通过市场调研对相关的市场信息进行系统的收集、整理、纪录和分析,可以了解和掌握消费者的汽车消费趋势、消费偏好和消费要求的变化,确定顾客对新的汽车产品是否有需求,或者是否有潜在的需求等待开发,然后根据调研数据进行分析研究,总结出科学可靠的市场调研报告,为企业决策者的新车型研发项目计划,提供科学合理的参考及建议。 汽车市场调研包括市场细分、目标市场选择、产品定位等几个方面。项目可行性分析是在市场调研的基础上进行的,根据市场调研报告生成项目建议书,进一步明确汽车形式(也就是车型确定是微型车还是中高级车)以及市场目标。可行性分析包括外部的政策法规分析、以及内部的自身资源和研发能力的分析,包括设计、工艺、生产以及成本等方面的内容。在完成可行性分析后,就可以对新车型的设计目标进行初步的设定,设定的内容包括车辆形式、动力参数、底盘各个总成要求、车身形式及强度要求等。 将初步设定的要求发放给相应的设计部门,各部门确认各个总成部件要求的可行性以后,确认项目设计目标,编制最初版本的产品技术描述说明书,将新车型的一些重要参数和使用性能确定下来。在方案策划阶段还有确定新车型是否开发相应的变形车,确定变形车的形式以及种类。项目策划阶段的最终成果是一份符合市场要求,开发可行性能够保证得到研发各个部门确认的新车型设计目标大纲。该大纲明确了新车型的形式、功能以及技术特点,描述了产品车型的最终定位,是后续研发各个过程的依据和要求,是一份指导性文件。 二、概念设计阶段 概念设计阶段开始后就要制定详细的研发计划,确定各个设计阶段的时间节点;评估研发工作量,合理分配工作任务;进行成本预算,及时控制开发成本;制作零部件清单表格,以便进行后续开发工作。概念车设计阶段的任务主要包括总体布置草图设计和造型设计两个部分。 1.总体布置草图 总体布置草图也称为整体布置草图、整车布置草图。绘制汽车总布置草图是汽车总体设计和总布置的重要内容,其主要任务是根据汽车的总体方案及整车性能要求提出对各总成及部件的布置要求和特性参数等设计要求;协调整车及总成间、相关总成间的布置关系和参数匹配关系,使之组成一个在给定使用条件下的使用性能达到最优并满足产品目标大纲要求的整车参数和性能指标的汽车.而总体布置草图确定的基本尺寸控制图是造型设计的基础。

汽车总布置设计说明书

目录 目录 ................................................................ I 摘要 .............................................................. I II 第1章、汽车形式的选择 . (1) 1.1汽车质量参数的确定 (1) 1.1.1汽车载客量和装载质量 ................................... 1 1.1.2质量系数ηmo ............................................ 1 1.1.3整车整备质量m o ......................................... 1 1.1.4汽车总质量m a ........................................... 1 1.2汽车轮胎的选择 ............................................... 2 1.3驱动形式的选择 ............................................... 2 1.4轴数的选择 ................................................... 3 1.5货车布置形式 ................................................. 3 第2章.汽车发动机的选择 (4) 2.1发动机最大功率 max e P (4) 2.2选择发动机 ................................................... 4 第3章、汽车主要参数选择 .. (7) 3.1汽车主要尺寸的确定 (7) 3.1.1外廓尺寸 ............................................... 7 3.1.2轴距L .................................................. 7 3.1.3前轮距B 1和后轮距B 2 ..................................... 7 3.1.4前悬L F 和后悬L R ......................................... 8 3.1.5货车车头长度 ........................................... 8 3.1.6货车车箱尺寸 ........................................... 8 3.2轴荷分配及质心位置的计算 ..................................... 8 第4章.传动比的计算和选 .. (13) 4.1驱动桥主减速器传动比0i 的选择 (13) 4.2变速器传动比 g i 的选择 (14) 4.2.1变速器头档传动比 1 g i 的选择 (14) 4.2.2变速器的选择 .......................................... 14 第5章.动力性能计算 (15) 5.1驱动平衡计算 (15) 5.1.1驱动力计算 ............................................ 15 5.1.2行驶阻力计算 .......................................... 15 5.1.3力的平衡方程 .......................................... 17 5.2动力特性计算 (17) 5.2.1动力因数D 的计算 (17)

整车布置设计规范(修改稿)

整车总布置设计规范 1.范围 本标准规定了整车总布置设计的原则、规定及应满足的有关法规等。 本标准适用于公司新产品开发时的整车总布置设计。 2.引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T490-2000:主图板 QC/T576-1999:轿车尺寸标注编码 GB/T17867-1999:轿车手操纵件、指示器及信号装置的位置 GB14167-1993:安全带固定点 GB11556-1994 :A、区 GB11565-1989:B区 GB11562-1994:前方视野 GB/T13053-1991:脚踏板 SAEJ 1100:头部空间、上下左方便性 3术语和定义 下列术语和定义适用于本标准。 3.1整车总布置 明示所有总成的硬点、关键的参数的布置图 3.2设计硬点 轮距、轴距、总长、总宽、造型风格、油泥模型表面或造型面、人体模型尺寸、人机工程校核的控制要求、底盘等与车身相关零部件对车身的控制点线面及控制结构,都称为设计硬点。 4.整车总布置图上应确定的参数 4.1整车的外廓尺寸; 4.2轴距和前、后轮距; 4.3前悬和后悬长度;

4.4发动机、前轮的布置关系; 4.5轮胎型号、静力半径和滚动半径、负载能力; 4.6车箱内长及外廓尺寸; 4.7前轮接地点至前簧座的距离; 4.8前簧中心距; 4.9后簧中心距; 4.10车架前部和后部外宽; 4.11车架纵梁外形尺寸及横梁位置; 4.12前簧作用长度; 4.13后簧作用长度; 5.参数确定原则及设计的一般程序 5.1参数确定原则 以设计任务书和标杆样车为基准,按设计任务书上规定的或标杆样车上测定的参数进行总布置,如确实不能满足的,需提出经上级领导批准后方能更改。 5.2设计的一般程序 1)总布置设计人员在接到新车型的开发任务后,首先要进行整车构思,并参与市场调研和样车分析,在此基础上制定出总的设计原则和明确设计目标; 2)各专业所建立标杆样车的3D数模,并提供给整车布置人员; 3)总布置设计人员将各专业所提供的数模装配好; 4)对各总成的匹配和布置关系等进行分析,明确它们的优点和不足; 5)各专业所建立拟采用的总成的数模,不提供总布置人员; 6)总布置人员对新的数模进行分析,并提出可行性的建议; 7)对方案进行评审; 8)评审后对各总成进行修改或开发; 6.主要尺寸参数的确定

吉利整车部设计手册间隙面差

整车集成篇 第一章 DTS 1.1 间隙及面差定义 1.1.1 间隙、面差定义的意义及基本要求 1.1.1.1 意义 对整车进行外表面及表面的间隙面差定义,从而通过对整车外观间隙、面差的控制,使得整车能够实现预期的外观要求。 1.1.1.2 基本要求 间隙、面差定义主要依据竞品车间隙面差测量、现有车型数据库积累,并充分对比市场上竞争车型的间隙、面差水平结合我们自身的工艺制造能力进行制定。 1)整车的间隙、面差应能在竞品车中处于领先水平并考虑实际的制造工艺要求; 2)间隙、面差定义应符合工程要求并能在后期的数据设计阶段中体现; 3)间隙面差定义文件中对应位置处的间隙面差定义应有断面简图,以表明该处的结构。 1.1.2 整车间隙、面差的定义 1.1. 2.1 相关输入及流程 为了保证后期产品质量,并满足工艺及外观要求对整车的间隙、面差进行定义。整车间隙面差定义开始于造型设计阶段,根据新产品的造型输入,并对比竞品车、结合公司工艺制造水平进行整车间隙面差定义。 需要的相关输入如下: 1)车型效果图(第二版)。该效果图要分缝明确,以根据分缝形式及位置进行间隙、面差定义。 2)车型CAS数据(第一版)。、外CAS都要分缝明确。 3)竞品车间隙及面差分析报告。应包括竞品车车身表面及饰表面主要断面及搭接处的间隙、面差统计及分析。该报告可以作为新车型间隙、面差定义的参考。 间隙、面差定义流程如下: 通过上述输入,科室完成的间隙面差的定义,并需要与相关部门一起对定义进行评审。评审通过的定义需要在CAS及A面中体现。后期三维数据的制作、工程车制造生产均要以此为标准。间隙面差定义及控制流程见图1-1。评审材料为PPT格式,实例见附录A-1。

整车总布置二维图绘制规范

上海同济同捷科技有限公司企业标准 TJI/YJY?03?111-2005整车总布置二维图绘制规范 2005-09-28 发布2005-09-30 实施 上海同济同捷科技有限公司发布

TJI/YJY?03?111-2005 前言 在新车型的开发、研制的初始阶段,经过调查研究与初始决策,提出整车设想并 对汽车的主要参数以及发动机和车轮进行选择后,应进行汽车总布置图的绘制。侧视 图和俯视图是总布置草图及总布置尺寸控制图的主要视图,当然还应辅以汽车的前视 (外形)图以及必要的横向剖面图和剖视图。在侧视图上,应将汽车置于面向左方的 位置。 本标准于2005年9月30日起实施。 本标准由上海同济同捷科技有限公司提出。 本标准由上海同济同捷科技有限公司质量与项目管理中心负责归口管理。 本标准主要起草人:吴恒德

TJI/YJY?03?111-2005 整车总布置二维图绘制规范 1范围 本标准是对M1类车型,总布置二维图的规定。 本标准适用于M1类车,其他各种汽车和汽车列车可以参照执行。 2规范性引用文件 GB 11562 汽车驾驶员前方视野要求及测量方法 GB 11565 轿车风窗玻璃刮水器刮刷面积 GB 14167 汽车安全带安装固定点 GB/T15759 人体模板设计和使用要求 GB/T 17346 轿车脚踏板的测向间距 GB/T 19234 乘用车尺寸代码 QC/T 490 汽车车身制图 3术语和定义 3.1X基准平面(X0基准平面线) 在车头部位通过某基准孔位或平面并垂直于Y基准平面的铅垂平面定义为X0基 准平面,在整车侧视图和俯视图上的投影线定义为X0基准平面线,它是标注汽车各 纵向尺寸的基准线或零线。 3.2Y基准平面(Y0基准平面线) 汽车纵向垂直对称平面定义为Y0基准平面,在俯视图和前视图上的投影线定义 为汽车的中心线。它是标注汽车各向尺寸的基准线。 3.3Z基准平面(Z0基准平面线---车架上平面线) 车架前纵梁较长的一段上平面并垂直于X基准平面和Y基准平面的水平面定义 为Z0基准平面,在汽车侧视图和前视图上的投影线定义为Z0基准平面线。它是作为 标注汽车各垂向尺寸的基准线或零线。而对于具有从承载式车身的汽车,则以车身中 部底板下表面或中部边梁的下翼面在侧视图或前视图上的投影线作为标注垂向尺寸 的基准线或零线。

总体设计手册-总布置图汇总

1.1 总布置图绘制 1.1.1 意义 根据新产品规划和概念设计确定车身总布置方案,然后再绘制总布置草图,然后开始进一步的造型设计。其中整车总布置草图的绘制对后期的开发设计起到依据和指导作用。 1.1.2 总布置草图的绘制 1.1. 2.1 第一版总布置图-概念草图 1.1. 2.1.1 相关输入及流程 为了给造型提供工程依据和下一步设计提供指导,绘制出总布置概念草图。总布置草图的绘制开始于项目预研阶段,根据新产品的规划,对竞品车进行扫描分析,根据发动机舱初步布置数据得出初步的整车限制尺寸和人机工程目标;依照相应的法律法规要求,并根据现有产品尽可能的考虑通用化的前提下确定车身总布置方案。 总布置概念草图的绘制时间及相关流程见图1-1所示。 图1-1 总布置草图绘制时间及流程 1.1. 2.1.2 总布置草图内容 草图阶段的总布置图,主要是对造型的输入,体现总布置的基本硬点参数,其中最重要的是H 点的位置,H点是整车的设计参考点,必须在早期准确地确定,一旦更改将对整个前期的布置设计及项目进度产生重大的影响。 在草图阶段的总布置图中,主要体现如下内容: 1、H点坐标,人机内部空间等相关参数;

2、整车外廓尺寸,包括长、宽、高、轮距、轴距、前悬、后悬; 3、法规要求及设计目标; 4 、COP零件的状态; 5.三种载荷状态的地面线; 6、各种限制面; 7、其他,如车门形式、玻璃曲率等。 1.1. 2.1.3 绘制概念草图步骤 在绘制概念草图之前,是在已经了解项目定位、对项目有了初步策划方案,并且对竞品车或对标车进行了大量分析的前提下开始绘制。 通常,概念草图的绘制需要如下步骤: (1)首先建立车身坐标系,“国标”定义的“整车坐标系”。通过空载或设计载荷时车轮中 心(左、右前轮和左、右后轮)及地板门槛纵平面来确定整车坐标系。然后摆放车姿,如图1-2 所示。 图1-2 (2)确定踏板和踵点位置,如图1-3所示。 图1-3 (3)先确定前排H点位置,再确定后排H点位置,如图1-4所示。后踵点 前踵点踏板组

整车部设计手册-附件系统布置

总布置篇 第X章整车附件系统布置 本章主要针对整车附件系统的布置进行说明,主要的部件系统有:座椅、机罩锁及开启机构总成、车门锁及内外开启机构、加油盖锁及开启机构总成、背门锁及开启机构、车门限位器、天窗、内后视镜、外后视镜、安全拉手、玻璃升降器、隔音隔热垫、玻璃、遮阳板、遮阳帘、行李舱网兜、随车工具气弹簧、铭牌标识、行李架、密封条、缓冲块、堵塞 1.1 座椅系统 1.1.1 座椅的种类及结构 汽车座椅是汽车使用者的直接支承装置,它的主要作用是为司乘人员提供安全、舒适、便于操纵和不易疲劳的驾乘座位。 座椅按照结构形式可分为折叠座椅、侧向座椅、后向座椅、悬挂式座椅等。头枕可分为整体式、分离式和嵌入式;座椅常见的调节方式有手动调节和电动调节。具体分类可参考标准QC/T 47-92《汽车座椅术语》。 座椅的结构主要包括:头枕、靠背、坐垫、座椅骨架、附属调节机构等。

1.1.2座椅的设计要求 轿车座椅设计是一项复杂的系统工程,它涉及机械、化工、纺织、喷涂、热处理、美学、力学、人体工程学等多门学科,设计时应依据人体工程学原理综合考虑座椅的安全性、舒适性以及座椅的合理布置。 GB 11550-1995 汽车座椅头枕的性能要求和试验方法 GB 14167-2006 汽车安全带安装固定点 GB 15083—2006 《汽车座椅、座椅固定装置及头枕强度要求和试验方法》 ECE R17 关于车辆座椅、座椅固定装置及头枕认证的统一规定 ECER25 关于批准与车辆座椅一体或非一体的头枕的统一规定 安全性:要绝对保证驾乘者的安全。 乘坐舒适:能使乘员保持良好的坐姿,保证合理的体压分布,具有腰椎依托感、腰背部贴合感和侧向稳定感。 操纵方便:布置的调整手柄、按钮必须是在驾乘者伸手可及的位置,应能顺应常人的习惯且操纵力量适中。 1.1.3座椅布置需输入清单 功能定义描述:设计之前应该定义好需要哪些功能;

整车总布置设计硬点报告

编号:BO97-ZBZ-001 整车总布置设计硬点报告 项目名称:超微型电动车设计开发 项目代码:___BO-97____ 编制:_陈梦薇_日期:_____ 校对:_____日期:_____ 审核:_____日期:_____ 批准:_____日期:_____ 上海同捷科技股份有限公司 2011年04月

目录 1概述 (1) 2整车设计基准 (1) 3整车总体设计硬点 (1) 4总成总布置安装硬点 (5) 5结束语 (5)

整车总布置设计硬点报告 1 概述 设计硬点是确定车身、底盘与零部件相互关系的基准点、线、面及控制结构的统称,主要分为安装装配硬点(简称ASH,包括尺寸与型式硬点)、运动硬点(简称MTH)、轮廓硬点及性能硬点等四类。 首次发布为《整车总布置设计硬点报告(V1版)》,随着设计的深入和方案的修改完善,部分设计硬点还有进一步调整的可能,项目完成时正式发布为《整车总布置设计硬点报告》。 所有硬点值都是在整车坐标系下的坐标值,长度值表示到小数点后一位,十分位为估计值(四舍五入)。角度值表示到小数点后一位,十分位为估计值(四舍五入),用度分秒表示时书写到分。长度单位未注明均为mm,角度单位均为°。 所有未注明的安装硬点均指与车身配合面上车身孔的几何中心点的坐标,例如:配合圆孔的坐标指配合面车身圆孔圆心坐标,椭圆孔或长圆孔的坐标指配合面椭圆孔或长圆孔的几何中心点的坐标,方形孔的坐标指配合面对角线交点的坐标。 2 整车设计基准 Mycar设计过程中,整车总布置在CATIA软件三维环境下进行。整车坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。整车坐标系与CATIA软件中整车part文件的绝对坐标系重合。 整车坐标系的定义如下:高度方向,取过半载前轮轮心与地板下平面平行的平面为Z=0平面,上正下负;宽度方向,取汽车纵向对称中心面为Y平面,以汽车前进方向左负右正;长度方向,取通过设计载荷时前车轮中心且垂直Y和Z平面的纵向平面为X平面。整车坐标系原点即为三个基准平面的交点。 整车设计的设计状态为半载状态(坐一名驾驶员);整备状态和满载状态(坐一名驾驶员和一名乘客)则作为另两个重要状态进行设计校核。 在整车的布置中,将车架放平,车架作为基准保持不动,在车架上固定的底盘件也随之保持不动。车轮的不同状态构成了不同的地面线,从而得到整备、半载、满载等不同的整车姿态。 3 整车总体设计硬点 以下硬点主要是描述整车轮廓硬点、运动硬点以及设计布置的安装硬点等。

(吉利)整车部设计手册-底盘布置篇

总布置篇 第×章底盘布置 底盘布置是下车身布置的重要环节,也是平台选择的首要任务。在项目策划初期就要进行底盘的布置,为底盘设计提供输入。 悬架结构型式和特点 汽车悬架按导向机构形式可分为独立悬架和非独立悬架两大类。独立悬架的车轮通过各自的悬架和车架(或车身)相连,非独立悬架的左、右车辆装在一根整体轴上,再通过其悬架与车架(或车身)相连。 图1 非独立悬架与独立悬架示意图 1.1.1 独立悬架 主要用于轿车上,在部分轻型客、货车和越野车,以及一些高档大客车上也有采用。独立悬架与非独立悬架相比有以下优点:由于采用断开式车轴,可以降低发动机及整车底板高度;独立悬架孕育车轮有较大跳动空间,而且弹簧可以设计得比较软,平顺性好;独立悬架能提供保证汽车行驶性能的多种设计方案;簧载质量小,轮胎接地性好。但结构复杂、成本

高。独立悬架有以下几种型式: 1.1.1.1 纵臂扭力梁式 是左、右车轮通过单纵臂与车架(车身)铰接,并用一根扭转梁连接起来的悬架型式(如图2所示)。 图2 扭力梁式独立悬架 根据扭转梁配置位置又可分为(如图所示)三种型式。 图3 扭力梁式独立悬架的三种布置形式 汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定杆作用。若还需更大的悬架侧倾叫刚度,仍可布置横向稳定杆。这种悬

架主要优点是:车轮运动特性比较好,左、右车轮在等幅正向或反向跳动时,车轮外倾角、前束及轮距无变化,汽车具有良好的操纵稳定性。但这种悬架在侧向力作用时,呈过多转向趋势。另外,扭转梁因强度关系,允许承受的载荷受到限制,扭转梁式结构简单、成本低,在一些前置前驱汽车的后悬架上应用得比较多。 1.1.1.2 双横臂式 是用上、下横臂分别将左、右车轮与车架(或车身)连接起来的悬架型式(图4)。上、下横臂一般作成A字型或类似A字型结构。这种悬架实质上是一种在横向平面内运动,上、下臂不等长的四连杆机构。这种悬架主要优点是设定前轮定位参数的变化及侧倾中心位置的自由度大,若很好的设定汽车顺从转向特性,可以得到最佳的操纵性和平顺性;发动机罩高度低、干摩擦小。但其结构复杂、造价高。 双横臂式悬架的弹性元件一般都是螺旋弹簧,但是在一些驾驶员座椅布置在上横臂上方的轻型客、货汽车上,为了降低悬架空间尺寸,采用了横置钢板弹簧或扭杆弹簧结构(图5)

整车总布置设计流程(Whole vehicle layout design flow)

整车总布置设计流程(Whole vehicle layout design flow) In this paper, the contribution of Yu Cheng Cheng River DOC documents may experience poor browsing on the WAP side. It is recommended that you first select TXT, or download the source file to the local view. Whole vehicle layout design flow Three dimensional network technology forum $a 9 H (V, P0 J J2 o; U "B 9 Z" Www.3dpo rtal.c n/ [[I-, G, I7, X] We often adopt different methods when we design a whole layout of a new car and a design of a partial modification of a whole vehicle. Below we discuss the new car overall design layout method. First of all, the overall layout of the design staff to determine the design concept, that is, a clear design task book. In the overall design process, it is necessary to determine the main vehicle size parameters, the main performance parameters, quality parameters and the basic types of the system assembly, select the engine and tire models, and so on. These are preliminary layout and conceptual design phases, that is, the Layout phase. With the design work being carried out, the body parts are gradually selected or the design is completed step by step, and then the fine design phase is entered, that is called the precise arrangement and the virtual assembly inspection stage, that is, the packaging stage.

整车总布置硬点设计规范

XXXXXX有限公司 整车总布置硬点设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 20100000000发布 20100000000实施 XXXXXX有限公司发布

目录 一概述 (2) 二整车设计基准 (2) 1.1 整车坐标系 (2) 1.2 整车设计状态 (2) 三整车总体设计硬点 (3) 3.1整车外部尺寸参数控制硬点 (3) 3.2底盘系统布置主要控制硬点 (5) 3.3人机工程布置设计硬点 (8) 四结束语 (9)

一概述 整车的总布置设计过程是设计硬点(Hard Point)和设计控制规则逐步明确、不断确定的过程。设计硬点是确定车身、底盘与零部件相互关系的基准点、线、面及控制结构的统称,主要分为安装装配硬点(简称ASH,包括尺寸与型式硬点)、运动硬点(简称MTH)、轮廓硬点及性能硬点等四类。 设计硬点的确定过程就是总布置设计逐步深化的过程,后续的设计工作必须以确定的设计硬点为基础展开。但随着设计的深入和方案的修改完善,部分设计硬点还有进一步调整的可能。 所有硬点值都是在整车坐标系下的坐标值,长度值表示到小数点后一位,十分位为估计值(四舍五入)。角度值表示到小数点后一位,十分位为估计值(四舍五入),用度分秒表示时书写到分。长度单位未注明均为mm,角度单位未注明均为°。 所有未注明的安装硬点均指与车身配合面上车身孔的几何中心点的坐标,例如:配合圆孔的坐标指配合面车身圆孔圆心坐标,椭圆孔或长圆孔的坐标指配合面椭圆孔或长圆孔的几何中心点的坐标,方形孔的坐标指配合面对角线交点的坐标。 二整车设计基准 1.1 整车坐标系 电动乘用车设计过程中,整车总布置在设计软件三维环境下进行。整车坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。整车坐标系与设计软件中整车文件的绝对坐标系重合。 整车坐标系的定义如下:高度方向,取汽车车架中间平直段的上平面为Z轴零线,上正下负;宽度方向,取汽车的纵向对称中心线为Y轴零线,以汽车前进方向左负右正;长度方向,取通过设计载荷时汽车前轮中心的垂线为X轴零线,前负后正;整车坐标系原点即为三个坐标轴的交点。 1.2 整车设计状态 整车设计的设计状态按GB19234-2003《乘用车尺寸代码》规定执行,即满载状态;空载状态(整车整备质量状态)和半载状态则作为另两个重要状态进行设计校核。 在整车的布置中,将车架放平(车架中间平直段保持水平),作为基准保持不动,在车身上固定的底盘件也随之保持不动。车轮的不同状态构成了不同的地面线,从而得到空载、半载、满载等不同的整车姿态。

整车总布置硬点设计规范

XXXXXX 有限公司 整车总布置硬点设计规范 XXXXXX 有限公司发布 20100000000发 布 20100000000 实施

目录 一概述. (2) 二整车设计基准. (2) 1.1 整车坐标系. (2) 1.2 整车设计状态. (2) 三整车总体设计硬点. (3) 3.1 整车外部尺寸参数控制硬点 (3) 3.2 底盘系统布置主要控制硬点 (5) 3.3 人机工程布置设计硬点 (8) 四结束语. (9)

一概述 整车的总布置设计过程是设计硬点(Hard Point)和设计控制规则逐步明确、不断确定的过程。设计硬点是确定车身、底盘与零部件相互关系的基准点、线、面及控制结构的统称,主要分为安装装配硬点(简称ASH,包括尺寸与型式硬点)、运动硬点(简称MTH )、轮廓硬点及性能硬点等四类。 设计硬点的确定过程就是总布置设计逐步深化的过程,后续的设计工作必须以确定的设计硬点为基础展开。但随着设计的深入和方案的修改完善,部分设计硬点还有进一步调整的可能。 所有硬点值都是在整车坐标系下的坐标值,长度值表示到小数点后一位,十分位为估计值(四舍五入)。角度值表示到小数点后一位,十分位为估计值(四舍五入),用度分秒表示时书写到分。长度单位未注明均为mm ,角度单位未注明均为°。 所有未注明的安装硬点均指与车身配合面上车身孔的几何中心点的坐标,例如:配合圆孔的坐标指配合面车身圆孔圆心坐标,椭圆孔或长圆孔的坐标指配合面椭圆孔或长圆孔的几何中心点的坐标,方形孔的坐标指配合面对角线交点的坐标。 二整车设计基准 1.1 整车坐标系 电动乘用车设计过程中,整车总布置在设计软件三维环境下进行。整车坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。整车坐标系与设计软件中整车文件的绝对坐标系重合。 整车坐标系的定义如下:高度方向,取汽车车架中间平直段的上平面为Z 轴零线,上正下负;宽度方向,取汽车的纵向对称中心线为Y 轴零线,以汽车前进方向左负右正;长度方向,取通过设计载荷时汽车前轮中心的垂线为X 轴零线,前负后正;整车坐标系原点即为三个坐标轴的交点。 1.2 整车设计状态 整车设计的设计状态按GB19234-2003《乘用车尺寸代码》规定执行,即满载状态;空载状态(整车整备质量状态)和半载状态则作为另两个重要状态进行设计校核。 在整车的布置中,将车架放平(车架中间平直段保持水平),作为基准保持不动,在车身上固定的底盘件也随之保持不动。车轮的不同状态构成了不同的地面线,从而得到空载、半载、满载等不同的整车姿态。

汽车总布置设计规范

汽车总布置设计规范 、整车主要参数的确定: 1、前悬、后悬、轴距的确定: 根据设计任务书提供的车身型号、货厢内部尺寸确定前悬、后悬、轴距的尺寸。 1.1前悬长:主要依据车身前悬及车身布置位置,前翻车身还要考虑车身前翻时与保险杠的间隙。 1.2后悬长:也是确定轴距长度,后悬除要符合法规要求之外,要充分考虑对离去角、质心位置的合理性,车身与货厢的合理间隙,应该保证高位进气在车身翻转时有至少30mm间隙。 2、整车高度的确定:2.1车身高度的确定: 车身高度的确定主要受发动机高低位置的影响,发动机高低位置确定之后,应该保证车身地板与发动机最小间隙在30mm以上。 2.2整车高度确定:(既货厢帽檐或护栏高度的确定) 2.2.1货厢带前帽檐: 应保证车身前翻时,车身及附件与货厢帽檐最小间隙大于 60mm 。 2.2.2货厢为护栏结构: 安全架与车身顶盖高度差:(GB7258规定:载质量为1吨及1吨以上的货车、农用车为70-100mm) 3、整车宽度的确定: 一般来言,车辆的最宽决定于货厢的宽度。 4、轮距确定: 4.1前轮距: 前轮距的确定实际上就是前桥的选取,前桥的选取主要决定于设计载质量,前轮距主要受车身轮罩的宽度、车轮的偏距影响,并且受到法规(整车外宽不超过2.5m )的限制,同时要考虑前轮的最大转角。 4.2后轮距: 后轮距的确定实际上就是后桥的选取,后桥的选取主要决定于设计载质量,同时再根据货厢的宽度来选取合适的轮距。 二、驾驶室内人机工程总布置:

R点至顶棚的距离:>910 R点至地板的距离:370 ±130 R 点至仪表板的水平距离:>500 R点至离合器和制动踏板中心在座椅纵向中心面上的距离: 750-850 (气制动或带有助力器的离合器和制动器,此尺寸的增加不大于100) 背角:5-28 ° 足角:87-95 ° 转向盘外缘至侧面障碍物的距 离:转向盘中心对座椅中心面的偏移量:转向盘平面与汽车对 称平面间夹角: 8 、9、 10 、> 100(轻型货车> 80 < 40 90 ±5 > 80 11、12 、13 、14 、15 、16 、17 、18 、19 、20 、转向盘外缘至前面及下面障碍物的距离:转向盘下缘至离合和制动踏板中心在转向柱纵向中心面上的距离:转向盘后缘至靠背距离:>350 转向盘下缘至座垫上表面距离:>160 离合、制动踏板行程:<200 离合踏板中心至侧壁的距离:>80 离合踏板中心至制动踏板中心的纵向中心面的距离:>110 制动踏板纵向中心面至通过加速踏板中心的纵向中心面的距离:制动踏板纵向中心面距转向管住纵向中心面的距离:加速踏板纵向中心面至最近障碍物的距离:>60 变速杆和手制动手柄在任意位置时,距驾驶室内其他零件或操纵杆的距离: 50-150 三、底盘总布置: 1. 1 车架宽度的确定:发动机安装部位的车架外宽的确定 发动机宽度尺寸:特别是在车架纵梁附近的发动机宽度。发动机与车架纵梁的最小间隙: b. 满足以下要求: (1)发动机在工作中与车架纵梁不干涉,且留有25mm以上的间隙。 (2)操纵机构的布置。 (3)发动机维修接近性。 c .车架外宽(分析发动机前悬置结构设计的可行性;发动机的维修性) 1.2后部车架外宽的确定:

吉利整车部设计手册车身系统

总布置篇 第四章车身系统 4.1 整车断面 断面的作用: 构建车身主体框架结构; 定义整车各主要总成部件的配合形式; 定义主要的配合尺寸; 分析造型的工程可行性; 指导详细三维数据的设计; 反应整车构件刚度分布状况,定义各部分构件的力学特性指标; 形成技术积累,缩短整车开发周期并提高整车研发质量; 整车断面:如下图所示

4.1.1 发盖-前保 HOOD-FRT BUMPER 截面位置:Y=0平面 需要表达的信息:发盖关闭时,锁、锁扣的啮合状态;锁、锁扣的安装结构;发盖与前保的间隙平度;发盖内板与前保的间隙、密封;发动机罩二次打开的手部空间,参见总布置设计指南; 前保外表面到前横梁的距离 A>65mm; 前横梁到空调冷凝器的距离 B>20mm; 空调冷凝器到散热器的距离 C>10mm; 发动机总成到冷却风扇的距离 D>35mm; 图示:

CE-1 NL-1 GC-1 4.1.2 发盖-前组合灯 HOOD-HEAD LAMP 截面位置:过前组合灯上一点且平行于Y基准平面 需体现的零部件:前组合灯、发盖、前保及其他相关零部件 需要表达的信息:前组合灯与周围件的间隙、平度;组合灯的固定点;组合灯与上隔栅的装配可行性;换灯的空间

图示: CE-1 GC-1

NL-2 4.1.3 发盖-前围 HOOD-COWL 截面位置:Y基准平面 需体现的零部件:发盖外板、前风挡、通风盖板、前围板及其他相关零部件 需要表达的信息:前风挡玻璃倾角;前风挡与前围板上部的配合及密封;发盖运动过程中与通风盖板、前风挡的间隙;发动机总成和前围板之间的间距 A;机盖与机舱刚性零部件的距离B。参见总布置设计指南。发盖打开时保证在5%女性手控范围以下并且满足95%男性头部活动线路的要求,具体校核方法见总布置设计指南。 图示:

整车总布置校核计算

一、汽车主要尺寸和参数的选择 (一)、汽车主要尺寸的确定 1、轴距L 轴距短些,有以下好处:车辆本身轻些、最小转弯直径小、纵向通过角大通过性也好。但轴距过短,会带来如下一些缺点:车厢长度不足、后悬过长、制动或上坡时轴荷转移过大,使汽车的制动性或稳定性变坏、车厢纵向角振动过大、万向节传动的角度过大。因此,确定轴距应保证设计车型的主要性能、装载面积、轴荷分配等都满足的前提下,将轴距设计的尽量短一些为宜。(见下表) 2、前、后轮距B1和B2 轮距大些,对增大车厢宽度与提高车身横向稳定性有利。但轮距过大,使汽车的总宽和总质量增大,所以,轮距不宜过大,必须与要求的总宽相适应。(见下表) 各类汽车的轴距和轮距 3、前悬L F和后悬L R 前悬不宜过长,否则接近角太小;后悬也不宜过长,否则离去角太小,上下坡容易刮地,转弯也不灵活。城市大客车的后悬一般不大于轴距的65%,绝对值不大于3.5m。货车的后悬一般在1.2~2.2m之间(微型车例外)。特长货厢汽车的后悬较大,可达2.6m。 GB7258规定:客车以及封闭式车厢(或罐体)的车辆后悬不得超过轴距的65%,最大值不得超过3.5m。封闭式车厢的四轮农用车后悬不得超过轴距的60%,其他车辆后悬不得超过轴距的55%。对于三轴车辆,若二、三轴为双后轴,其轴距应按第一轴至双后轴中心线的距离计算;若一、二轴为双转向轴,其轴距按一、三轴距计算。 4、外廓尺寸 车辆外廓尺寸的限值见下表: 车辆外廓尺寸限值

(二)、汽车质量参数的确定 1、汽车的装载质量 汽车的装载质量是指在硬质良好路面上行驶时所允许的额定载质量。当汽车在碎石路面上行驶时,装载量应有所减少(约为好路面的75%~85%)。 2、整车整备质量m 0 整车整备质量是指车上带有全部装备(包括随车工具、备胎等),加满燃料、水,但没有装货和栽人时的质量。 质量系数ηm0:汽车装载质量m e 与整车整备质量m 0之比。(ηm0=m e /m 0) 3、汽车总质量m a 汽车总质量是指装备齐全,并按规定装满客、货时的整车质量。 4、汽车的轴荷分配 各类汽车的轴荷分配 (三)、汽车主要性能参数的确定 1、动力性能参数 一、汽车的动力性 (一)、汽车的驱动力图 1、汽车的驱动力 驱动汽车的外力称为汽车的驱动力F t (单位N ) F t =T t r =T tq i g i 0ηT r (1—1 ) 上式中:T t —作用于驱动轮上的转距,单位N ·m T tq —发动机的转距,单位N ·m i g —变速器的传动比 i 0 —主减速器的传动比 ηT —传动系的机械效率 2、发动机的转速特性 发动机外特性曲线—发动机节流阀全开(或高压油泵在最大供油量位置)时,发动机的功率P e 、转距T tq 以及燃油消耗率b 与发动机曲轴转速之间的函数关系。 发动机部分负荷特性曲线—发动机节流阀部分开启(或高压油泵部分供油)时,发动机的功率P e 、转距T tq 以及燃油消耗率b 与发动机曲轴转速之间的函数关系。 3、传动系的机械效率ηT 传动系的机械效率因受多种因素的影响而有所变化,但对汽车进行初步的动力性分析时可把它看作一个常数。具体见上表。采用有级机械变速器传动系的轿车,其传动效率可取为0.9~0.92。货车、客车可取0.82~0.85,越野汽车取0.80~0.85。 4、车轮的滚动半径r r r r =Fd 2π 对汽车作动力学分析时,应该用静力半径;而作运动学分析时应该用滚动半径。

相关主题
文本预览
相关文档 最新文档