当前位置:文档之家› 高中物理圆周运动专题讲义练习题和标准答案-共14页

高中物理圆周运动专题讲义练习题和标准答案-共14页

高中物理圆周运动专题讲义练习题和标准答案-共14页
高中物理圆周运动专题讲义练习题和标准答案-共14页

圆周运动

匀速圆周运动

1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类: ⑴匀速圆周运动:

质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。 物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。

注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.

⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量

(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。 (2)线速度(v ):

①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。 ②定义式:t

s

v =

③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。 (3)角速度(ω,又称为圆频率):

①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。 ②大小:T

t

π

?

ω2=

=

(φ是t 时间内半径转过的圆心角)

③单位:弧度每秒(rad/s )

④物理意义:描述质点绕圆心转动的快慢

(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系:

r t r v f T t rf T

r t s v ωθππθωππ==???

???

?

?

======

2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)圆周运动的向心加速度

①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。

②大小:r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 22

22ππω=??

? ??==)

③方向:其方向时刻改变且时刻指向圆心。

对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)圆周运动的向心力

匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。

向心力的大小为:r m r

v m ma F n n 22

ω===(还有其它的表示形式,如: ()r f m r T m mv F n 2

2

22ππω=??

? ??==)

;向心力的方向时刻改变且时刻指向圆心。 实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。 五、离心运动

1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。

2、本质:

①离心现象是物体惯性的表现。

②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。 ③离心运动并不是受到什么离心力,根本就没有这个离心力。 3、条件:

当物体受到的合外力n n ma F =时,物体做匀速圆周运动; 当物体受到的合外力n n ma F <时,物体做离心运动 当物体受到的合外力n n ma F >时,物体做近心运动

实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运动情况也必然改变以适应外力的改变。

4.两类典型的曲线运动的分析方法比较

(1)对于平抛运动这类“匀变速曲线运动”,我们的分析方法一般是“在固定的坐标系内正交分解其位移和速度”,运动规律可表示为

??

???==2021,gt y t x υ;???==.,0gt y x υυυ (2)对于匀速圆周运动这类“变变速曲线运动”,我们的分析方法一般是“在运动的坐标系内正交分解其力和加速度”,运动规律可表示为

??

?

??=======.,02

2υωωυm mr r m ma F F ma F 向向法切切

【例1】如图所示的传动装置中,A 、B 两轮同轴转动.A 、B 、C 三轮的半径大小的关系是RA=RC=2RB .当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?

【例2】一圆盘可绕一通过圆盘中心O 且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转时,木块随圆盘一起运动(见图),那么

A .木块受到圆盘对它的摩擦力,方向背离圆盘中心

B .木块受到圆盘对它的摩擦力,方向指向圆盘中心

C .因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同

D .因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反

E .因为二者是相对静止的,圆盘与木块之间无摩擦力

【例3】在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m .A 、B 离转轴均为r ,C 为2r .则

A .若A 、

B 、

C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大 B .若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小 C .当转台转速增加时,C 最先发生滑动

D .当转台转速继续增加时,A 比B 先滑动

【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s 的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.

若细线能承受的最大张力Tm=7N,则从开始运动到细线断裂历时多长?

【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?

【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?

【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动.若自行车以速度v转过半径为R的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?

【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m·s-2)

(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.

(2)当O1A线所受力为100N时,求此时的角速度ω2.

1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化 其中正确的是( )

A .①②③

B .①②④

C .①③④

D .②③④

2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是()

①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力③当速度大于v 时,轮缘挤压外轨④当速度小于v 时,轮缘挤压外轨

A.①③

B.①④

C.②③

D.②④

3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( ) A .两轮的角速度相等 B .两轮边缘的线速度大小相等 C .两轮边缘的向心加速度大小相等 D .两轮转动的周期相同

4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( ) A .小球线速度大小一定时,线越长越容易断 B .小球线速度大小一定时,线越短越容易断 C .小球角速度一定时,线越长越容易断 D .小球角速度一定时,线越短越容易断

5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2

,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力

6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( ) A .滑块的重力 B .盘面对滑块的弹力 C .盘面对滑块的静摩擦力 D .以上三个力的合力

7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( ) A.V A >V B B.ωA >ωB C.a A >a B D.压力N A >N B 8.一个电子钟的秒针角速度为( ) A .πrad/s B .2πrad/s C .

60

πrad/s D .

30

πrad/s

9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( ) A .甲的角速度最大、乙的线速度最小 B .丙的角速度最小、甲的线速度最大 C .三个物体的角速度、周期和线速度都相等 D .三个物体的角速度、周期一样,丙的线速度最小

A

B

10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。则杆对球的作用力可能是( ) A.a 处为拉力,b 处为拉力 B.a 处为拉力,b 处为推力 C.a 处为推力,b 处为拉力 D.a 处为推力,b 处推拉力

11.如图2-4-10所示,光滑的水平面上,小球m 在拉力F的作用下做匀速圆周运动,若小球在到达P点时突然发生变化,则下列说法正确的是( ) A.若F 突然消失,小球将沿轨迹a 做离心运动 B.若F 突然变小,小球将沿轨迹a 做离心运动 C.若F 突然变大,小球将沿轨迹b 做离心运动 D.若F 突然变小,小球将沿轨迹c 做近心运动

1.对于做匀速圆周运动的物体,下列说法错误..

的是: A.线速度不变 B.线速度的大小不变 C.转速不变 D.周期不变 2.一质点做圆周运动,速度处处不为零,则 ①任何时刻质点所受的合力一定不为零 ②任何时刻质点的加速度一定不为零 ③质点速度的大小一定不断变化 ④质点速度的方向一定不断变化 其中正确的是

A .①②③

B .①②④

C .①③④

D .②③④

3.关于做匀速圆周运动物体的线速度的大小和方向,下列说法中正确的是 A .大小不变,方向也不变B .大小不断改变,方向不变 C .大小不变,方向不断改变D .大小不断改变,方向也不断改变

4.做匀速圆周运动的质点是处于

A .平衡状态

B .不平衡状态

C .速度不变的状态

D .加速度不变的状态 5.匀速圆周运动是

A .匀速运动

B .匀加速运动

C .匀减速运动

D .变加速运动 6.下列关于向心加速度的说法中,正确的是

A .向心加速度的方向始终与速度的方向垂直

B .向心加速度的方向可能与速度方向不垂直

C .向心加速度的方向保持不变

D .向心加速度的方向与速度的方向平行

7.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是

A .两轮的角速度相等

B .两轮边缘的线速度大小相等

C .两轮边缘的向心加速度大小相等

D .两轮转动的周期相同

A

B

8.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,有下列说法 ①小球线速度大小一定时,线越长越容易断 ②小球线速度大小一定时,线越短越容易断 ③小球角速度一定时,线越长越容易断 ④小球角速度一定时,线越短越容易断 其中正确的是

A .①③

B .①④

C .②③

D .②④

9.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2

,则此时轻杆OA 将

A .受到6.0N 的拉力

B .受到6.0N 的压力

C .受到24N 的拉力

D .受到24N 的压力

10.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是 A .滑块的重力 B .盘面对滑块的弹力 C .盘面对滑块的静摩擦力 D .以上三个力的合力 11.一个电钟的秒针角速度为 A .πrad/s B .2πrad/s C .

60

πrad/s D .

30

πrad/s

12.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则 A .甲的角速度最大、乙的线速度最小 B .丙的角速度最小、甲的线速度最大 C .三个物体的角速度、周期和线速度都相等 D .三个物体的角速度、周期一样,丙的线速度最小 13.关于匀速圆周运动,下列说法中不正确的是 A .匀速圆周运动是匀速率圆周运动 B .匀速圆周运动是向心力恒定的运动

C .匀速圆周运动是加速度的方向始终指向圆心的运动

D .匀速圆周运动是变加速运动

14.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是 A.V A >V B B.ωA >ωB C.a A >a B D.压力N A >N B

15.(多选)如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。则杆对球的作用力可能是

A.a 处为拉力,b 处为拉力

B.a 处为拉力,b 处为推力

C.a 处为推力,b 处为拉力

D.a 处为推力,b 处推拉力

1、物体做曲线运动时,下列说法中不可能...存在的是: A .速度的大小可以不发生变化而方向在不断地变化。 B .速度的方向可以不发生变化而大小在不断地变化 C .速度的大小和方向都可以在不断地发生变化 D .加速度的方向在不断地发生变化

2、关于曲线运动的说法中正确的是:

A .做曲线运动物体的加速度方向跟它的速度方向不在同一直线上

B .速度变化的运动必定是曲线运动

C .受恒力作用的物体不做曲线运动

D .加速度变化的运动必定是曲线运动 3、关于运动的合成,下列说法中正确的是: A .合运动的速度一定比每一个分运动的速度大 B .两个匀变速直线运动的合运动一定是曲线运动

C .只要两个分运动是直线运动,那么合运动也一定是直线运动

D .两个分运动的时间一定与它们合运动的时间相等 4、关于做平抛运动的物体,下列说法中正确的是:

A .从同一高度以不同速度水平抛出的物体,在空中的运动时间不同

B .以相同速度从不同高度水平抛出的物体,在空中的运动时间相同

C .平抛初速度越大的物体,水平位移一定越大

D .做平抛运动的物体,落地时的速度与抛出时的速度大小和抛出时的高度有关 5、一物体从某高度以初速度0v 水平抛出,落地时速度大小为t v ,则它的运动时间为:

A g v v t 0-

B g v v t 20-

C g

v v t 22

2- D g v v t 2

02

-

6、做匀速圆周运动的物体,下列哪些量是不变的:

A .线速度

B .角速度

C .向心加速度

D .向心力 7、关于圆周运动的向心加速度的物理意义,下列说法中正确的是: A .它描述的是线速度大小变化的快慢 B .它描述的是角速度大小变化的快慢 C .它描述的是线速度方向变化的快慢 D .以上说法均不正确

8、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A 的受力情况,下列说

法中正确的是:

A .摆球A 受重力、拉力和向心力的作用

B .摆球A 受拉力和向心力的作用

C .摆球A 受拉力和重力的作用

D .摆球A 受重力和向心力的作用

9、如图所示,小物块A 与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则下列关于A 的受力情况说法正确的是 A .受重力、支持力

B .受重力、支持力和指向圆心的摩擦力

C .受重力、支持力、摩擦力和向心力

D .受重力、支持力和与运动方向相同的摩擦力

10、质量为m 的汽车,以速率v 通过半径为 r 的凹形桥,在桥面最低点时汽车对桥面的压力大小是:

A . mg

B .r mv 2

C . r mv mg 2-

D . r

mv mg 2

+

21.如图所示,长为R 的轻质杆(质量不计),一端系一质量为m 的小球(球大小不计),绕杆的另一端O 在竖直平面内做匀速圆周运动,若小球最低点时,杆对球的拉力大小为1.5mg ,求:

① 小球最低点时的线速度大小?

②小球通过最高点时,杆对球的作用力的大小?

③小球以多大的线速度运动,通过最高处时杆对球不施力?

22.如图所示,轨道ABCD 的AB 段为一半径R=0.2m 的光滑1/4圆形轨道,BC 段为高为h=5m 的竖直轨道,CD 段为水平轨道。一质量为0.1kg 的小球由A 点从静止开始下滑到B 点时速度的大小为2m /s ,离开B 点做平抛运动(g 取10m /s 2

),求:

①小球离开B 点后,在CD 轨道上的落地点到C 的水平距离; ②小球到达B 点时对圆形轨道的压力大小?

③如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置。

参考答案:

【例1】【解】由于皮带不打滑,因此,B、C两轮边缘线速度大小相等,设vB=vC=v.由v=ωR得两轮角速度大小的关系

ωB∶ωC=RC∶RB=2∶1.

因A、B两轮同轴转动,角速度相等,即ωA=ωB,所以A、B、C三轮角速度之比

ωA∶ωB∶ωC=2∶2∶1.

因A轮边缘的线速度

vA=ωARA=2ωBRB=2vB,

所以A、B、C三轮边缘线速度之比

vA∶vB∶vC=2∶1∶1.

根据向心加速度公式a=ω2R,所以A、B、C三轮边缘向心加速度之比

=8∶4∶2=4∶2∶1.

【例2】以木块为研究对象进行受力分析:在竖直方向受到重力和盘面的支持力,它处于力平衡状态.在盘面方向,可能受到的力只有来自盘面的摩擦力(静摩擦力),木块正是依靠盘面的摩擦力作为向心力使它随圆盘一起匀速转动.所以,这个摩擦力的方向必沿半径指向中心

【答】B.

【例3】【分析】A、B、C三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为ω.根据向心加速度的公式an=ω2r,已知rA=rB<rC,所以三物体向心加速度的大小关系为aA=aB<aC.

A错.

三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =Fn=mω2r,所以三物体受到的静摩擦力的大小分别为

fA=mAω2rA=2mω2r,

fB=mBω2rB=mω2r,

fC=mcω2rc =mω2·2r=2mω2r.

即物体B所受静摩擦力最小.B正确.

由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为μ,静摩擦力的最大值可认为是fm=μmg.由fm=Fn,即

得不发生滑动的最大角速度为

即离转台中心越远的物体,使它不发生滑动时转台的最大角速度越小.

由于rC>rA=rB,所以当转台的转速逐渐增加时,物体C最先发生滑动.转速继续增加时,物体A、B将同时发生滑动.C正确,D错.

【答】B、C.

【例4】【解】小球交替地绕A、B作匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力T不断增大,每转半圈的时间t不断减小.

令Tn=Tm=7N,得n=8,所以经历的时间为

【例5】【分析】小球在水平面内做匀速圆周运动,由绳子的张力和锥面的支持力两者的合力提供向心力,在竖直方向则合外力为零。由此根据牛顿第二定律列方程,即可求得解答。

【解】对小球进行受力分析如图(b)所示,根据牛顿第二定律,向心方向上有

T·sinθ-N·cosθ=mω2r ①

y方向上应有

N·sinθ+T·cosθ-G=0 ②

∵r = L·sinθ③

由①、②、③式可得

T = mgcosθ+mω2Lsinθ

当小球刚好离开锥面时N=0(临界条件)

则有Tsinθ=mω2r ④

T·cosθ-G=0 ⑤

【例6】【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。

【解】以杯中之水为研究对象,进行受力分析,根据牛顿第二定律

【例7】【解】(1)由图可知,向心力F=Mgtgα,由牛顿第二定律有:

(2)由图可知,向心力F可看做合力Q在水平方向的分力,而Q又是水平方向的静摩擦力f和支持力N的合力,所以静摩擦力f在数值上就等于向心力F,即

f = Mgtgα

【例8】【分析】小球做圆周运动所需的向心力由两条细线的拉力提供,当小球的运动速度不同时,所受拉

力就不同。

【解】(1)当O2A线刚伸直而不受力时,受力如图所示。

则F1cosθ=mg ①

F1sinθ=mRω12 ②

由几何知识知

∴R=2.4mθ=37°

代入式③ω1=1.77(rad/s )

(2)当O1A 受力为100N 时,由(1)式

F1cos θ=100×0.8=80(N )>mg

由此知O2A 受拉力F2。则对A 受力分析得

F1cos θ-F2sin θ-mg=0 ④ F1sin θ+F2cos θ= mR ω22 ⑤

由式(4)(5)得

21题12分,解:(1)小球过最低点时受重力和杆的拉力作用,由向心力公式知

T -G =R

m 2υ 解得R gR v 52/==…………(4分)

2)小球以线速度R v 5=

通过最高点时所需的向心力mg F 2

1

R

m

2

=

υ=向 向F 小于mg ,故杆对小球施加支持力F N 的作用,小球所受重力G 和支持力F N 的合力提供向心力,G -F N =

mg 21,解得F N =mg 2

1

………(4分) 3)小球过最高点时所需的向心力等于重力时杆对球不施力,R

m

2

υ=mg F =向解得

R gR v 10==……………(4分)

22题12分 解:

⑴设小球离开B 点做平抛运动的时间为t 1,落地点到C 点距离为s 由h =

21gt 12 得: t 1

=g

h

2=1052?s = 1 s ………………………(2分)

s = v B ·t 1 = 2×1 m = 2 m ………………………………(2分)

⑵小球达B 受重力G 和向上的弹力F 作用,由牛顿第二定律知

R

m

G F 2

υ==向-F 解得F =3N …………………(2分)

由牛顿第三定律知球对B 的压力F F -=',即小球到达B 点时对圆形轨道的压力大小为3N ,方向竖直向下。………………………(1分)

⑶如图,斜面BEC 的倾角θ=45°,CE 长d = h = 5m

因为d > s ,所以小球离开B 点后能落在斜面上 ……………………………(1分) (说明:其它解释合理的同样给分。)

假设小球第一次落在斜面上F 点,BF 长 为L ,小球从B 点到F 点的时间为t 2

L cos θ= v B t 2① L sin θ=

2

1gt 22

② 联立①、②两式得

t 2 = 0.4s …………(1分) L =

θcos 2t v B =2

/24

.02?m = 0.82m = 1.13m ……………………………(3分) 说明:关于F 点的位置,其它表达正确的同样给分。

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .a 、b 所受的摩擦力始终相等 B .b 比a 先达到最大静摩擦力 C .当2kg L ω=a 刚要开始滑动 D .当23kg L ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】 AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即 kmg +F =mω2?2L ① 而a 受力为 f′-F =2mω2L ② 联立①②得 f′=4mω2L -kmg 综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有 2kmg+kmg =2mω2L +mω2?2L 解得 34kg L ω=

物理生活中的圆周运动练习题含答案

物理生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -?-?=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图所示,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l .设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A 开始滑动? (2)当转速缓慢增大到2ω0时,A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】(1) g l μ(2) 34mgl kl mg μμ- 【解析】 【分析】 (1)物体A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x . 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.

(上海最好的高中物理讲义)匀变速直线运动中s=at2的讲解

2 aT s= ?问题 说明:在匀变速直线运动中,所有的公式都是四个未知数组成的,需要知道其中的三个,才 可以求出另外一个,而 2 aT s= ?中,只有三个未知数,从运算量上来说,减少了;相 应地需要的思考量就增加了。因此这个公式主要用在填空题及选择题的运算,实验题中用得也不少,大的计算题则作为辅助手段来用。 类型一:基本应用(把握要点:相邻且相等) [例1]一物体做匀变速直线运动,第一个2秒内的位移是20米,第二个2秒内的位移是0米,求该运动的加速度为m/s2,初速度为m/s。 解析:相邻且相等的2秒内,由 2 aT s= ?得,a=(20-0)/(2*2)=5m/s2; 由 2 2 1 at t v s o + =得初速度v o =5m/s。 类型二:变形应用 说明:公式的要点是相邻且相等,而出题的要点则偏偏是偏开要点,而又可以用该公式去做。与解方程类似,我们只会解一元一次方程,所以多元方程就消元,高次方程则降次,这里思路一样,将不相等转换成相等,将不相邻转换成相邻。 变形应用一:相等不相邻 [例2]一物体做匀变速直线运动,第7秒内的位移比第3秒的位移多24米,则运动的加速度为m/s2。 解:匀变速直线运动中,第4秒比第3秒多 s?,第5秒比第4秒多s?,依此可知,第7 秒比第3秒多(7-3)个s?。由2 aT s= ?知, 4 2 aT=24,则a=6m/s2 易错点提醒:位移多24米,和位移的大小多24米是不一样的,矢量运算中一旦出现大小二字,方向要单独讨论。 变形应用二:相邻不相等 [例3]一物体做匀变速直线运动总计5秒,前2秒位移为40米,后3秒的位移为135米,则运动的加速度为m/s2。 解:设物体第1秒的位移为S,则有 2S+s?=40 3S+9s?=135

高一物理尖子生讲义(上)

物理培养尖子生讲义 第一讲:运动学 训练方向一、利用一级结论和二级结论进行速算 1、一物体由静止开始作匀加速直线运动,其在第二秒内的位移为3m,则其加速度为______ 其在第20秒内的位移为__________,其在前20秒内的位移为_______ 2、一作匀变速直线运动的物体,已知初速度为3m/s,发生了一段位移,已知在位移中点 的速度为 22 5 m/s,则其末速度为_________。整个过程的平均速度为__________ 3、一作匀变速直线运动的物体,其在前4秒内发生的位移为8m,在紧接着的两秒内发生的位移为10m,则其加速度为________,在下一个两秒内发生的位移为_________ 4. 一作匀加速直线运动的物体,已知加速度为1m/s2,其在第10秒内的位移为10.5m,则其初速度为________,其在第22秒内的位移为___________ 5.物体在水平拉力作用下,从静止开始作匀加速直线运动,经过4 秒钟达到4 米/秒,此时撤去拉力,物体在地面上滑行一段距离后停下来.在这全过程中,物体运动的平均速度为_________ 6.为研究钢球在液体中运动时所受阻力的大小,让钢球从某一高度竖直落下 进入液体中运动,用闪光照相方法拍摄钢球在不同时刻的位置,如图所 示.已知钢球在液体中运动时受到的阻力与速度大小成正比,即F kv , 闪光照相机的闪光频率为f,图中刻度尺的最小分度为s0,钢球的质量为m, 则阻力常数k的表达式是_____________ 训练方向二:加速度恒定的往返运动 【母题1】一物体做匀变速直线运动,某时刻速度的大小为4m/s,2s后速度的大小变为10m/s,在这2s内该物体的加速度可能为多大?物体发生的位移可能为多大?

高中物理圆周运动专题讲解

圆周运动的向心力及其应用 【要点梳理】 要点一、物体做匀速圆周运动的条件 要点诠释: 物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。 要点二、关于向心力及其来源 1、向心力 要点诠释 (1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。 (3)向心力的大小: 2 2 v F ma m mr r ω=== 向向 向心力的大小等于物体的质量和向心加速度的乘积; 对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方; 线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。 如果是匀速圆周运动则有: 22 222 2 4 4 v F ma m mr mr mr f r T π ωπ===== 向向 (4)向心力的方向:与速度方向垂直,沿半径指向圆心。 (5)关于向心力的说明: ①向心力是按效果命名的,它不是某种性质的力; ②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小; ③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。 2、向心力的来源 要点诠释 (1)向心力不是一种特殊的力。重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。 (2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):

要点三、匀速圆周运动与变速圆周运动的区别 1、从向心力看匀速圆周运动和变速圆周运动 要点诠释: (1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。 例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。 (2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个

高中物理竞赛讲义-运动学综合题

运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

高中物理 相对运动专题讲义

相对运动专题讲解 一、复习旧知 1、质点:用来代替物体、只有质量而无形状、体积的点。它是一种理想模型,物体简化为质点的条 件是物体的形状、大小在所研究的问题中可以忽略。 2、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末,几秒时。 时间:前后两时刻之差。时间坐标轴上用线段表示时间,例如,前几秒内、第几秒内。 3、位置:表示空间坐标的点。 位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。 注意:位移与路程的区别。 4、速度:描述物体运动快慢和运动方向的物理量,是位移对时间的变化率,是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,v = s/t(方向为位移的方向) 瞬时速度:对应于某一时刻(或某一位置)的速度,方向为物体的运动方向。 速率:瞬时速度的大小即为速率; 平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 注意:平均速度的大小与平均速率的区别. 二、重难、考点 (1):力的独立性原理:各分力作用互不影响,单独起作用。 (2):运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律。 (3):力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等。 (4):运动的合成分解:矢量合成分解的规律方法适用。 三、考点: A、位移的合成分解 B、速度的合成分解 C、加速度的合成分解 参考系的转换:动参考系,静参考系。 相对运动:动点相对于动参考系的运动。

1α 绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动。 牵连运动:动参考系相对于静参考系的运动。 位移合成定理:SA 对地=SA 对B+SB 对地 速度合成定理:V 绝对=V 相对+V 牵连 加速度合成定理:a 绝对=a 相对+a 牵连 四、例题讲解 【例1】:如图所示,在光滑的水平地面上长为L 的木板B 的右端放一小物体A ,开始时A ,B 静止。同时给予A ,B 相同的速率0v ,使A 向左运动,B 向右运动,已知A 、B 相对运动的过程中,A 的加速度向右,大小为1α,B 的加速度向左,大小为2α12αα<,要使A 滑到B 的左端时恰好不滑下, 0v 为多少? 【例2】:长为1.5m 木板B 静止放在水平冰面上,物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数 μ=0.25.求:(取g =210s ) (1)木块与冰面的动摩擦因数 (2)小物块相对于长木板滑行的距离 (3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? v

(新)高一物理-运动学计算题

人教版高一物理必修1运动学计算题测试 1、一辆汽车以90km/h的速率在学校区行驶。当这辆违章超速行驶的汽车经过警车时,警车立即从静止开始以2.5m/s2的加速度匀加速度追去。 ⑴警车出发多长时间后两车相距最远? ⑵警车何时能截获超速车? ⑶警车截获超速车时,警车的速率为多大?位移多大? 2、如图所示,公路上一辆汽车以v1=10 m/s的速度匀速行驶,汽车行至A点时,一人为搭车,从距公路30 m的C 处开始以v2=3 m/s的速度正对公路匀速跑去,司机见状途中刹车,汽车做匀减速运动,结果车和人同时到达B点,已知AB=80 m,问:汽车在距A点多远处开始刹车?刹车后汽车的加速度有多大? 3、一辆汽车从A点由静止出发做匀加速直线运动,用t=4s的时间通过一座长x=24m的平桥BC,过桥后的速度是 v c=9m/s.求: (1)它刚开上桥头时的速度v B有多大? (2)桥头与出发点相距多远? 4、一辆汽车以72km/h的速度匀速行驶,现因故障紧急刹车并最终停止运动.已知汽车刹车过程加速度的大小为5m/s2,试求: (1)从开始刹车经过3s时的瞬时速度是多少? (2)从开始刹车经过30m所用的时间是多少? (3)从开始刹车经过5s,汽车通过的距离是多少? 5、汽车刹车前以5m/s的速度做匀速直线运动,刹车获得加速度大小为0.4m/s2,求: (1)汽车刹车开始后10s末的速度; (2)汽车刹车开始后20s内滑行的距离;

6、A、B两车在同一直线上运动,A在后,B在前。当它们相距x0=8 m时,A在水平拉力和摩擦力的作用下,正以v A= 8 m/s的速度向右做匀速运动,而物体B此时速度v B=10m/s向右,它在摩擦力作用下以a = -2 m/s2做匀减速运动,求: (1)A未追上B之前,两车的最远距离为多少? (2)经过多长时间A追上B? (3)若v A=3m/s,其他条件不变,求经过多长时间A追上B? 7、如图所示,A、B两个物体相距7 m时,A在水平拉力和摩擦力的作用下,以v A=4 m/s向右做匀速直线运动,而物体B此时的速度是v B=10 m/s,方向向右,它在摩擦力作用下做匀减速直线运动,加速度大小是2 m/s2,从图示位置开始计时,经过多少时间A追上B? 8、物体在斜坡顶端以1 m/s的初速度和0.5 m/s2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,求:(1) 物体滑到斜坡底端所用的时间。(2) 物体到达斜坡中点速度。 9、汽车前方120m有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上作同方向的直线运动,求: (1)经多长时间,两车第一次相遇? (2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?10、A、B两列火车,在同一轨道上同向行驶,A车在前,其速度,B车在后,其速度, 因大雾能见度低,B车在距A车时才发现前方有A车,这时B车立即刹车,但B车要经过180才能停止,问:B车刹车时A车仍按原速率行驶,两车是否会相撞?若会相撞,将在B车刹车后何时相撞?若不会相撞,则两车最近距离是多少? 11、如图所示,一小物块从静止沿斜面以恒定的加速度下滑,依次通过A,B,C三点,已知AB=12 m,AC=32 m,小球通过AB,BC所用的时间均为2 s,求: (1)小物块下滑时的加速度? (2)小物块通过A,B,C三点时的速度分别是多少?

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高一物理匀速圆周运动练习题

高一物理匀速圆周运动练习题 一.选择题 1.下列说法正确的是() A .匀速圆周运动是一种匀速运动 B .匀速圆周运动是一种匀变速运动 C .匀速圆周运动是一种变加速运动 D .物体做圆周运动时其向心力垂直于速度方向,不改变线速度的大小 2.关于向心力的说法正确的是() A .物体由于做圆周运动而产生一个向心力 B .向心力不改变圆周运动物体速度的大小 C .做匀速圆周运动的物体其向心力即为其所受的合外力 D .做匀速圆周运动的物体其向心力是不变的 3.关于匀速圆周运动的周期大小,下列判断正确的是( ) A .若线速度越大,则周期一定越小 B .若角速度越大,则周期一定越小 C .若半径越大,则周期一定越大 D .若向心加速度越大,则周期一定越大. 4.下列关于向心加速度的说法中,正确的是() A .向心加速度越大,物体速率变化越快 B .向心加速度越大,物体速度变化越快 C .向心加速度越大,物体速度方向变化越快 D .在匀速圆周运动中向心加速度是恒量 5.下列说法中正确的是() A .物体在恒力作用下,一定做直线运动 B .物体在始终与速度垂直且大小不变的力作用下,一定做匀速圆周运动 C .物体在变力作用下有可能做匀速圆周运动 D .物体在恒力作用下,不可能做圆周运动 6.质点作匀速圆周运动时,下面说法中正确的是() A .向心加速度一定与旋转半径成反比,因为2 n v a r = B .向心加速度一定与角速度成正比,因为2n a r ω= C .角速度一定与旋转半径成反比,因为v r ω= D .角速度一定与转速成正比,因为2n ωπ= 7.如图所示,甲.乙两球做匀速圆周运动,由图象可以知道() A .甲球运动时,线速度大小保持不变 B .甲球运动时,角速度大小保持不变

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高一物理圆周运动专题练习(解析版)

一、第六章圆周运动易错题培优(难) 1.如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T,取g=10m/s2。则下列说法正确的是() A.当ω=2rad/s时,T3+1)N B.当ω=2rad/s时,T=4N C.当ω=4rad/s时,T=16N D.当ω=4rad/s时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为,则有 解得 AB.当,小球紧贴圆锥面,则 代入数据整理得 A正确,B错误; CD.当,小球离开锥面,设绳子与竖直方向夹角为,则 解得 , CD正确。 故选ACD。

2.如图,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是() A.滑块对轨道的压力为B.受到的摩擦力为 C.受到的摩擦力为μmg D.受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A.根据牛顿第二定律 根据牛顿第三定律可知对轨道的压力大小 A正确; BC.物块受到的摩擦力 BC错误; D.水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D正确。 故选AD。 3.如图甲所示,半径为R、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A时,小球受到的弹力F与其过A点速度平方(即v2)的关系如图乙所示。设细管内径略大于小球直径,则下列说法正确的是() A.当地的重力加速度大小为R b B.该小球的质量为a b R C.当v2=2b时,小球在圆管的最高点受到的弹力大小为a D.当0≤v2<b时,小球在A点对圆管的弹力方向竖直向上【答案】BC 【解析】 【分析】 【详解】 AB.在最高点,根据牛顿第二定律 2 mv mg F R -=

学×思面授班 高一物理 秋季目标班 讲义 秋季第1讲 (1)

**************************************************************************************** 教师版说明: 1.建议老师在梳理知识网络的同时,对基本概念进行复习。框图中涉及了全部概念,重点知识回顾部分对比较重要的概念进行了详细叙述,对于一些比较简单的概念老师带领学生一起回忆一下即可。 2.概念中划线的部分在学生版中作为填空出现。 3.平均速度、瞬时速度、平均速率、瞬时速率、加速度这几个比较重要的、易混的概念在后面的模块中会重点辨析,这里可以跳过,重点是把后面不讲的概念给学生复习一下。 **************************************************************************************** 暑期课程中,我们已经学习过描述物体运动的基本物理量,下面进行一个简单归纳。首先要明确什么是“机械运动”;为了描述物体是否运动需要引入“参考系”;为了定量描述运动需要引入“坐标系”;为了简化复杂的运动,引入了“质点”这个理想化模型;初中学习过描述运动的3个物理量时间、路程和速度,高中对其进行了扩展,对应的物理量分别是“时间”和“时刻”、“位移”和“路程”、“速度”和“速率”;由于上述物理量不能完备的描述运动,我们又引入了“加速度”的概念。 1.质点重点知识回顾 基础知识梳理 第1讲运动学概念专题

在某些情况下,可以不考虑物体的大小和形状,这时,我们只突出“物体具有质量”这一要素,把它简化为一个有质量的点,称之为质点。质点并不存在,是一种理想化的物理模型。 2.路程和位移 ⑴路程:物体运动轨迹的长度,只有大小,没有方向,是标量。 ⑵位移:描述物体位置变化的物理量。 由初位置指向末位置的一条有向线段,既有大小,又有方向,是矢量。 ⑶路程与位移的大小关系:位移的大小≤路程。 3.速度 ⑴速度是描述物体运动快慢的物理量,是位移对时间的变化率。速度不但有大小,而且有方向, 是矢量。速度的方向就是物体运动的方向。 ⑵平均速度:物体一段时间内的位移与发生这段位移所用时间的比值, x v t ? ?=。 ⑶瞬时速度:物体在某一位置(某一时刻)的速度, x v t ? ? =(其中t?趋于零)。 4.加速度 ⑴加速度是表示速度变化快慢的物理量。 ⑵加速度是速度的变化量与发生这一变化所用时间的比值,通常用a表示, v a t ? = ? ,其中v ?为速 度的变化量,v=v v ?- 末初;t?表示对应的时间变化量,即t t t ?=- 末初 。 ⑶加速度是矢量,方向与速度变化量的方向相同。 ⑷在国际单位制中,加速度的单位是2 m/s。 5.匀速直线运动 物体在一条直线上运动,如果在任意相等的时间里位移相等,这种运动就叫匀速直线运动。匀速直线运动是瞬时速度保持不变的运动。 6.匀变速直线运动 沿一条直线,且加速度保持不变的运动,叫做匀变速直线运动。 1.在研究物体的运动时,下列说法正确的是 A.研究一端固定并可绕该端转动的杠杆的运动时,杠杆可视为质点 B.研究火车通过站台所用的时间时,火车可以视为质点 C.评委为体操运动员的“跳马”动作评分,运动员可视为质点 D.研究月球绕地球的运转时,月球可视为质点 【答案】D 2.关于时间和时刻,下列说法正确的是 A.物体在5s时指的是物体在5s末时,指的是时刻 B.物体在5s内指的是物体在4s末到5s末这1s的时间 C.物体在第5s内指的是物体在4s末到5s末这1s的时间 D.第4s末就是第5s初,指的是时刻 【答案】A CD 3.下列说法中正确的是 A.出租车应按位移收费 B.在单向直线运动中,位移就是路程 C.在曲线运动中,同一运动过程的路程大于位移的大小 D.在跳远比赛中,裁判员测定的是运动员的路程 基础训练

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

(word完整版)高中物理圆周运动练习题

1.关于物体做匀速圆周运动的速度,下列说法中正确的是() A.速度大小和方向都改变 B.速度的大小和方向都不变 C.速度的大小不变,方向改变 D.速度的大小改变,方向不变 2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F及摩擦力 F f的示意图,其中正确的是() A.B.C.D. 3.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是() A. 16 N B. 12 N C. 8 N D. 6 N 4.下列对圆锥摆的受力分析正确的是() A. B. C. D. 5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是() A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力 6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则()

A.物块A不受摩擦力作用 B.物块B受5个力作用 C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小 D.A对B的摩擦力方向沿半径指向转轴 7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是F f,则物块与碗的动摩擦因数为() A. B. C. D. 8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是() A.当转盘匀速转动时,P受摩擦力方向为c B.当转盘匀速转动时,P不受转盘的摩擦力 C.当转盘加速转动时,P受摩擦力方向可能为a D.当转盘减速转动时,P受摩擦力方向可能为b 9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则() A.物体的合外力为零 B.物体的合力大小不变,方向始终指向圆心O C.物体的合外力就是向心力 D.物体的合力方向始终与其运动方向不垂直(最低点除外) 10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转

学而思高一物理讲义

第一讲直线运动4级公式法运动学计算 循序渐进:阶梯成长体系 本讲难度:★★★★☆ 高考难度:★★★☆☆ 直击高考:高考考点分值 高考比重平均0~6分 高考初级考点(概念层面)物理抽象概念应用 高考中级考点(间接考察)运动学基本公式 高考高级考点(综合考察)运动状态分析 高考考题20062007200820092010 例题18 画龙点睛:重点中学试题 1.(09北京四中期中) 下列关于加速度的说法,正确的是() A.物体的速度越大,加速度越大 B.物体的速度变化量越大,加速度越大 C.物体的速度变化越快,加速度越大 D.物体的速度恒定,加速度为零 【答案】C D

知识点睛 一、知识网络图 二、 例题精讲 概念纠错题 机械运动 【例1】下列运动中不属于机械运动的有() A.人体心脏的跳动B.地球绕太阳公转 C.小提琴琴弦的颤动D.电视信号的发送【答案】D 质点 【例2】在下列各运动的物体中,可视为质点的有()A.汽车的后轮,研究汽车牵引力的来源 B.沿斜槽下滑的小钢球,研究它沿斜槽下滑的速度

C.人造卫星,研究它绕地球的转动 D.海平面上的木箱,研究它在水平力作用下是先滑动还是先滚动 【解析】A与汽车的结构形状有关不能看成质点,D与木箱的结构有关,因为判断滚动要考虑杠杆因素【答案】B C 匀速与匀变速 【例3】下列运动中,最接近匀速直线运动的是() A.匀速转动的旋转餐厅 B.公共汽车在两个车站间的直线运动 C.国庆阅兵时军人正步走过主席台 D.跳伞运动员从静止在空中的直升飞机上跳下后的落体运动 【答案】C 【例4】速度及加速度的定义是运用了() A.控制变量法B.建立物理模型法C.等效替代法D.比值法 【答案】D 【例5】在匀变速直线运动中,下列说法中正确的是() A.相同时间内位移的变化相同B.相同时间内速度的变化相同 C.相同位移内速度的变化相同D.相同路程内速度的变化相同 【答案】B 【例6】关于加速度和速度关系,以下说法中正确的是() A.加速度越来越大,则速度越来越大 B.运动的物体加速度大,表示了速度变化快 C.加速度的正负表示了物体运动的方向 D.物体运动加速度的方向与初速度方向相同,物体的运动速度将增大 【解析】加速度是表征物体速度变化快慢的物理量,B对,加速度越来越大时,速度的变化越来越快,但速度不一定越来越大,A错;速度的正负表示物体运动的方向,加速度的正负表示加速度与速度是否同向,若同向则物体做加速运动,D对. 【答案】B D 概念应用题 参考系 【例7】在无云的夜晚,看到月亮停在天空不动;而在有浮云的夜晚,却感到月亮在很快移动这是因为此时我们选择了为参考系的缘故,而此时必须是有风的夜晚,相对于地面是运动的.【答案】浮云、浮云

高中物理实验:圆周运动

高中物理实验:圆周运动 实验仪器:自行车 教师操作:让学生观察自行车后轮、齿轮、脚踏板转动现象。 实验结论:皮带、齿轮传动——线速度相同;同轴转动——角速度相同。 向心力 实验仪器:向心力实验器(J2131)、弹簧测力计、停表、游标卡尺 向心力实验器: 指针较长,圆柱体的少量位移经过杠杆的放大,使显示更为明显。但指针有质量,同时,转动时会做离心运动,所以制造时加了指针配量,使指针系统成静平衡。再通过适当选择摆杆的质量维持指针系统的动平衡。因而实验时无需考虑指针的质量和它可能做离心运动的影响。 转动轴由立柱上的钢珠支撑,转动轴下部有定位锥套。实验前调整配重的位置时应将定位锥套退下,调整后将套重新推向上。 构造 游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺

身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。 深度尺与游标尺连在一起,可以测槽和筒的深度。 尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐。 使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数 读数 读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。然后看游标上第几条刻度线与尺身的刻度线对齐,如第6条刻度线与尺身刻度线对齐,则小数部分即为0.6毫米

相关主题
文本预览
相关文档 最新文档