当前位置:文档之家› 摆线齿轮式液压马达简介

摆线齿轮式液压马达简介

摆线齿轮式液压马达简介
摆线齿轮式液压马达简介

摆线齿轮式液压马达简介摆线齿轮式液压马达简介

液压马达属于能量转换装置,是能够产生连

续旋转运动的执行元件.液压马达能把输送来的

油液的压力能转换为机械能,其输入量是油液的

压力和流量,输出量是转矩和转速(角速度).液压

马达按其结构可以分为齿轮式,叶片式及柱塞式

等若干种.

本文主要介绍欧洲戴恩福斯公司生产的较有

特色的摆线齿轮式液压马达.该公司是近年来欧

}}ll最大的生产高扭力低速液压马达的厂商,已能

为用户提供1600多种规格的产品,主要用于金属

切削机床及术工机床,农业及林业机械,工程机

械.注塑及橡胶机械,冶矿设备,船用设备及特种

车辆上.

液压马达的规格一般用额定流量来表示,这

是指在正常工作条件下在额定转速和额定压力

下输入到马达中去的流量.而液压马达的排量则

是指马达轴每转一转.由其密封容腔几何尺寸变

化所算得的输入油液的体积.该公司提供的规格

(额定排量)为O.008I/r,0.8I/r(8cm/r,

80Ocm/r);其速度范围包括从最小型马达可达约

2500r/rain到最大型马达可达约600r/minf其最

大工作力矩从13N.m到250C,N.rn(峰值),最大输出功率从2kW到6w.对于已知捧量的液压

马达,其转速是由油液流量的大小而决定,转矩是由其压力差所决定.

,摆线齿轮式液压马达的简单原理

齿轮式液压马达的工作原理是以内啮音齿轮

为设计

输出力

图3

图1摆线齿轮式液压马达的工作原理

液压马达的配油阎由位于内齿轮内部的小齿

轮经一个万向轴同步驱动,以实现该液压马达的各个吸油腔及压油腔能准确地填满油液或抽空泊液而无损失.戴恩福斯公司设计有两种形式的配油阀:

出油口

?

32?

型配油闻的结构

油阎

…上海机床,

(1)柱型配油阉.废配油阉与输出轴联成一体

(见图2所示).当从齿轮组传递能量到输出轴时, 其万向轴目口带动该配油阀转动.

(2)盘型配油阉.该配油阀与输出轴分离,而

由一根短的万向轴驱动(见图3所示).

二,齿轮式液压马达的类型

(1)输出轴配置滑动轴承的无滚柱液压马达

这种液压马达的特点是定齿环没有配滚柱,

其柱型配油阉与输出轴联成一体,该输出轴由滑

输出轴

目口

骨…吕

@@

动轴承支持,结构较紧凑,能实现中等压力下长时间运转或高压力下较短B~l可的运转.

(2)输出轴配置滚针轴承的无滚柱液压马达

这种液压马达的特点也是定齿环没有配壤

柱.柱型配油阀与输出轴联成—体,只不过输出轴由滚针轴承支持,结构也很紧凑,能实现中等压力下长时间运转或高压力下较短时间的运转,配置

滚针轴承能使这类液压马达承受静态和动态径向载荷.

图4摆线齿轮式液压马达的各种结构

(3)配有滚柱的液压马达

这种液压马达的定齿环所配的滚柱减轻了齿

缘周围的应力,从而分散了滚齿的负载,井减少了内部小齿轮上所受的切向力.由于改善了摩擦条件,故可在连续的高压下获得较长的工作寿命及较好的工作效率,带滚柱的齿轮组可保证应用在薄油膜或经常承受反向载荷的场台.

“)输出轴配置滚针轴承的有滚柱液压马达

该液压马达的结构大致与上述(3)类似.由于

配置在辅出轴的滚针轴承能够吸收较高的静态或动态的径向载荷,承受频繁的起动和停止以及输出轴存在振动的状况.所以这种液压马达适于长期工作在高压,薄油膜或经常承受反向载荷的场合.

1999年第1期

(5)输出轴配置圆锥滚子轴承的有滚柱液压

马达

该藏压马达定齿环配有滚桂,盘型配油阀与

阉的驱动部分分开.采取分离式驱动以及配置液压平衡盘型配油阀,能使液压能及机械能的损失降至最低.这类液压马达也适台在高压,薄油膜,

经常承受反向载荷等连续出现异常状况的工作条

件下运行.圆锥滚子轴承能使藏压马达承受静态

或动态的径向载荷.这种类型的液压马达在很高

压力下也能获得高效率以及较好的起动特性,且

在低速条件下运转也非常平稳.

(6)耐腐蚀的液压马达

上述1,3两种类型的液压马达可配置防锈部

件,如输出轴,键,前盖,前盖螺栓.其防尘环材料

?

33?

?

备@

?_LII___II_II

为塑料,防尘盖为防锈材料(见图5所示).机的直接驱动切割油缸等. 围5耐腐蚀的液压马达

(7)低内泄的液压马达

其柱型配油阀和输出轴分为两部分,输出轴

由滚针轴承支持.这类液压马达适合低泄漏的工

作条件,如叉车使用的转向器等.

腿9短型液压马连(左)及超短型液压马达(右)的外形

上述第5种液压马达可提供短型或超短型.

适用于承受轴向和径向负载能力的齿轮传动系统

中.

(I1)加压制动及加压放松制动的液压马达

围6低内泄液压马达

(8)配置凹八型法兰的液压马达

围10加压割动(左)厦加压最拱制砑(右)的瘫压马遮耕?形22加压制动型采用机械鼓式刹车(正制动).

加压放松制动型采用盘式刹车,这是由弹簧进行

{睁I动,再由液压进行放松.

马达三,齿轮式液压马达的选择

围7加装凹型法兰的藏压马达

上述1,3,5三种液压马达可加装凹八型法

兰,这样便可将它装在轮毂或卷扬机的卷筒内,使

得径向载荷传递至该液压马达的两个轴承中阿,

且装配尺寸也紧凑.

(9)小型液压马达

围8小型液压马达的构造

小型液压马达有一个集成的旁路阀,加装万

向轴等配件后可用于功率因数高的设备,如割草

?

34?

首先,根据用户各自应用的需要而选择液压

马达的类型,然后按照应用场台所要求的力矩和

速度决定其大小.

各种型号液压马达的功能图分别给出该马达

在不同的压力差?P和油量Q的情况下工作力矩

M(垂直轴)与转速n(平行轴)之间的关系.

当压力差和油量为常数时这些曲线常常重叠

于功能图坐标轴系.当输出功率为常数(双曲线) 或2总效率为常数时,其曲线也在图上给出.后者的曲线呈环型,有点像贝壳,所吼也经常称谈功能图为”贝壳图(冕图11).

1.连续工作负载/.目1断工作负载及峰值负载

该功能图分为一个暗影区A和二个淡影区

B.暗影区A代表液压马达的连续工作区.在这个区域中该马达能够连续运行,并可达到最佳效率和长久寿命.

两个姨影区B表示该液压马达处于间断负载

下.当液压马达由于制动所造成的高力矩(压力差)而工作于变动负载(或反方向负载时),可利用该间断区域,并能使液压马达维持每分钟有最大

l0的间断速度或间断压力差的运行.该条件下

不能够同时使用间断速度和间断压力差.间断压…上海机束)

力差和力矩变化的上限不能在每分钟超过1% (峰值负载时).最大的峰值负载值在每种液压马达的技术指标中均已列出.例如,当溢流阀打开或方向阀开启或关闭时会出现峰值高压.故必须安装溢流阀和双向冲击阀使压力峰值不会超过最

大峰值.在压力及振动较大的系统中,应配置压力

表及时{刭量压力和力矩的峰值.

{,

l*

4竺三2{}=={lIt

r\\\I\———,

厶/干,\\,\\|

l\\f\竺

\一\.,1卜,\l厂,—竺二;

}?k奠/r,,L竺05Mp,?1.

?,

f,,

,,Il?\鬟{r——I,Il\

l::J土r—r1——:::,10

f=kll干==}卜F:A一一日050100150200250300350400450500550600F,5O7o.50转速(r/rain) 图]]某型号敢压马达的功能圈(供参考)

为了实现无故障运行,应根据可能的连续及降.

可断参数值选用液压马达的大小.探证实际压

力峰值不会超过该液压马达最大的压力峰值.

2.葱翠

液压马达的总效率是指容积效率()和液

压一机械效率()的乘积:

(1)窑积效率

二二二?——————————一01——————————-—??一…1I

o,=O呲

i

O2;O

03=Oleak

琏诬n

图l2客稿效率的表示

图l2中Q曲线的斜度是容积效率的函效.

该斜度给出供油量转化成输出轴转速的比例.内

部的滞流将流经缝隙和轴承表面,起着润滑和冷

却剂的作用.当负载(压降)增加时,滞流也相应增

加,影响到齿轮组的油量也相应减少,使其转速下

1999年第1期

某型液压马达为倒:该液压马达必须能驱

动一个375r/min的转轴,输出力矩为3l0N.m.

若容积效率以100%计,拄几何排量乘以转

速,流到马达的油量应为471/rain.

若提供50t/min的泊速,则其容积效率为:

Tk.=×100=9d%

u

(2)液压一机械效率

l

,,机械效率砌75MPa

技率

转速n

图l3丧压一机械效率的表示

低和高的转速都会影响液压马达输出扭矩曲

线的降低.压力降为常效,在低转速时,扭矩曲线

的降低是由于机械能的损失}在高转速时扭矩曲

线的降低是由于马达通过高流量时的压力损失. 当液压马达在起动时,机械损失为最大值,这

?

35?

uJz0H×如

是因为此时旋转部件的润滑膜尚未建立,经过数

转后,润精膜彦立起来,摩擦损失减少,力矩增加. 压降曲线与力矩垂直轴的交点为该压降值时

马达的启动力矩.某型液压马达在压降为

17.5MPa时的启动力矩为260N.m,这样在相同

压降下它可蹦在润滑膜建立后马上就能达到

31ON.m.

压降曲线在功能图上并不和力矩轴相交,但

各种类型的藏压马达的技术数据中列出了最大连

续压降和最大间断压降条件下的最小启动力矩. 在高速区的力矩损失达到最大.油置的增加

导致油路和端口处的更大压力损失.这样能提供给齿轮组的压降减少丁,即液压马达输出较小的力矩.

为了计算液压一机械效率n…有必要求出在

定油量和在定压降下马达的输出力矩M若给出

马达在压降为17.5MPa,油量为50t/m[n时的实

际力矩是310N.m.那么相同压降下的理论力矩

可计算出来:

~350(N.m)

实际力矩除以该理论力矩就得出液压一机馈

效率:”:MX

,

100

,

oA:88.6

(3)总效率

总效率对于该型马达在压降Z:XP=17.5MPa

和流量Q=501/min时可得:

“:×”;塑一8328%

也可以在其功能图上的效率曲线上读取该效

率值

(4)功能图的使用

般说来,为某应用场合选择液压马达(泵

等)时,可使用功能图.

例如某型液压马达要求具有这样的输出:

最大转速:425r/rain(连续运行)

最大力矩:260N.m(连续运行)

可以比较各种般压马达样本资料中的最大转

速和最大力矩.

然后利用相应各种液压马达的功能图,找出

相应的工作点,即垂直轴的力矩值(M一26oN.m) 和水平轴上的转速值(n=425r/min).

同时,可相应查出压降AP,流量Q及总效率

在经济和技术上整体考虑的最重要因素是:

液压系统的起始成本,效率或工作寿命(包括价

?36-

格,轴承选用,运行成本,工作压力等).

若已决定该液压马达的大小,贝!l可决定液压

泵的容量,该液压泵必须能在11.9MPa时达到油流量701/min.

如果在现有系统中巳使用某液压泵,则液压

马达应尽量选择大些.

C5)最小转速

在异常低的转速下,报压马达可能运行不够

平稳.这是为何每种液压马达都有一个最小转速的缘故在边界情况下——即应在最终选择太小和类型之前,在与系统有关的工作条件下进行某型液压马达的试验.

为了在异常低速下变得平稳运行,刑马达的

泄漏应为常数.目而建议选择带盘型配油阀的马达,而不要选择较小排量的液压马达.当负载为常数,回流压力为0.3,0.5MPa,最小的油粘度为

35cSt(厘泡)时,将得到最佳效果.

四轴承的选用

1.辅出轴承受的负载

在大多数应用场合中,液压马达应能承受: (1)直接作用在马达输出轴上的外部径向和

轴向力(例如车辆的重量).

(2)从齿轮.链轮,三角皮带或卷扬机轮鼓上

传递来的径向力.

对于这些应用时,内部带滚柱轴承的液压马

达将尤其适合.

图14安装滚针轴承的液压马达

另外,结构紧凑的滚针轴承能吸收较大的径

向力且滚针轴承的工作寿命不受轴向负载的影响(见图14所示).

圆锥滚子轴承也能够吸收较大的径向负荷和

个方向的轴向力(见图15所示).

《上海机床》

臣】5安装圆锥滚子轴承的艟压马过

2.轴承毒命和转速

般原则是寿命与转速成反比.当转速减半

时,寿命加倍.因此轴承寿命可以除了由速度外, 也可以根据轴的负载等计算出来.

五,安装殛启动

1岳装

按每个液压零部件的安装要求安装各渣压零

部件

液压马达不能强行地或扭曲地安装.

不能使用妙线及其他不适用的密封材料,应

使甩密封旺,o形密封匾,软金属挡圈等

在管路和油管未安装好之前,不要取掉上面

的塑料塞头.

在液压泵的油路中应装一十压力表.

不要用超过说明书中的最大扭紧力扭紧螺

液压池必顽好于清洁度等级19/16

(IS04406)数控机床最低为17/14,普通机床最

低可为20/17.每次均经过滤油器供油.

2启动和运行

启动原动机,并且尽可能地在低速运行.此时

应使所有放气螺栓处于开放的位置.直到无气泡. 要确定所有油路均充满液压油.

液压系统中.含有空气时的现象为:

(1)液压马达或油缸的颤抖;

(2)噪音.

在完全放完气泡之前不能再给系统加载.

检验{葭压系统的臻密性.

在必要时更换滤油器.

运行一段时间后应检查油的状况.

经常检查系统部件的松紧度和油面的高度.

六,制动

藏压马达经常用于对负载进行制动.液压马

1999年第1期

达也可起液压泵的作用,将负载的动能(质量,速度)转化成液压能量(油量,压力).

如捕鱼业中的起阿机,起重吊车或挖掘机的

起重臂.以及某些机床的液压传动装置等.

液压马达制动力矩及双向冲击阀的开启压力

决定负载制动的速度.

目瞄

盈16液压马达用于动的场台

1制动力矩

对于液压马达,其渣?机械效率(0表示其

有效力矩小于其理论值:

M=M×-m

对于液压泵其液压一机械效率表示施加到藏

压泵上产生一定压力降的有效力矩太于理论值: M

把液压马达当作液压泵(制动)时.制动力矩

(M制动)与在一定压力降时的液压马达有效力

矩的关系如下:

M=l盥

M_;

M

M—=

2.双向冲击闷的开启压力

制动力矩可以由双向冲击阀的开启压力得到

?

37?

赘e_j8

调节这个开启压力应设定在油量最大状况时(当油量从最小到最大时,可以推算出该开启压力将上升2O%,30).

为避免压力峰值过高.该双向冲击阀应能尽

快响应操纵,且在安装时尽量靠近液压马达进出油口处.

3.油的I-充

当液压马达被用于制动某负载时,若油液不

足将导致:齿轮组的气寓现象及制动能力的下降. 固此在液压马达的吸油口应保持正的供油压

力.供油压力(P)应大干马达的油路到齿轮组处

的压力差.

该油路处的压力差取决于马达的类型,油量

和油的粘度.

在闭环油路中,当用供油泵(P1,

1.5MPa)供油时,会得到正的供油压力.在开环系

统中,当液压马达驱动一个惯性较大的负载时.应保证油的再补充要求.

止回阀的开启压力应大于供油压力(Pf)及止

回阀与液压马达”吸油?”之间的压力差之和

当方向阀切换位置时.关闭从供油泵到颗压

马达的油路.此时负载的惯性将继续驱动该马达. 为此应安装—个止回阀保证液压马达可以再补

充油,否则液压马达会放空其内部的油液

d.淳漏

当要保持某负载在较长时闻内不移动位置时

(如某些机床的蔽玉传动装置,起重机及卷扬机的起吊装置),应注意两个条件:首先.若液压马达有排油管路时应确有油液的再补充,否则液压马达

齿轮组将会慢慢地放光内部的油,而负载会自动

落下

其次,由于液压马达无法完全地保持一负载

在固定位置,其内部的泄漏将造成负载挪动位置

(渗漏)

(上海第十钢铁厂施;齐华编写)

?

信息窗?

?

美国上了年纪的人狠赶”屯子快车?

目前,因特网(/nterrtet)已联接175个国家电脑以及使用网络的上了年纪的人数正在快速扩

的24万个网络,并成为建立20万个网点的网络大.其中,5O岁以上在家拥有电脑的比例已达到

系统.1996年lO月,美国34所大学叉提出了建dO,而1995年的比例只有29.旧盘山的一家

立第二代因特网的计划,并将信息传播速度进一市场研究机掏果用随机的方式用电话谓查了603

步提高到目前主干网络传输速度的12倍.据说随位年龄在50岁_上的人,其误差为土{.谓查表

着信息高速公路的建立,读者可以在网络上直接明:70配置电脑的人是因特网的用户.72的人

浏览作者的作品,并自行将其编辑整理打印成册.利用因特网收发电子邮件,59的人研究某一个

网络书刊已不再需要传统的编辑,制版,印刷等工专题,53的人查阅时

事.47的人索取旅行信

序,并将最终取代目前的腔印普通书刊以至光盘息,{3的人关心气象数据.而且越来越多的人

书刊.为了不面临窘境.在美国,许多曾认为自已使用因特网的时同在增加.在1995年.只有6

跟不上信息时代潮流的上了年纪的人,正在以破的人每周上网时同超过lO小时,1998年已增加

记录的速度赶上来.据1998年u月的报道,拥有到l5

?

日本FANUC公司已研制成15i数控装置?

据日刊报道,日本FANUC公司已研制成能

以lnm为单位(1辆采三面巧蘧衲精密插补

及可以实行最佳加减速控制,以进行超高速,高

精度加工的FANUC系列l5i数控装置.l5j数控

装置具有的”纳米插补”的功能,能把输送到数字

伺服的位置指令计算到以纳米为单位的精度这

个单位是微米的t/t000.19i是对以往”1疆”的内

部装置进行了改进,从而实现了升级,其速度可

望提高8倍,配有可生成自由益线的l5j数控装

置,可用于5面加工中心对模具以及飞机零件等

?

38?

T—X

复杂工件进行加工.

l5i数控装置最多可实现联动控制的轴数为

24个,而15B仅可控制8个轴.l5i控制装置的外形大小仅是l5B的25.

l5i数控装置采用64位超高速处理器进行

运算,可选用)4tm,0.111m,0.0htm,lnm中的任

意一种单位进行输入.该装置具有高精度轮廓控制功能,可接机床的最高速度及加速度进行最佳加减速,而不会降低其加工精度.

《上海机床》

摆线液压马达

摆线液压马达编辑本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 19世纪50年代末期,最初的低速大扭矩液压马达是由油泵的一个定转子部件发展而来的,这个部件由一个内齿圈和一个与之相配的齿轮或转子组成。 中文名摆线液压马达作者中华人民共和国工业和信息化部丛书名冷配在线出版社机械工业出版社出版时间2010-07-01版次1目录1摆线液压马达2优点3国家标准文件? 基本信息 ? 内容简介 ? 图书目录 1摆线液压马达编辑内齿圈与壳体固定能接在一起,从油口进入的油推动转子绕一个中心点公转。这种缓慢旋转的转子通过花键轴驱动输出成为摆线液压马达。这种最初的摆线马达问世后,经过几十年演化,另一种概念的马达也开始形成。这种马达在内置的齿圈中安装了滚子.具有滚子的马达能提供较高的启动与运行扭矩,滚子减少了摩擦,因而提高了效率,即使在很低的转速下输出轴也能产生稳定的输出。通过改变输入输出流量的方向使马达迅速换向,并在两个方向产生等价值的扭矩。各系列的马达都有各种排量的选者,以满足各种速度和扭矩的要求。 2优点编辑摆线液压马达是一轴配流镶齿定转子副式的小型低速大扭矩液压马达,优点如下: 1、体积小,重量轻,它的外形尺寸比同样扭矩的其它类型液压马达小得多。 2、转速范围广,可无级调速,最低稳定转速可达15转/分,安装布置方便,投资费用低。 3、在液压系统中可串联使用,也可并联使用。 4、转动惯性小,在负载下容易起动,正反转都可使用,而且换向时不用停机。摆线液压马达用途广泛,主要用于农业、渔业、轻工业、起重运输、矿山、工程机械等多种机械的回转机构中。 国外应用摆线液压马达的例子: 1 农业用:各种联合收割机,播种机,旋耕机,割草机,喷雾机,饲料搅拌机,地面钻孔机。 2 渔业用:起网机。 3 轻工业用:卷绕机,纺织机,印刷机,营业用洗涤机。 4 建筑工业用:压路机,水泥搅拌机,清扫车。 二、结构及性能特点 摆线液压马达为输出轴与配流阀一体成型,镶齿式定转子副摆线液压马达,具体结构见图一,主要功能特点: 1 采用了端面配流和轴面配流,结构简单紧凑,配流精度高; 2 采用镶齿定转子副,机械效率高,高压运转寿命长; 3 采用双联角接球轴承,可以承受较大的径向和轴向负载,摩擦力小,机械效率高。 4 先进的配流机构设计,具有配流精度高和磨损自动补偿的特点。 5 马达允许串联和并联使用,串联使用时应接外泄油口。 6 采用圆锥滚子轴承支撑设计,具有较大的径向承载能力,使得马达可直接驱动工作机构。 7 多种法兰、输出轴、油口等安装连接形式。 三、运转注意事项 (1)运转前检查液压系统全部元件是否连接正确,通过滤清器把油加到指定高度。 (2)在无负荷状态下起动运转10~15分钟,并进行排气、油箱中有泡沫,系统有噪音,以及马达油缸有滞进都证明系统中有空气。 (3)排除空气后,加满油箱,再开始给马达渐渐增加负荷,直到最高负荷,观察是否有不

液压泵齿轮泵的工作原理

液压泵齿轮泵的工作原理: 1.齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。 外啮合双齿轮泵的结构。一对相互啮合的齿轮和泵缸把吸入腔和排出腔隔开。齿轮转动时,吸入腔侧轮齿相互脱开处的齿间容积逐渐增大,压力降低,液体在压差作用下进入齿间。随着齿轮的转动,一个个齿间的液体被带至排出腔。这时排出腔侧轮齿啮合处的齿间容积逐渐缩小,而将液体排出。齿轮泵适用于输送不含固体颗粒、无腐蚀性、粘度范围较大的润滑性液体。 泵的流量可至300米3/时,压力可达3×107帕。它通常用作液压泵和输送各类油品。齿轮泵结构简单紧凑,制造容易,维护方便,有自吸能力,但流量、压力脉动较大且噪声大。齿轮泵必须配带安全阀,以防止由于某种原因如排出管堵塞使泵的出口压力超过容许值而损坏泵或原动机。 高真空齿轮泵工作原理:高真空齿轮泵依靠主从动齿轮的相互啮合把泵体分成吸油腔和压油腔。吸油腔由于相互啮合的轮齿逐渐脱开,密封工作容积逐渐增大,形成部分真空,因此油箱中的油液在外界大气压力的作用下,经吸油管进入吸油腔,将齿间槽充满,并随着齿轮旋转,把油液带到左侧压油腔内。在压油区一侧,由于轮齿在这里逐渐进入啮合,密封工作腔容积不断减小,油液便被挤出去,从压油腔输送到压力管路中去。 电动机运转时,推进装置随着主轴一起高速运转本推进装置相似于一轴流泵,其排空(抽真空)的速率远远大于齿轮啮合排空的速率,随着推进装置的推进作用,齿轮啮合的反泄露被阻滞,其形成的极限真空自然得到了大大的提高,处于较低位置的油液则被迅速吸入泵腔内,然后经排油腔被压入出口排出。 当油路中的阻力(压力)超过所设定的安全压力时,安全阀就启动,使排油腔的油回到吸油腔,从而保持压力不再上升,安全阀起过载保护作用 外齿轮泵有两根相同尺寸的啮合齿轮轴。驱动轴连接电机或减速机(通过弹性联轴器)并带动另一根轴。在重载型工业齿轮泵内,齿轮通常与轴为整体(一个部件),轴颈的公差很小。外齿轮泵的运行原理很简单。液体进入泵吸入端,被未啮合的齿间空穴吸入,然后在齿间空穴内被带动,沿齿轮轴外缘到达出口端。重新啮合的齿将液体推出空穴进入背压处。有三种常用的齿轮形式:直齿、斜齿和人字齿。这三种形式各有利弊,CB—B齿轮泵的结构,有不同的应用。直齿是最简单的形式,在高压工况下为最优应用,因为没有轴向推力,且输送效率较高。斜齿在输送过程中的脉动最小,且在较高速度运行时更加安静,不锈钢保温泵,因为齿的啮合是渐进式的。但是,由于轴向推力的作用,轴承材质的选用可能会造成进出口压差有限、处理粘度较低。因为轴向力会将齿轮推向轴承端面而摩擦,所以只有选用硬度较高的轴承材质或在其端面作特殊设计,才能应对这种轴向推力。为使齿轮泵的承压能力最大化,这些配合部件之间的间隙必须愈小愈好以

液压马达的工作原理

液压马达工作原理 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列关系

摆线液压马达

BM2摆线液压马达 BM2马达是一种轴配流摆线齿轮液压马达,适用于注塑机和小型 车辆、机械的驱动。BM2马达的特点: ?采用镶齿定转子副设计,运转平稳,使用寿命长 ?启动压力低,换向方便 ?在液压系统中可以串联或并联使用 ?可靠的密封控制手段,能够承受较高的压力,确保马达无泄漏 ?多种发兰、输出轴、油口等安装连接形式 ?体积小,结构紧凑 主要性能参数 排量ml/r 80 100 160 200 250 315 400 流量L/min 额定50 53 53 53 53 53 53 最大57 57 57 57 57 57 57 转速r/min 额定600 480 305 240 185 151 128 最大650 520 330 270 210 180 140 压力MPa 额定13.8 13.8 12.4 12.4 12.4 10.3 9 最大15.5 15.5 13.8 13.8 13.8 12.4 10.3 扭矩Nm 额定150 189 259 315 385 408 435 最大170 213 287 348 395 479 485 说明: ●最大工作压力指入口最大允许压力 ●额定工作压力指工作压差 ●不应同时在最大转速和最大压力下使用马达 ●最大工作条件允许持续的时间为6秒 ●推荐用油:抗磨液压油,粘度37~73cst,油液清洁度ISO18/13 ●最高工作油温80℃ ●在马达全负荷工作前,必须在30%的额定压力下磨合1小时以上 ●可靠的动密封控制手段,马达允许的最大背压可达7Mpa,为获得良好的寿命及综合性能,建议不超过3.5Mpa,超过时需接外泄油管,接外泄管时,应确保马达内总能充满油。外泄油管路应有一定的节流保持0.35Mpa以上的背压。接外泄油管除可以保持较低的背压外,还可以使马达内产生的磨损污染带走,并可产生一定的冷却作用。 产品订货信息 订货参见尺寸及外形图,根据所选用的马达的具体型式从下表中选择对应编

齿轮泵工作原理及结构

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮 泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,

这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积 中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又 逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由 于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气 泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

液压马达分类与原理

创作编号: BG7531400019813488897SX 创作者:别如克* 液压马达分类与原理 (一)液压马达分类 (二)齿轮马达的工作原理 图2-12为外啮合齿轮马达的工作原理图。图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a 和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。这里p代表输入油压力,B代表齿宽。在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。随着齿轮的旋转,油液被带到低压腔排出。 图2-12 啮合齿轮马达的工作原理图 齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。 (三)叶片马达的工作原理 图2-13为叶片马达的工作原理图。当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。同样,当压力油进入叶片5和叶片7之间时,叶片

摆线液压马达

摆线液压马达类:专业生产各种类型液压马达和替换进口马达 丹佛斯DANFOSS,型号液压马达完全替换 (OMP,OH,OMR,DS,OMH,OMEW) (OMS,OMT,OMV) 丹佛斯DANFOSS液压马达 1.微型马达(OML,OMM),中型马达(OMP,OH,OMR,DS,OMH,OMEW),大型马达(OMS,OMT,OMV), 40系列轴向柱塞马达 ,90系列轴向柱塞马达 ,L型和K型变量马达 ,TM系列轴向柱塞马达,DCM系列径向柱塞马达,轴向柱塞二位LV马达,51及51-1系列斜轴变量马达 ,径向柱塞马达(DCM系列),摆线马达, 我们提供 1600 多种不同的液压马达,并按型号、外形及尺寸分类(包括不同规格的输出轴)进行分类。这些马达的尺寸(额定容量)从每转 8 立方厘米到每转 800 立方厘米。速度范围从最小型马达的约 2500 转 /分钟到最大型马达的约 600 转 / 分钟。最大的工作牛立聪 1.3.10. 牛顿米到 210.10. 牛顿米,最大输出功率从 2.0 千瓦到 64 千瓦。OMP40,OMP50,OMP80,OMP100,OMP125,OMP160,OMP200,OMP250 ,OMP315,OMP400, OMP25,OMP32 OMR50,OMR80,OMR100,OMR125,OMR160,OMR200,OMR250,OMR315, OMR375 ,OMR50,OMR80,OMR100,OMR125,OMR160,OMR200,OMR250,OMR315,OMR375,,OMH200,OMH250,OMH315 ,OMH400,OMH500,OMEW100,OMEW125,OMEW160,OMEW200,OMEW250,OMEW315,OMEW100,OMEW125,OMEW160 ,OMEW200,OMEW250,OMEW315, MMF044D-AAAA-B(4443067) OMV315修理包 OMT315修理包 OMR80, OMT200 EM151,OMTS500。 本公司经营原装美国伊顿摆线液压马达,TG、TE、JH JS J2K 2K、J6K 6K等摆线式液压马达质量保证,欢迎咨询洽谈。我公司另外还优惠价销售char-lynn各系列的液压马达,欢迎有需要时和我们联系。 以下是2K和6K液压马达全部型型号 结构特点 1、端面配流式摆线液压马达。 2、先进的镶柱式定转子参数设计,启动压力低,效率高,低速运转平稳。 3、先进的轴密封设计,高的北压承受能力。先进可靠的联动轴设计,使马达具有长寿命。 4、先进的配流机构设计,具有配流精度高和磨损自动补偿的特点。 5、马达允许串联和并联使用,串联使用时应接外泄油口。 6、采用圆锥滚子轴承支撑设计,具有较大的径向承载能力,使得马达可直接驱动工作机构。 7、多种法兰、输出轴、油口等安装连接形式。 2K-80 , 2K-100 , 2K-130, 2K-160 ,2K-195, 2K-245, 2K-305,2K-395,2K-490, 6K-195, 6K-245, 6K-310, 6K-390 ,6K-490, 6K-625 , 6K-985 。 BM系列摆线马达产品特点: 1、其结构简单、低速稳定性好,单位重量功率远比其他类型的液压马达大; 2、体积小,重量轻,排量80-800ml/r,转速范围宽; 3、先进的轴密封设计,较优高的背后承受能力; 4、短期超载能力强,输出扭矩大; 5、有轴配流和端面配流两种结构,使用范围广。可与丹佛斯,美国伊顿互换。 BM1-50 , BM1-63 ,BM1-80, BM1-100, BM1-160 , BM1-200, BM1-250, BM1-305 ,BM1-395,BM2-100 ,BM2-160, BM2-200, BM2-250, BM2-305 ,BM2-395 ,BM3-80 ,BM3-100 ,BM3-160 , BM3-200 ,BM3-250 ,BM3-305 ,BM3-395 ,BM4-100, BM4-160 , BM4-200, BM4-250 ,BM4-305, BM4-395 ,,BM5-100 ,BM5-160 , BM5-200 ,BM5-250, BM5-305 , BM5-395 ,

BMR型轴向配油摆线液压马达BMROrbitHydraulicMotor-Imimg

本系列马达壳体采用足够强度的球墨铸铁铸造而成,适用于负载较小且间隙工作的场合,广泛应用于农业、林业、塑料、机床、矿业机械,如注塑机的调模,清扫机,锯木机、工作平台等。 This series of motor,with its shell made of ductile cast iron of adequate intensity, can be applied to situations with less load and interval opera-tion, widely to agriculture, forestry, plastics, machine tools and mining machines, such as the mould height adjustment of the injection molding machine, the cleaner, the sawmill, the worktable etc. 简介 INTRODUCTION 1 主轴上装有深沟球轴承,可承受一定的轴向力和径向力。 2 采用了轴向配油结构,体积小、重量轻。 3 内置2个单向阀,不需要外接泄油管。 4 采用了有滚柱的摆线轮组,摩擦力小,机械效率高。 1 The output shaft, with the deep groove ball bearing, can bear certain axial force and radial force. 2 With the axial oil distribution structur, it is of smaller size and less weight. 3 With two inner check valves, it needs no outer oil drain. 4 With cycoid group with the roller, it has a small friction nd high mechanical efficiency. 主要特点 CHARACTRISTIC FEATURES BMR技术参数 TECHNICAL DATA 51.71417.5209311813510-7754076.59139108 80.51417.52015218921610-75060106.914144113 100.51417.52019423627010-60060107.017.5147.5116.5 126.31417.5202372963389-47560107.322152121 160.81417.5203103784337-37560107.528158127 200.91417.5203694505095-3006088.035165134 252.61114163804705405-2406068.544174143 321.5911133804705405-1906059.056186155 401.979113804705405-1606041170200 169 排 量 Displacement(ml/r)最大压降 Max.Pressure.Drop (Mpa) 最大扭矩Max.torque (N.m) 转速范围(连续) Speed.Range(cont.)(r/min)最大流量(连续) Max.Flow(cont.)(L/min)最大输出功率(连续) Max.Output.Power(cont.)(Kw)重 量 Weight (kg) 长 度 Length(mm) 连续 cont.间断 int.尖峰 peak. 连续 cont.间断 int.尖峰 peak. B L Lw 间断工作时间每分钟不得超过6秒尖峰工作时间每分钟不得超过0.6秒 Intermittent operation the permissible values may occur for max. 10% of every minute Peak load: the permissible values may occur for max. 1% of every minute

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

BM摆线液压马达样本

BM1摆线液压马达 BM1马达是一种小型轴配流摆线齿轮液压马达,具有体积小,重量 轻的特点,适用于注塑机、道路清扫车、草坪修剪机、皮革机等多种机 械的回转机构中。 BM1马达的特点: ●体积小,重量轻,结构紧凑 ●转速范围广,无需变速机构 ●启动压力低,换向方便 ●在液压系统中可以串联或并联使用 ●可靠的密封控制手段,能够承受较高的背压,确保马达无泄漏 ●多种发兰、输出轴、油口等安装连接形式 主要性能参数 说明: ●最大工作压力指入口最大允许压力 ●额定工作压力指工作压差 ●不应同时在最大转速和最大压力下使用马达 ●最大工作条件允许持续的时间为6秒 ●推荐用油:抗磨液压油,粘度37~73cst油液清洁度ISO18/13 ●最高工作油温80℃ ●在马达全负荷工作前,必须在0%的额定压力下磨合1小时以上 ●可靠的密封控制手段,马达允许的最大背压可达7Mpa,但为获得良好的寿命及综合性能,推荐使用背压不超过3.5Mpa, 超过时建议接外泄油管,接外泄油管时,应确保马达内总能充满油。外泄油管路应有一定的节流保持0.35Mpa以上的背压。 接外泄油管除可以保持较低的背压外,还可以使马达内产生的磨损污染带走,并可产生一定的冷却作用。 产品订货信息

订货参见尺寸及外形图,根据所选用的马达的具体型式从下表中选择对应编号,如需特殊连接方式,请与力科公司联系。 BM1 马达外形连接尺寸

排量(ml/r) 50 63 80 100 125 160 200 L (mm) 147 149 150 153 155 162 168 标准旋向:面对输出轴,当A口进油B口回油,马达顺时针旋转。

BMR摆线液压马达使用中常出现的故障以及处理办法

BMR摆线液压马达使用中常出现的故障以及处理办法 1.马达漏油原因: (1)轴端漏油:由于马达在日常时间的使用中油封与输出轴处于不停的摩擦状态下,必然导致油封与轴接触面的磨损,超过一定限度将使油封失去密封效果,导致漏油。。处理办法:需更换油封,如果输出轴磨损严重的话需同时更换输出轴。 (2)封盖处漏油:封盖下面的“O”型圈压坏或者老化而失去密封效果,该情况发生的机率很低,如果发生只需更换该“O”型圈即可。 (3)马达夹缝漏油:位于马达壳体与前侧板,或前侧板与定子体,或定子体与后侧板之间的“O”型圈发生老化或者压坏的情况,如果发生该情况只需更换该“O”型圈即可。 2.马达运行无力原因: (1)定子体配对太松:由于马达在运行中,马达内各零部件都处于相互摩擦的状态下,如果系统中的液压油油质过差,则会加速马达内部零件的磨损。当定子体内针柱磨损超过一定限度后,将会使定子体配对内部间隙变大,无法达到正常的封油效果,就会造成马达内泄过大。表现出的症状就是马达在无负载情况下运行正常,但是声音会比正常的稍大,在负载下则会无力或者运行缓慢。解决办法就是更换针柱。 (2)输出轴跟壳体之间磨损:造成该故障的主要原因是液压油不纯,含杂质,导致壳体内部磨出凹槽,导致马达内泄增大,从而导致马达无力。解决的办法是更换壳体或者整个配对。

3.马达外泄漏大原因: (1)定子体配对平面配合间隙过大:BMR系列马达的定子体平面间隙应大致控制在0.03mm-0.04mm的范围内(根据排量不同略有差别),如果间隙超过0.04,将会发现马达的外泄明显增大,这也会影响马达的输出扭距。另外,由于一般客户在使用BMR系列马达时都会将外泄油口堵住,当外泄压力大于1MPa时,将会对邮封造成巨大的压力从而导致油封也漏油。处理办法:磨定子体平面,使其跟摆线轮的配合间隙控制在标准范围内。 (2)输出轴与壳体配合间隙过大:输出轴与壳体配合间隙大与标准时,将会发现马达的外泄显著增加(比原因1中所述更为明显)。解决办法:更换新的输出轴与壳体配对。 (3)使用了直径过大的“O”型圈:过粗的“O”型圈将会时零件平面无法正常贴合,存在较大间隙,导致马达泄漏增大。这种情况一般很少见,解决办法是更换符合规格的“O”型圈。 (4)紧固螺丝未拧紧:紧固螺丝未拧紧会导致零件平面无法正常贴合,存在一定间隙,会使马达泄漏大。解决办法是在规定的力矩范围内拧紧螺丝。 4.马达不转或者爬行原因: (1)定子体配对平面配合间隙过小:如之前所述,BMR系列马达的定子体平面间隙应大致控制在0.03mm-0.04mm的范围内,这时如果间隙小于0.03,就可能发生摆线轮与前侧板或后侧板咬的情况发生,这时会发现马达运转是不均匀的,或者是一卡一卡的,情况严重的会使

几种常用的液压马达

几种常用的液压马达 1.叶片液压马达 叶片液压马达结构和双作用叶片 泵类似,由于液压马达一般都要求能 正反转,所以叶片液压马达的叶片要 径向放置,如图2所示。在进油区的 每一封闭的工作容腔,其相邻两叶片 伸出长度不同,承受油压力后,使转 子产生转矩。叶片式液压马达体积小, 转动惯量小,动作灵敏,可适用于换 向频率较高的场合,但泄漏量较大, 低速工作时不稳定。因此叶片式液压 马达一般用于转速高、转矩小和动作要求灵敏的场合。 2.径向柱塞式液压马达 图3为径向柱塞式液压马达 工作原理图,当压力油经固定的配 油轴4的窗口进入缸体3内柱塞1 的底部时,柱塞向外伸出,紧紧顶 住定子2的内壁。在柱塞与定子接 触处,定子对柱塞产生的反作用力 F N 可分解为两个分力:沿柱塞轴 向的法向力F F 和沿柱塞径向的径向力F T 。径向力F T 对缸体产生转矩,使缸体旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。 以上分析的是一个柱塞产生转矩的情况,由于在压油区作用有好几个柱塞,在这些柱塞上所产生的转矩都使缸体旋转,并输出转矩。径向柱塞液压马达多用于低速大转矩的情况下。 3.轴向柱塞马达 轴向柱塞泵除阀式配流外,其它形式原则上都可以作为液压马达用,即轴向柱塞泵和轴向柱塞马达是可逆的。轴向柱塞马达的工作原理如图4所示,配油盘4和斜盘1固定不动,马达轴5与缸体2 相连接一起旋转。当压力油经配油盘4的窗口进入缸体2的柱塞孔

时,柱塞3在压力油作用下外伸。F Z 与柱塞上液压力相平衡,而F Y 则使柱塞对缸体中心产生一个转矩,带动马达轴逆时针方向旋转。轴向柱塞马达产生的瞬时总转矩是脉动的。若改变马达压力油输入方向,则马达轴5按顺时针方向旋转。斜盘倾角α的改变、即排量的变化,不仅影响马达的转矩,而且影响它的转速和转向。斜盘倾角越大,产生转矩越大,转速越低。 4.齿轮液压马达 齿轮液压马达工作原理如图5所示。一对啮合的齿轮Ⅰ、Ⅱ在在高压区的轮齿有A 、B 、 C 、 D 、 E 五只。由于齿轮Ⅰ、Ⅱ在y 点处啮合,啮合点y 将高低压隔开。所以齿轮Ⅰ啮合点y 上方齿面所受的液压力将产生使齿轮Ⅰ逆时针转动的转矩,齿轮ⅡC 齿面和E 齿面承压面积之差也将产生使齿轮Ⅱ顺时针转 动的转矩。由于齿轮啮合而在高压 区形成的承压面积之差是齿轮液压 马达产生驱动力矩的根源。 齿轮马达在结构上为了适应正 反转要求,进出油口相等、具有对 称性、有单独外泄油口将轴承部分 的泄漏油引出壳体外;为了减少启 动摩擦力矩,采用滚动轴承;为了 减少转矩脉动齿轮液压马达的齿数 比泵的齿数要多。齿轮液压马达由 干密封性差,容积效率较低,输入油压力不能过高,不能产生较大转矩。并且瞬间转速和转矩随着啮合点的位置变化而变化,因此齿轮液压马达仅适合于高速小转矩的场合。一般用干工程机械、农业机械以及对转矩均匀性要求不高的机械设备上。

液压马达作业

液压马达作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(4.15)第三次(液压马达)作业及答案 一、填空: 1、液压马达是将输入的液压能转换为旋转运动的机械能。 2、马达是执行元件,输入的是压力油,输出的是力和力矩。 二、选择: 1、高速液压马达其额定转速在( D)r/min以上。 A、200 B、300 C、400 D、500 2、低速液压马达其额定转速在(B)r/min以下。 A、100 B、500 C、400 D、300 3、在叶片马达中,叶片的安置方向为(C)。 A、前倾 B、后倾 C、径向 三、判断: 1、液压马达是将输入的压力能转换为旋转运动的机械能(√) 2、液压马达和液压泵在结构上基本相同,二者在工作原理上是可逆的。 (√) 3、液压马达和液压泵一般是可以通用的。( ×) 4、齿轮液压马达中齿轮的齿数一般选得较少。(×) 5、液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以 用来做马达使用。(×) 四、简述: 1.如何改变液压马达转子的方向?改变液压马达的进出油的方向。 2、按工作特性,液压马达可分为哪两大类?高速和低速液压马达 3、从能量的观点来看,液压泵和液压马达有什么区别和联系从结构上来看,液 压泵和液压马达又有什么区别和联系 答:从能量的观点来看,液压泵是将驱动电机的机械能转换成液压系统中的油液压力能,是液压传动系统的动力元件;而液压马达是将输入的压力能转换为机械能,输出扭矩和转速,是液压传动系统的执行元件。它们都是能量转换装置。 从结构上来看,它们基本相同,都是靠密封容积的变化来工作的。 2

BM摆线液压马达样本

BM1 摆线液压马达 BM1马达是一种小型轴配流摆线齿轮液压马达,具有体积小,重量 轻的特点,适用于注塑机、道路清扫车、草坪修剪机、皮革机等多种机 械的回转机构中。 BM1马达的特点: ●体积小,重量轻,结构紧凑 ●转速围广,无需变速机构 ●启动压力低,换向方便 ●在液压系统中可以串联或并联使用 ●可靠的密封控制手段,能够承受较高的背压,确保马达无泄漏 ●多种发兰、输出轴、油口等安装连接形式 主要性能参数 排量ml/r 50 63 80 100 125 160 200 流量L/min 额定45 45 57 57 57 57 57 最大53 53 68 68 68 68 68 转速r/min 额定870 692 684 547 475 353 276 最大1020 816 824 659 560 364 290 压力MPa 额定12.4 12.4 12.4 12.4 12.4 11.5 11 最大13.8 13.8 13.8 13.8 13.8 12.4 12.4 扭矩Nm 额定78 99 126 158 197 234 280 最大86 110 140 176 222 256 365 说明: ●最大工作压力指入口最大允许压力 ●额定工作压力指工作压差 ●不应同时在最大转速和最大压力下使用马达 ●最大工作条件允许持续的时间为6秒 ●推荐用油:抗磨液压油,粘度37~73cst油液清洁度ISO18/13 ●最高工作油温80℃ ●在马达全负荷工作前,必须在0%的额定压力下磨合1小时以上

●可靠的密封控制手段,马达允许的最大背压可达7Mpa,但为获得良好的寿命及综合性能,推荐使用背压不超过3.5Mpa,超过时建议接外泄油管,接外泄油管时,应确保马达总能充满油。外泄油管路应有一定的节流保持0.35Mpa以上的背压。接外泄油管除可以保持较低的背压外,还可以使马达产生的磨损污染带走,并可产生一定的冷却作用。 产品订货信息 订货参见尺寸及外形图,根据所选用的马达的具体型式从下表中选择对应编号,如需特殊连接方式,请与力科公司联系。 BM1 马达外形连接尺寸

液压马达常见故障维护方案设计

湖南机电职业技术学院毕业设计(论文) 课题名称液压马达常见故障维护 院、系电气工程学院 学生姓名彭慧 专业机电一体化 班级机电1206班 指导老师田智 评阅老师田智

摘要 低速液压马达具有结构紧凑,布置灵活,重量轻,惯性力矩小,调速性能好,低速运转平稳,启动效率高,加速和制动时间短,过载保护容易等优点,因而在国内获得了广泛的应用。但是由于液压马达自身的特殊性,在启动和低速运行时不易稳定,常常出现爬行、间停等现象,因此,在液压系统的应用时,液压马达的最低稳定特性往往是需要考虑的重要特性之一。本文建立了轴向柱塞式液压马达系统摩擦扭矩非线性的数学模型,基于Simulink集成建模与仿真环境,研究了摩擦扭矩,泄漏系数,油液压缩率对马达的低速稳定性的影响,获得了液压马达对低速时瞬间角排量的脉动率变化规律,由此,为改善油马达的低速稳定性对读者应采取什么样的措施提出了建议。 关键字:液压马达;电路设计;故障排除

ABSTRACT The low speed great torque hydraulic motor has the merit of the compact structure, nimble arrangement, light weight, small moment of inertia, good performance of modulation of velocity , the efficiency of idling steady start high, the time of accelerates and the stop is short, the over-load protection is easy and so on, But, as a result of own particularity of hydraulic motor, when starting and low speed movement is not easy to be stable, the phenomenon appears crawling, stops and so on frequently , therefore, in the application of hydraulic system, the lowest stability of hydraulic motor often is one of important characteristics which needs to consider. This paper establishes the mathematic model and simulated model of nonlinear friction torque based of axial piston hydraulicmotor by MATLAB simulink integrated modeling and simulation. By taking axial piston hydraulic motor as an example,investigates the effects of friction torque and hydraulic motors parameters such as coefficient of leak,compression ratio of oil etc on the performances under low speed,obtains the change of angular velocity of the motor with the time at the low speed. The present study is of some instructional and practical significance to the management of this type of motor. Keywords: hydraulic motor; circuit design; Troubleshooting

液压齿轮泵的工作原理

液压齿轮泵的工作原理 一、什么是液压齿轮泵呢? 一般计算公式 泵是指运输液体或让液体增多压力的机械元件。它把原动机的机械元件能或别的外部能量输送给液体,让液体能量增多。 泵主要用来运输水、油、酸碱液、乳化液、悬乳液与液态金属等液体,也可以运输液、气混合物及含悬浮固体物的液体。 泵一般可以按工作原理分为容积式泵、动力式泵与别的类型泵三类。除了按工作原理分类外,还可以以按别的方法分类与命名。如,按驱动方法可以分为电动泵与水轮泵等;按结构可以分为单级泵与多级泵;按用途可以分为锅炉给水泵与计量(度量衡)泵等;按运输液体的性质可以分为水泵、油泵与泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以以画成曲线来表示,叫做泵的特性曲线,每一台泵都有自己特定的特性曲线。 二、泵的定义与历史来源 运输液体或让液体增多压力的机械元件。广义上的泵是指运输流体或让其增多压力的机械元件,包括某些运输气体的机械元件。泵把原动机的机械元件能或别的能源的能量传给液体,让液体的能量增多。 水的提升对于人类生活与生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17世纪)、中国的桔槔(前17世纪)、辘轳(前11世纪)、水车(公元1世纪),以及公元前3世纪古希腊阿基米德发明的螺旋杆等。公元前200年左右,古希腊工匠克特西比乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4叶片滑片泵的记载,以后陆续出现了别的各种回转泵。1689年,法国的D.帕潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶片、半开式双吸叶轮与蜗壳的离心泵。1840~1850年,美国的H.R.沃辛顿发明了泵缸与蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851~1875年,带有导叶的多级离心泵相继发明,让发展高扬程离心泵成为可以能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围与应用也日渐扩大。 三、泵的分类依据 泵的种类繁多,按工作原理可以分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,让液体的动能(为主)与压力能增多,随后通过压出室把动能转换为压力能,又可以分为离心泵、轴流泵、部分流泵与旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,让液体的压力增多至把液体强行排出,根据工作元件的运动形式又可以分为往复泵与回转泵。③别的类型的泵,以别的形式传递能量。如射流泵依靠高速喷射的工作流体把需运输的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是指让通电的液态金属在电磁力作用下产生流动而实现运输。另外,泵也可以按运输液体的性质、驱动方法、结构、用途等进行分类。 四、泵在各个领域中的应用 从泵的性能范围看,巨型泵的流量每小时可以达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可以从常压到高达19.61Mpa(200kgf/cm2)以上;被运输液体的温度最低达-200摄氏度以下,最高可以达800摄氏度以上。泵运输液体的种类繁多,诸如运输水(清水、污水等)、油液、酸碱液、悬浮液、与液态金属等。 在化工与石油部门的生产中,原料、半成品与成品大多是指液体,而把原料制成半成品与成品,需要经过复杂的工艺过程,泵在这些过程中起到了运输液体与提供化学反应的压力流量

相关主题
文本预览
相关文档 最新文档