变质岩古潜山内幕油藏成藏因素及勘探技术
- 格式:pdf
- 大小:183.66 KB
- 文档页数:5
变质岩潜山地震资料处理方法探讨摘要:辽河油田潜山经过四十余年的勘探,成果丰硕。
在不断获得勘探重大发现,获取规模储量的同时,也不断完善了潜山勘探理论及相应的配套勘探技术系列。
特别是近年来辽河油田提出了变质岩潜山内幕成藏勘探理论,并以此为指导在兴隆台~马圈子潜山带深层潜山和潜山深部获得重要突破,整体上报探明石油地质储量1.27亿吨,为辽河油田的增储稳产做出了巨大的贡献。
辽河坳陷中央凸起潜山带具有较好的石油地质条件,钻探的赵古1已获重大发现,赵古2井显示存在变质岩内幕油藏,预示中央凸起变质岩潜山内幕油藏勘探拥有很好的前景。
但变质岩潜山内幕结构、构造识别划分是关键点也是难点,加之中央凸起潜山内幕地震资料品质较差,这就需要在地震资料处理上有相应的配套处理方法,本文以中央潜山带为例针对变质岩潜山进行地震资料处理并且研究出配套处理方法。
辽河坳陷中央潜山带地质情况复杂,潜山带及其两侧断裂附近横向速度突变,潜山内幕信噪比低,成像较差。
为了理清断层位置,搞清潜山与东西两侧凹陷接触关系,提高潜山内幕成像质量,我们对辽河坳陷中央潜山带资料进行了叠前深度偏移处理和研究。
本文首先介绍了克希霍夫叠前深度偏移的方法原理,进而阐述了建立精确速度-深度模型的思路和实施方法,并利用该速度模型进行了克希霍夫深度偏移和逆时偏移两种方法的成像运算,最后将叠前深度偏移成果与叠前时间偏移成果进行比较。
深度偏移技术可以有效解决潜山及两侧断裂附近速度横向突变问题,使地下构造成像更加合理,同时信噪比和保真保幅方面也有所提高。
关键词:叠前深度偏移中央潜山速度建模辽河坳陷中央潜山带位于辽河坳陷中部,具有被东西边界断层所夹持的狭长构造特征。
研究区内地层倾角较陡,横向速度变化快,潜山内幕有效反射信息弱,有效频带窄,信噪比低,波场复杂,成像困难。
常规叠前时间偏移算子仅含绕射项方程,其假设局部地层平缓,且绕射曲线具有双曲线时差特征,利用时间域RMS速度把近似于双曲型地震波绕射波能量聚焦到双曲面的顶点进行成像[1~2]。
油气成藏机理与勘探技术创新随着全球能源需求的不断增长,油气资源的开发与利用越来越受到人们的关注。
而油气的成藏机理和勘探技术创新则成为了保障能源供应和提高勘探效率的重要因素。
本文将从油气成藏机理和勘探技术创新两个方面展开论述。
一、油气成藏机理1.1 基本概念与特征油气成藏机理是研究油气在地质中形成、存在和保存的规律性过程。
油气成藏的特征包括油气来源、油气运移、油气储集形式等。
1.2 流体运移与渗流模型油气的运移是指油气从源岩或母岩中迁移至储集层的过程。
渗流模型的建立对于研究油气运移具有重要意义。
1.3 常见油气成藏类型常见的油气成藏类型包括构造油气藏、岩性油气藏、沙岩型油气藏等。
不同类型的油气藏在成藏机理和勘探开发中有着不同的特点。
二、勘探技术创新2.1 传统勘探技术传统勘探技术包括地震勘探、测井技术、岩心分析等。
这些技术在过去的油气勘探中发挥了重要作用,但也面临着一些挑战。
2.2 非常规油气勘探开发技术非常规油气勘探开发技术包括页岩气、致密气、煤层气等。
这些新兴的勘探技术在提高油气勘探效率和开发利用率方面具有巨大潜力。
2.3 智能化勘探技术随着人工智能和大数据技术的发展,智能化勘探技术逐渐成为研究热点。
人工智能算法和数据分析能够更准确地预测油气资源的分布和储量。
三、油气成藏机理与勘探技术创新的关系油气成藏机理和勘探技术创新相互影响、相互促进。
深入研究油气成藏机理能够为勘探技术的创新提供理论依据和指导。
而勘探技术的创新又可以进一步加深对油气成藏机理的认识。
四、未来的发展趋势4.1 优化勘探方案在油气勘探中,需求不断提高勘探效率和降低勘探风险。
因此,优化勘探方案将成为未来的发展趋势之一。
4.2 探索深水油气资源随着陆地资源的不断消耗,深水油气资源将成为未来的重点开发对象。
探索深水油气资源将需要使用先进的勘探技术和设备。
4.3 发展非常规油气资源非常规油气资源具有丰富的潜力,但开发难度较大。
未来的发展趋势将集中在开发非常规油气资源上。
塔里木盆地轮南古潜山构造变形与油气成藏摘要:塔里木盆地是我国西部最大的油气盆地之一,在其中的轮南地区发现了丰富的油气资源。
本文通过对轮南古潜山脉的形成、演化及构造变形进行研究,探讨了塔里木盆地轮南地区油气成藏的形成机制。
论文首先介绍了塔里木盆地地质背景和地质特征,随后详细描述了轮南古潜山环境下的岩相构造特征及其变形过程。
接着从构造特征与油气成藏密切相关的地质条件入手,阐述了不同构造单元的油气地质特征与油气富集规律,归纳出了轮南地区的油气成藏模式及主要的控制因素,最后提出了对该区域油气勘探的建议和前景分析。
关键词:塔里木盆地;轮南古潜山;构造变形;油气成藏Introduction塔里木盆地位于中国西北部,是我国面积最大的陆上盆地之一,也是我国西部重要的油气勘探开发基地之一。
其东西长约1000公里,南北宽约600公里,总面积达50万平方公里,地质历史长,沉积层系厚,烃源岩、沉积储层和构造埋藏条件较好,同时具有海陆相间、热水溶解富集和构造活动强烈等多种类型的油气藏。
其中轮南地区由于地质构造复杂,形成了许多储层与盖层的叠置,是塔里木盆地重要的勘探开发区域。
因此,深入探究轮南地区油气成藏经过的岩相构造演化变形及富集规律,对指导该区域的油气勘探具有十分重要的意义。
1.轮南古潜山的形成与演化轮南古潜山是塔里木盆地最重要的潜山之一,长约400公里,南北宽约10-60公里,由于地质构造活动与侵蚀作用的影响,形成了许多地质体,其地质特征与北部祁连山相近,区别在于轮南古潜山没有形成显著的风化残丘。
在前寒武纪时期,轮南地区的构造环境与海陆相间,迅速沉积发育大量碎屑岩,继而在中寒武世时期,形成了滚头山、富尕山、梅沙仙女原等峰丛,地层发育由古老的基底到新近的盖层。
在晚奥陶世晚期到石炭纪早期,轮南地区分别经历了东、豫西、西、珠峰4个阶段巨大的活动性构造,形成了许多古地长、橄榄岩体及裂隙带,其古潜山发展历史及地质背景具有重要的研究价值。
隐蔽油气藏勘探理论及勘探方法目录1隐蔽油气藏的概念及研究现状 (1)2隐蔽油气藏的分类 (2)3.隐蔽油气藏勘探理论 (5)3.1层序地层理论 (5)3.2坡折带理论 (6)3.3复式输导体系理论 (7)3.4相势控藏理论 (7)4隐蔽油气藏勘探的方法和技术 (8)4.1高精度层序地层学指导下的准确选区选带是隐蔽油藏勘探的基础 (9)4.2地震资料高分辨率采集、高保真处理是隐蔽油藏勘探的保障 (11)4.3多井多层位标定、构造精细解释、变速成图是隐蔽油藏勘探成功的关键 (12)4.4地震属性分析、频谱分解、地震正反演等预测技术是隐蔽油藏勘探的手段 (14)4.5已钻井重新认识、“滚动勘探”模式是隐蔽油藏勘探的重要途径 (16)4.6应用油气化探技术勘探隐蔽油气藏 (16)4.7按照隐蔽油气藏的类型选择勘探方法 (17)5存在问题及发展趋势 (18)5.1存在问题 (18)5.2发展趋势 (18)参考文献 (19)随着勘探程度的提高,可供勘探的构造圈闭日益减少,隐蔽油气藏已成为未来最具储量接替前景的勘探目标。
所谓隐蔽油气藏通常是指以地层、岩性为主要控制因素、常规技术手段难以发现的油气藏[1]。
隐蔽油气藏成条件复杂、圈闭形态不规则、埋藏和分布具有隐蔽性、勘探难度较大,人们对隐蔽油气藏研究还不系统,对它的认识还不够完善。
本文结合国内外隐蔽油气藏勘探的理论研究现状,总结了隐蔽油气藏勘探的思路与技术,分析了隐蔽油气藏目前存在的问题,以及隐蔽油气藏研究的发展方向和趋势,以指导日后隐蔽油气藏勘探。
1隐蔽油气藏的概念及研究现状关于隐蔽圈闭,最早在1964年由美国著名石油学家Levorsen进行了完整的论证,随后世界各国都加强了对地层圈闭、岩性圈闭和古地貌圈闭的油气勘探。
目前普遍认为,隐蔽圈闭是指用常规技术方法和手段难以识别的圈闭,它们主要是由于沉积、古构造运动、水动力变化及成岩作用所引起的,包括地层超覆、地层不整合、上倾尖灭、透镜体、古河道、潜山、礁体及裂缝圈闭等。
东营凹陷太古界储层裂缝发育控制因素及油气勘探方向引言东营凹陷太古界古潜山属于断陷―断坳式凹陷岩浆岩潜山,其储层分为2类,即由构造作用产生的裂缝型储层和由风化淋滤作用形成的孔隙型储层,胜利油气区太古界岩浆岩储层多属于前者,如王庄油田[1]。
目前,东营凹陷有323口井钻遇太古界,太古界潜山油藏上报探明石油地质储量777×104t,显示了较大的勘探潜力[2]。
但从勘探类型看,已经发现的油气藏主要为潜山表面的风化壳油藏,而潜山内幕油气藏一直未钻遇。
只有多口探井在其花岗岩潜山300 m以下钻遇一、二级缝洞段,并见到油气显示,说明潜山内幕储层在一定程度上发育,具备油气成藏条件,对该类油藏勘探可能有较大的突破意义。
1 地质概况东营凹陷为济阳坳陷中的四周有凸起环绕的晚侏罗世―古近纪的断陷复合盆地,太古代岩石主要归属新太古代岩体,太古界潜山可分为滨县―陈家庄、平方王―青城、广饶―纯化3个带[3],本次研究以东营凹陷北部的滨县―陈家庄一带作为重点区域。
研究区内的王庄、郑家等基岩潜山油藏储层具有低孔、低渗特征。
统计204块岩心样品,孔隙度最小值为0.4%,最大值为21.08%,平均值为5.04%,渗透率平均值为3.850×10-3μm2,仅在相对高孔段,孔隙度与渗透率才具有较强的相关性,进一步佐证太古界储层为裂缝型储层,必须对裂缝特征进行深入研究。
2 裂缝特征2.1 裂缝类型及特征(1) 根据裂缝成因,可以将研究区内的裂缝分为构造缝、风化缝和溶蚀缝,其中,构造缝为基岩潜山中最主要的裂缝,其发育段厚度占裂缝总厚度的90%以上。
(2) 根据裂缝组合形态,可以将研究区裂缝分为斜交缝和网状缝,斜交缝密度最大可达到10条/m,但最小则只有0.5条/m,而网状裂缝密度较大,可达28条/m。
(3) 根据裂缝倾角大小,研究区内发育1组高角度近直立裂缝、1组低角度近水平裂缝及1组共轭倾斜缝,其中,以高角度近直立缝最为常见。