大学文科数学第二章.ppt

  • 格式:ppt
  • 大小:3.72 MB
  • 文档页数:93

下载文档原格式

  / 93
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——(魏晋)刘徽
播放
正六边形的面积 A1
正十二边形的面积 A2
R
正6 2n1形的面积 An
A1 , A2 , A3 ,, An , S
说明:刘徽从圆内接正六边形,逐次边数加倍到正
3072边形得到圆周率 的近似值为3.1416
数列的定义
按自然数1,2,3,编号依次排列的一列数
a1, a2 ,, an , (1)
称为无穷数列,简称数列.
其中的每个数称为数列的项,an 称为通项(一般项)。
数列(1)记为{an } .
例如 2,4,8,,2n ,;
{2n }
1 2
,
1 4
,
1 8
,,
1 2n
,;
1 {2n }
1,1,1,,(1)n1 ,; {(1)n1}
2, 1 , 4 ,,1 (1)n1 ,;
23
n
(1)n1
曲线在任何一点处都连续,但却处处“不可导”(每一点
都是“尖点”).
这种奇怪的几何怪物的发现,向
还好我的
十九世纪的数学家提出了挑战,因 为这种曲线打破了人们的直觉观念: 连续曲线总能借助于铅笔的不间断
浪漫没这 么抽象
移动画出来,局部曲线总是 “光滑”
的. 但是Koch曲线提醒人们,在研
究无穷过程时,直觉是一个很不可
化的时间为 1000 100 ,在这段时间里,乌龟又爬了 v 100 100
10v v
v
米, 阿基里斯为跑完这段路又花费时间 100 10 ,此时乌龟又在他 10v v
前面 10 米处,……,依次类推,阿基里斯需要追赶的全部路程为
1000 100 10
这是一个公比为 q 1 1 的几何级数,易求得它的和为 10
科学家们通过悖论来提出问题. 悖论是科 学中基础理论缺陷的产物,是对科学理论 体系的挑战,是对人类智力的挑战. 研究 悖论能使我们了解学科基础理论的缺陷, 而解决悖论的最大意义是能帮我们解决学 科基础理论的缺陷——修改或重建某些基 础理论,从而使科学研究朝着健康的方向 发展. 这是一种客观的需要.
Example Koch 雪花
做法:先给定一个正三角形,然后在每条 边上对称的产生边长为原边长的1/3的小 正三角形.如此类推在每条凸边上都做类 似的操作,我们就得到了面积有限而周长 无限的图形——“Koch雪花”.
设三角形
周长为 P1 3,
面积为 A1
3; 4
第一次分叉:
周长为 P2
4 3
第二章 微积分的直接 基础——极限
主讲人:姜革命
§1 从阿基里斯追赶乌龟谈起 ——数列极限
一、数列概念
割圆术
我国古代数学家刘徽在《九章算术注》 利用圆内接正多边形计算圆面积的方法--割 圆术,就是极限思想在几何上的应用。
割圆术
“割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
如此分析下去,显然阿基里斯离乌龟越来越近,但却是永远 也追不上乌龟的.这个结论显然是错误的,但奇怪的是,这种推理 在逻辑上却没有任何毛病.那么,问题究竟出在哪儿呢?
如果我们从级数的角度来分析这个问题,芝诺的这个悖论
就会不攻自破.
设乌龟的速度为 v ,则阿基里斯的速度为 10 v ,他跑完 1000 米所

1 2n
为n→∞时的无穷小量
每一项均为常数的数列称为常数列.
常数列的极限仍是该常数.
如数列{1,1,1,…}为常数列,且 lim 1 1. n
绝对值无限变大的变量称为无穷大量,或称
其收敛于∞,或-∞.
如2n,-2n 均为无穷大量,且
靠的向导,这种挑战迫使数学家们
为其职业制定更高更严的标准,曲
线的定义也需要加以修改,以适应
类似这种“病态”的雪花怪物.
截杖问题: “一尺之棰,日截其半,万世不竭”
第一 天截 下的杖 长为l1
1; 2
第 二 天 截 下 的 杖 长 总 和为
l2
1 2
1 22
;
第n天 截 下 的 杖 长 总 和 为ln
1
n
3, 3 3,, 3 3 3 ,
递推公式an1 3 an 说明:1.数列对应着数轴上一个点列.可看作一
动点在数轴上依次取 a1 , a2 ,, an ,.
a2 a1 a3 a4 an
2.数列是整标函数 xn f (n).
芝诺悖论—阿基里斯与乌龟
公元前五世纪,以诡辩著称的古希腊哲学家芝诺(Zeno)用
他的无穷、连续以及部分和的知识,引发出以下著名的悖论:
如果让阿基里斯(Achilles,古希腊神话中善跑的英雄)和 乌龟之间举行一场赛跑,让乌龟在阿基里斯前头1000米开始,假 定阿基里斯的速度是乌龟的10倍,也永远也追不上乌龟.芝诺的 理论依据是:当比赛开始的时候,阿基里斯跑了1000米,此时乌 龟仍然前于他100米;当阿基里斯跑了下一个100米时,乌龟仍 然前于他10米,…,
1000 1 1
10000 11111 ,
9
9
10
1000 1 1
10000 11111 ,
9
9
10
也就是说,如果赛程比这个距离短,则
乌龟胜;如果赛程恰好等于这个距离,则双
方平分秋色;否则,阿基里斯就要在距离起
点1111 1 处追上并超过乌Hale Waihona Puke Baidu.
9
中国古代哲学家称悖论“饰人之心,易人 之意,能胜人之口,不能服人之心”.
1 2
1 22
1 2n
;
1
ln 1 2n
1
数列极限的定性描述
Definition 如果n无限增大时,数列{an}
的通项an无限接近于常数a,则称该数列 以a为极限,记做
lim
n
an
a,

an a
(n ).
如果数列没有极限,就说数列是发散的.
上例中,
1
lim
n
2n
0.
以0为极限的变量称为无穷小量.
P1,
面积为
A2
A1
3
1 9
A1;
第 n 次分叉:
周长为
Pn
(
4 3
)n1
P1
面积为
n 1,2,
An
An1
3{4n2[(
1 9
)n1
A1
]}
A1
3
1 9
A1
3
4 (1)2 9
A1
3
4n2
(1)n1 9
A1
A1
{1
[
1 3
1(4) 39
1 (4)2 39
1 (4)n2 ]} 39
n 2,3,
做一个雪花蛋糕
于是有
会比较有趣,这 样就可以宣称
“我吃掉了一条
lim
n
Pn
1
无限长的曲线” 了.
lim
n
An
A1(1
1
3
4)
A1(1
3) 5
2 3. 5
9
雪花的面积存在极限(收敛).
结论:雪花的周长是无 界的,而面积有界.
Koch曲线是一条浪漫的分形曲线,它的周长为无限大,曲
线上任两点之间的距离也是无限大,却包围着有限的面积.