当前位置:文档之家› 实验五 戴维宁定理的验证(仿真实验)

实验五 戴维宁定理的验证(仿真实验)

实验五   戴维宁定理的验证(仿真实验)
实验五   戴维宁定理的验证(仿真实验)

实验五 戴维宁定理的验证(仿真实验)

一、实验目的

1. 验证戴维宁定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

3. 掌握测量开路电压与等效内阻的方法。

二、实验原理

1. 戴维宁定理任何一个线性有源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为有源一端口网络)。

戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U S 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。U OC (U S )和R 0称为有源二端网络的等效参数。

2. 有源二端网络等效电阻的测量方法 (1)开路电压、短路电流法测R 0

在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为:

SC

OC

0I U R =

如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。 (2)伏安法测R 0

用电压表、电流表测出有源二端网络的外特性曲线,如图5-1所示。根据外特性曲线求出斜率?tan ,则内阻:

SC

OC

0I U ΔI ΔU tan R ==

=?

U I

电阻箱R L

图5-1 外特性曲线 图5-2 半电压法测内阻的方法

(3)半电压法测R 0

如图5-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(即电阻箱)的阻值就是被测有源二端网络的等效内阻值。

三、实验设备

四、实验内容

被测有源二端网络如图5-3(a )所示,电压源U

=12V 和恒流源I S =10mA 。

电阻箱R L

电阻箱R L

(a )电路原理图 (b )等效电路

图5-3 有源二端网络

图5-4 Multisim 戴维宁定理测开路电压仿真电路

图5-5 Multisim戴维宁定理测短路电流仿真电路

1. 用开路电压、短路电流法

测量戴维宁等效电路的U OC、R0。按图5-3(a)接入稳压电源U S=12V和恒流源I S=10mA,不接入R L。测量出开路电压U OC(注意测量开路电压U OC时,不接入毫安表。);然后再短接R L,测量出短路电流I SC,则根据公式计算出R0,将所测数据填入表5-1中。

图5-6 Multisim“戴维宁定理”原电路伏安实验

图5-7 Multisim“戴维宁定理”等效电路伏安实验

2.伏安法(戴维南等效电路与原电路伏案关系比较)

按图5-6接入负载电阻R L(即电阻箱)。按表5-2改变电阻箱R L阻值,测量有源二端网络的外特性曲线,将数据填入表5-2中。

按图5-7接入负载电阻R L(即电阻箱)。按表5-3改变电阻箱R L阻值,测量有源二端网络的外特性曲线,将数据填入表5-3中。

图5-8 Multisim“戴维宁定理”半电压法实验电路

3. 半电压法

按图5-8接入负载电阻R L(即电阻箱)。改变电阻箱R L阻值,使其两端电压等于U OC的一半,电阻箱R L的阻值记录于表5-3中。

五、实验注意事项

1. 测量时应注意电压表、电流表量程的更换。

2. 改接电路时,要关掉电源。

六、预习报告

计算有源二端网络开路电压及等效内阻。

七、实验报告

1. 根据步骤1的方法测得的U OC与R0与预习时电路计算的结果作比较,分析误差产生的原因?

2. 根据步骤2,绘出曲线,验证戴维宁定理的正确性,并分析产生误差的原因。

说明:仿真实验采用Multisim V7.0软件进行计算机仿真实验,同时完成实验报告

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

实验五 验证玻意耳定律

实验五验证玻意耳定律 实验器材 1.橡皮帽2.玻璃管3.体积标尺4.油 5.固定架6.接头7.压强表 准备作业 1.本实验的研究对象是。在保持不变的条件下,来研究它的压强和体积的关系。 2.实验前,在注射器的活塞上均匀地抹上一层轻质润滑油,这样做的目的是,。 3.实验过程中,不能用手握住注射器,其目的是。 4.实验过程中,应避免注射器内外空气的压强差过大,这样做的目的是为了防止,以保持注射器内空气的不变。 5.在实验过程中,应使活塞的运动尽可能慢些,这是为了() (A)减少活塞所受的摩擦力 (B)避免损坏仪器

(C)防止注射器漏气 (D)使注射器内空气做等温变化 6.如果在实验过程中橡皮帽脱落,能否用它堵住注射器小孔后再继续进行实验?7.实验中,各小组所得的PV值可能都不相同,这是什么原因? 数据处理 实验次数压强(×105帕)体积(格) 1 2 3 相关习题 1.(1997全国)“验证玻意耳定律实验”实验读数过程中,不能用手握住注射器,这是为了。用橡皮帽封住注射器小孔,这是为了。 2.(1995上海)在“验证玻意耳定律”的实验中,对气体的初状态和末状态的测量和计算都正确无误。结果末状态的pV值与初状态的p0V0值明显不等。造成这一结果的可能原因是在实验过程中() (A)气体温度发生变化(B)气体与外界间有热交换 (C)有气体泄漏(D)体积改变得太迅速 3.(1999上海)某同学做“验证玻意耳定律”实验时,将注射器竖直放置,测得的数据如下表所示。发现第5组数据中的pV乘积值有较大偏差。如果读数和计算无误,那么造成此偏差的原因可能是或。 实验次序 1 2 3 4 5 p(105Pa) 1.21 1.06 0.93 0.80 0.66 V(ml)33.2 37.8 43.8 50.4 69.2 pV(105Pa·ml)40.2 40.1 40.7 40.3 45.7 4.(2001上海)某同学用同一个注射器做了两次验证波意耳定律的实验, 操作完全正确。根据实验数据却在p-V图上画出了两条不同双曲线。造 成这种情况的可能原因是()

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

热学综合测试(含参考答案)

热学综合测试题(含答案) 一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选 项正确) 1.下列说法正确的是[] A.温度是物体内能大小的标志 B.布朗运动反映分子无规则的运动 C.分子间距离减小时,分子势能一定增大 D.分子势能最小时,分子间引力与斥力大小相等 2.关于分子势能,下列说法正确的是[] A.分子间表现为引力时,分子间距离越小,分子势能越大 B.分子间表现为斥力时,分子间距离越小,分子势能越大 C.物体在热胀冷缩时,分子势能发生变化 D.物体在做自由落体运动时,分子势能越来越小 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力 4.下面关于分子间的相互作用力的说法正确的是[] A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用 C.分子间的引力和斥力总是同时存在的 D.温度越高,分子间的相互作用力就越大 5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0[] A.当r>r0时,Ep随r的增大而增加 B.当r<r0时,Ep随r的减小而增加 C.当r>r0时,Ep不随r而变 D.当r=r0时,Ep=0 6.一定质量的理想气体,温度从0℃升高到t℃时,压强变 化如图2-1所示,在这一过程中气体体积变化情况是[] A.不变B.增大 C.减小D.无法确定 7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[] A.绝热压缩,气体的内能增加 B.等压压缩,气体的内能增加 C.绝热压缩和等温压缩,气体内能均不变 D.三个过程气体内能均有变化 8.如图2-2所示,0.5mol理想气体,从状态A变化到状态 B,则气体在状态B时的温度为[] A.273KB.546K

玻意耳定律教学设计

玻意耳定律教学设计 Prepared on 24 November 2020

广东省物理师范生教学技能 创新实践大赛参赛教案 课题:玻意耳定律 教材:粤教版高中物理选修3-3 授课对象:高中二年级学生 参赛选手:陈丹纯 参赛单位:华南师范大学 《玻意耳定律》教案 【课题】玻意耳定律 【教学时间】15分钟 【教学对象】高中二年级学生 【教材】粤教版高中物理选修3-3第二章第七节 【教学内容分析】 1.教材的地位和作用 玻意耳定律是热学部分的重点内容,它是在“气体状态参量”的基础上,用实验研究一定质量的气体在温度保持不变时,压强随体积的变化规律。 本节内容在气体性质的教学内容中起着承上启下的作用,它不仅在研究方法上为后面研究气体的等容、等压变化作下铺垫,而且也为得出理想气体状态方程奠定了知识基础。本节内容的学习有利于培养学生通过观察和实验来研究物理问题的思想和方法,同时也可以开拓学生的眼界,初步培养学生探索科学的能力。 2.课程标准对本节内容的要求 第一,从实验入手,在定性和定量结果的基础上,得出玻意耳定律;第二,重视图象的运用,能用图象分析说明物理问题;第三,利用玻意耳定律解释有关的物理现象。

可见课程标准要求从“定性到定量”、从“实践到理论再到实践”等方面理解和掌握玻意耳定律,并注重物理思想和方法的渗透。 3.教材内容安排 粤教版教材体现了课程改革的要求,教材的内容的编排顺序如下: 通过家用气压保温瓶和内燃机气缸的例子引入气体改变状态的现象,提出问题。然后应用DISlab系统进行实验探究玻意耳定律,再通过实验数据和p-V、P-1/V图线的分析得出玻意耳定律,最后让学生运用规律解决有关的物理问题。 教材的这一结构(提出问题→实验探究→分析数据→得出结论→运用知识)体现了自主性学习的一般方法,也体现了科学探究的一般过程。 4.教材的特点 第一,重视“实验与探究”的过程,培养学生的观察和分析能力;第二,突出了得出玻意耳定律的思路和方法。 5.对教材的处理 考虑到玻意耳定律这一知识点的内容较为抽象,在本节课的教学过程中,我做了如下的调整和处理: 通过教师演示气压保温瓶模型的实验导入新课,接着引导学生联系所学知识,采用控制变量法进行分组实验,得到定性的结果。为了更进一步研究问题,教师引导学生结合DISLab系统进行定量实验,分析实验数据和p-V、P- 1/V图线,并启发学生思考实验中存在误差的原因以及拟合图线不合理的地 方。在得出玻意耳定律之后,利用flash动画分析气压保温瓶的原理,解决一开始提出的问题。最后介绍玻意耳定律在生活中的有关应用,培养学生分析和解决问题的能力以及学习物理的兴趣。这样更有助于学生对这一知识的理解、掌握和应用。 【学生情况分析】 1.学生的兴趣 作为高二的学生因果认识兴趣增强,乐于探索事物的因果关系和物理世界的奥秘,并想了解和探索物理规律,表现出一定的概括认识兴趣。 2.学生的知识基础

玻意尔定律-实验报告

玻意尔定律-实验报告 课程名称___________________________ 实验项目__________________________ 专业班级___________________________ 姓名___________ 学号__________ 实验日期____2015年04月08日14:01____ 指导教师___________ 成绩__________ 一、实验目的 验证玻意耳定律。 二、实验仪器 1、Lab Studio系统软件 2、LABPORT数据采集器 3、压强传感器 4、计算机 5、注射器等 三、实验原理 玻意耳定律:当温度不变时,一定质量的理想气体,其压强与体积之间的乘积(PV)为常量,即体积与压强成反比。 四、实验步骤 1.将压强传感器接入LABPORT数据采集器; 2.将注射器的活塞推至于15mL处(初始值可以任选,应尽可能让管内气体体积较大),并通过软管与压强传感器的测量口紧密相连。 3、添加新栏“体积”,并添加数据31-41,设置采集方式为手动采集,设置纵轴坐标参数为压强,横轴坐标参数为体积;(注意:传感器外接塑料管内部容积大约有1mL,输入计算机的气体体积数据应为“注射器读数+1”) 4、点击“开始采集”,开始记录压强值,同时描绘出P、V之间关系曲线; 5、观察实验结果,数据点的排列有着双曲线的特征,对图像进行曲线拟合,选取“反比拟合”,得到一条拟合曲线,可以看出,实验采集所得点均匀分布在拟合曲线附近,基本重合。由此我们可以近似看出压强与体积之间呈现反比关系。 五、实验数据和数据处理 1.实验数据

[table] 2.绘图及处理 六、实验分析讨论 无

二戴维南定理的验证

实验二 戴维南定理的验证 一、实验目的 1. 验证戴维南定理的正确性。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势Es 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视 为开路)时的等效电阻。 U OC 和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则内阻为 R O =SC OC I U (2) 伏安法 用电压表、电流表测出有源二端网络的外特性如图2-1所示。根据外特性曲线求出斜率tg φ,则内阻 R O =tg φ=SC OC I U ΔI ΔU = 用伏安法,主要是测量开路电压及电流为额定值I N 时的输出端电压值U N ,则内阻为 R O =N N OC I U U - 若二端网络的内阻值很低时,则不宜测其短路电流。

(3) 半电压法 如图2-2所示,当负载电压为被测网络开路电压一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。 (4) 零示法 在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图2-3所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

气体的等温变化 玻意耳定律

气体的等温变化玻意耳定律 一、教学目标 .在物理知识方面要求: (1)知道什么是等温变化; (2)知道玻意耳定律是实验定律;掌握玻意耳定律的内容和公式;知道定律的适用条件。 (3)理解气体等温变化的 p-V 图象的物理意义; (4)知道用分子动理论对玻意耳定律的定性解释; (5)会用玻意耳定律计算有关的问题。 .通过对演示实验的研究,培养学生的观察、分析能力和从实验得出物理规律的能力。 .渗透物理学研究方法的教育:当需要研究两个以上物理量间的关系时,先保持某个或某几个物理量不变,从最简单的情况开始研究,得出某些规律,然后再进一步研究所涉及的各个物理量间的关系。 二、重点、难点分析 .重点是通过实验使学生知道并掌握一定质量的气体在等温变化时压强与体积的关系,理解 p-V 图象的物理意义,知道玻意耳定律的适用条件。 .学生往往由于“状态”和“过程”分不清,造成抓不住头绪,不同过程间混淆不清的毛病,这是难点。在目前这个阶段,有相当多学生尚不能正确确定密闭气体的压强。 三、教具 .定性演示一定质量的气体在温度保持不变时压强与体积的关系 橡皮膜(或气球皮)、直径为5cm左右两端开口的透明塑料筒(长约25cm左右)、与筒径匹配的自制活塞、20cm×6cm薄木板一块。 2.较精确地演示一定质量的气体在温度保持不变时压强与体积的关系实验仪器。 四、主要教学过程 (一)引入新课 对照牛顿第二定律的研究过程先m一定,a∝F;再F一定,a∝ 现在我们利用这种控制条件的研究方法,研究气体状态参量之间的关系。 (二)教学过程设计 .一定质量的气体保持温度不变,压强与体积的关系 实验前,请同学们思考以下问题: ①怎样保证气体的质量是一定的? ②怎样保证气体的温度是一定的? (密封好;缓慢移活塞,筒不与手接触。) .较精确的研究一定质量的气体温度保持不变,压强与体积的关系 (1)介绍实验装置 观察实验装置,并回答: ①研究哪部分气体? ② A管中气体体积怎样表示?(l·S) ③阀门a打开时,A管中气体压强多大?阀门a闭合时A管中气体压强多大?(p0) ④欲使A管中气体体积减小,压强增大,B管应怎样操作?写出A管中气体压强的表 达式(p=p0+h)。 ⑤欲使A管中气体体积增大,压强减小,B管应怎样操作?写出A管中气体压强的 表达式(p=p0-h)。

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

高中物理实验思考题

高中物理实验思考题 贾保成胡耀合 近年来物理高考试题中,常见大纲规定实验之外的考题,于是一些老师放松了规定实验的教学,专门找规定实验之外的新题让学生做,这是错误的.第一,基本仪器的使用、规定实验仍然是高考考查的重点;第二,新实验和设计实验是从规定实验中使用的原理、方法、器材迁移来的,万变不离其宗,只有对于规定实验有了较深刻的理解,才有可能对由它迁移来的考题作出正确的回答. 受考试方式和条件的限制,高考主要考查学生对实验的理解水平和迁移能力.简单地会做实验,已经不能适应高考的要求.所以在实验教学中要着重提高学生对实验的理解水平,教师讲解的同时还要让学生多思考.在做实验或者复习实验时,笔者在此提供一些思考题,让学生在动手的同时进行思考和讨论.下面就是这些思考题. 一、实验基础知识思考题 1.物理中的测量数据与数学上的数有什么不同? 2.什么是误差 3.从产生误差的原因上看,误差分为几种?从计算方法上看,误差分为几种? 4.怎样减少随机(偶然)误差?怎样减少系统误差? 5.什么是有效数字?有效数字的位数与测量的精确程度有什么关系? 6.什么是直接测量?什么是间接测量? 7.间接测量的方案怎样确定?测什么量?用什么仪器? 8.两个物理量成正比时怎样用图象验证它们的关系?两个物理量成反比时怎样用图象验证它们之间的关系? 二、互成角度的两个力的合成 1.该实验的目的是什么? 2.该实验中哪两个力是分力?哪个力是合力?合力和分力的共同作用效果是什么? 3.实验时,为什么细绳应当平行并接近木板? 4.怎样测出和记录合力和分力的大小和方向? 5.怎样画出各力的图示?为什么要用同一标度? 6.该实验中是怎样验证力的合成的平行四边形法则的?测出的合力和由平行四边形法则求出的合力之间应当有什么关系?是否一定是大小相等、方向相同? 7.没有橡皮筋怎样完成这个实验? 8.想一想,只有一个弹簧秤,怎样做这个实验? 9.若保持分力F1的大小不变,使它向外侧转动一个不大的角度,仍然把橡皮筋的结点拉到点O,另一个分力怎样变? 三、用打点计时器测速度和加速度 1.电磁打点计时器使用什么电源?电压多高? 2.电磁打点计时器由哪些部分组成? 3.为什么打点的周期和频率与交流电的周期和频率相同?为什么使用打点计时器要求先接通电源,后释放纸带? 4.怎样利用纸带上的点迹判定物体的运动性质?物体做匀速直线运动时的点迹是怎样的?做匀加速直线运动时的点迹是怎样的?5.什么是计数点和计数周期?“每5个点取一个计数点”与“每隔5个点取一个计数点”时计数周期各是多大? 6.物体做匀变速直线运动,计数点距离取得远了好还是取得近了好?

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。二、实验原理 将一个含独立源、线性电阻和受控电源的一端口网络,用一个电压源和电阻的串联组合来等效置换,其等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。 三、实验设备与器件 1.计算机一台 2.通用电路板一块 3.万用表 4.直流稳压电源 5.电阻若干 四、实验过程 1.测量电阻的实际值,将测量的结果填入表格中,计算等效电源电压和等效电阻。 (1)创建电路:从元器件库中选择电压源、电阻创建如图所示电路,同时接入万用表。 (2)用万用表测量端口的开路电压和短路电流,并计算等效电阻。 开路电压测量原理图:

短路电流测量原理图: 等效电阻计算: Uoc=2.609V Isc=10.42mA 所以:Ro=Uoc/Isc=2.609V/10.42mA=250.355(欧姆) (3)用万用表的欧姆档测量等效电阻,与(2)所得结果比较,将测量结果填入 表中。

等效电路图: (5)用参数扫描法对负载电阻进行参数扫描,得到原电路和等效电路的外特性, 5.测量原电路和戴维南等效电路的外特性,测量结果填入表中。

1.为何开路电压理论值和实际测量值一样,而短路电流却不一样? 答、因为理论得到的等效电阻与实际用来替代的电阻阻值并不完全相同,可能会有器件本身阻值的偏差,也会由于供给电压后对电阻阻值的影响,再有实际测量工具的误差,安培表外接和内接影响等等,最终导致短路电流与理论值不同。2.本实验原理图是按照安培表外接法绘制的,考虑安培表外接和内接对本实验有何差别? 答、(1)安培表外接时:测到的开路电压较为准确,但短路电流偏小,使得所得到的等效电阻偏大; (2)安培表内接时:测到的开路电压偏大,短路电流无偏差,也使得等效电阻偏大。

玻意尔定律

实验十七:玻意耳定律 【实验目的】 验证玻意耳定律。 【实验原理】 由玻意耳定律:当温度不变时,一定质量的理想气体,其压强与体积的乘积(PV )为常量,即体积与压强成反比。 【实验器材】 朗威?DISLab 、计算机等。实验装置图见图1。 【实验过程与数据分析】 1、将压强传感器接入数据采集器; 2、取出注射器,将注射器的活塞置于20ml 处 (初始值可任意选值),并通过软管与压强传感器 的测口紧密连接; 3、打开“计算表格”,增加变量“V ”表示注 射器的体积,拉动注射器的活塞至4ml 处,手动输 入V 值; 4、点击记录压强值; 5、改变并输入V 的值,记录不同的V 值对应的 压强数据; 6、点击“公式”,选取热学公式库中的“玻意耳定律”公式,再输入“自由表达式”k =1/V 代表体积的倒数,计算得出一组实验数据(如上左图所示); 7、观察实验结果,发现压强与体积的乘积基本为一常数; 8、启动“绘图”功能,设定X 轴、Y 轴分别为“V ”与“P 1”,得出一组“P-V ”数据点(如上左图所示); 9、观察可见,数据点的排列具有明显的双曲线特征。点击“拟合”,选取“反比拟合”,得到一条拟合图线(如下图所示),该图线与数据点完全重合,证明了事先关于压强与体积成反比的猜测(如上右图所示); 10、设定X 轴、Y 轴分别为“k ”与“P 1”,得出一组“P-k ”数据点。观察可见,数据点的排列具有明显的线性特征。点击“拟合”,选取“线性拟合”,一条非常接近原点的拟合图线(如下图所示),该图线贯穿了所有数据点,证明了事先的猜测:压强与体积的倒数成正比(线性关系)。 图1 实验装置图

验证戴维南定理实验报告

实验1 戴维南定理 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multimeter、V oltmeter、等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析法。 5.掌握电路板的焊接技术及直流电源、万用表等仪器仪表的使用。 6.掌握origin绘图软件的使用。 二、实验原理 戴维南定理:任何线性有源(独立源、受控源)一端口网络对外电路来说,都可以用一个电压源Us与电阻R0 串联的等效电路替换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 三、实验器材与仪器 计算机一台;通用电路板一块;万用表两只;直流稳压电源两只;电阻若干 四、实验方法 1.比较测量法 首先测量原电路的外特性,再测量等效电路的外特性。最后比较两者是否一致。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压。 等效电阻Ro:将电路中所有独立电压源短路,所有电流源开路,用万用表电阻档测量。 3.测量点个数及间距的选取 (测量点个数及间距的选取,与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性的特性应在变化陡峭处多测一些。且一般选取10个点以上) 本实验均匀选取。且应该先选取最大最小值然后均匀选取。 4.电路的外特性测量方法 在输出端口上改变R7的大小,测量端口电压和电流。 实验电路图 五、实验内容与数据记录 1.测量电阻的实际值。填入下表。

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

实验验证玻意耳定律 人教版

验证玻意耳定律 教学目标 通过实验证明:一定质量的气体,在温度不变的情况下,压强和体积成反比或压强和体积的乘积为一恒量. 通过实验了解气体状态参量的测量方法,学习计算封闭容器中气体的压强. 培养学生的动手能力和良好的实验习惯. 重点、难点分析 本实验为验证性的学生实验,要求学生必须明确验证什么、依据是什么、使用什么设备、实验怎么做.所以实验原理、实验器材、实验步骤是本实验的重点. 对公式P=P0±F/S的正确理解、封闭气体的压强计算是难点之一,相当一部分学生处理不好时公式中取P0+F/S,何时取P0-F/S.如果空气柱受到活塞和固定在它上面的框架的压力作用的同时,还受到我们施加的拉力或压力的作用,这些力的合力是F.对于这一点,也经常出问题. 由于学生缺乏操作经验,靠目测判断竖直方向,再加上实验器材本身的质量问题,注射器或实验器竖直难于保证. 实验器材 框架和100g钩码若干;测力计;铁架台及铁夹;水银气压计(共用);带刻度的注射器(5ml);刻度尺. 若使用带有长度刻度的注射器型的“玻意耳定律实验器”做本实验,请将刻度尺换为游标卡尺. 主要教学过程 明确实验原理 掌握实验所依据的公式PV=恒量; 理解公式P=P0+F/S中各物理量的意义; P0表示实验时的大气压强; S表示活塞的横戴面积; F表示封闭气体所受的合力; 会运用此公式计算封闭气体的压强. 知道本实验应满足的条件: 等温过程t=恒量; 研究对象即封闭气体的质量不变. 实验器材 认识实验器材. 了解水银气压计的构造,知道使用方法. 通过实物观察,了解注射器与玻意耳定律实验器上的刻度的区别. 实验步骤 用测力计称出活塞和框架所受重力G. 按图1所示,把注射器固定在铁架台的铁夹上,保持注射器竖直. 把适量的润滑油抹在注射器的活塞上,再上下拖动活塞,使活塞与器壁间被油封住.当活塞插进注射器内适当位置后,再套上橡皮帽,将一定质量的气体封闭在注射器内. 从注射器上读出空气柱的体积V,用刻度尺测出这个空气柱的长度,计算出活塞的横戴面S. 记下大气压强P0.

玻意耳定律应用设计

《玻意耳定律应用》教学设计 一、设计思想 从近几年高考试卷不难看出,在理综合考试的模式下物理学科在选修部分的模式基本上确定,考一个6分的选择题和一个9分的计算题,而这个计算题基本上以气体的实验定律为主,出现几率最大的是玻意耳定律的应用,这部分的命题特点是一般不会是直接应用定律,气体的等温变化适用的条件,气体状态的选择,状态参量的确定,多个研究对性以及一个研究就对象的多个变化问题是这个知识点的命题重点和热点,尤其是气体状态的确定和状态参量的求解时难点。因此本节课从拆分高考真题人手,引导学生学习拆分多研究对象和多过程的等温变化问题。 二、教材分析 本节课选自人教版普通高中物理选修3-3第八章《气体》。《玻意耳定律的应用》这节课是在《气体等温变化实验》之后加的一节专题性质的习题课。是前一节课的应用,也对后面学习《理想气体状态方程》做好铺垫。本节课是选修的内容,从现在的高考试题来看,考生要必选一个模块作答,而这一模块的选取会对考生的成绩产生很大的影响,尤其是计算题的9分,而等温变化又是选修3-3这一部分的常考内容,是热点也是重点。 三、学情分析 本节课的教学对象是高二普通班的学生,他们经过了一年半的高中训练,掌握了一定的学习方法,对自己有比较清晰的认识,有学习热情,这部分知识又和前面的知识联系不大,因此他们有学好的愿望,也有学好的可能,但是他门的分析能力还有待加强,也不太愿意动笔。 四、教学目标 (一)知识与技能 1.掌握判断等温变化的方法 2.学会选择气体的状态并确定状态参量 3.会应用玻意耳定律求解未知参量 (二)过程与方法 通过思考、讨论、阅读,学会审题,明确等温变化的使用条件,尝试拆分高考真题 (三)情感态度价值观 培养学生遇到问题要认真、全面分析的科学态度。引导学生养成面对问题要冷静不要畏难的习惯 五、重点难点 重点:气体进行等温变化过程的判断,状态参量的确定 难点:将高考试题拆解成等温变化的模型 六、教学策略与手段 提问、质疑、讲解、练习反馈及多媒体辅助教学 七、教学过程

实验四 戴维南定理的验证实验

实验四 戴维宁定理的验证实验 一、实验目的 1、通过实验验证戴维宁定理。 2、加深对等效电路概念的理解。 二、实验原理 戴维宁定理:在任何一个线性有源电路中,如果只研究其中一个支路电压、电流时,可将电路的其余部分看作是一个有源二端网络如图4-1(a) 所示。任何有源二端网络对外的作 (a ) (b ) 图4 -1 有源二端网络等效电路 用可用一个为U es 的理想电压源和内阻R 0串联的电源来等效代替见图4-1(b)。等效电源的理想电压源U es 就是有源二端网络的开路电压U OC ,即将负载断开后a 、b 两端之间的电压。等效电源的内阻R 0等于有源二端网络中所有电源均除去(将各个理想电压源短路,即其电压为零;将各个理想电流源开路,其电流为零)后所得到的无源网络的内阻。这个定理称为戴维宁定理。 三、实验内容及步骤 如图4-2所示,端子a ,b 左侧部分为一个有源二端网络,R L 是外部负载。依据戴维宁定理,测得a ,b 两端的开路电压U OC 和等效内阻R 0以后将数据代入图4-1(b )内,如果两个电路在负载R L 上产生的电流I 相等,即可验证戴维宁定理。本次实验中,负载R L 以可变电阻代替,可以通过测量多组数据验证定理的正确性。 图4-2 戴维宁定理验证电路图 实验步骤如下: (1) 打开EWB 软件,选中主菜单Circuit/Schematic Options/Grid 选项中的Show grid ,使得 绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。 (2) 在Sources 元器件库中调出1个Ground (接地点)和1个Battery (直流电压源)器件, 从Basic 元器件库中调出5个Resistor (电阻)、1个Potentiometer (可变电阻)、5个Switch (开关)器件,从Indicators 元器件库中调出1个V oltmeter (电压表)、1个Ammeter (电流表)器件,最后从Instruments 元器件库中调出1个Multimeter (多用表)器件,按图4-3所示排列好。 (3) 将各元器件的标号、参数值亦改变成与图4-3所示一致。 R L R L R U +- 5 4 R L I

试验五气体三定律及气态方程的验证

实验五 气体三定律及气态方程的验证 实验目的 1.验证气体三定律及气态方程。 2.测定气体的普适常数R 。 实验仪器 气体定律实验仪,温度计,气压计(共用),交直流电源(DC6~9V ,AC24V )。 实验原理 1.气体三定律及气态方程 一定质量的理想气体,当温度保持不变时,遵从玻意耳——马略特定律,即 p 1V 1=p 2V 2= … =恒量 当体积保持不变时,遵从查理定律,即 ===L 2 211T p T p 恒量 当压强保持不变时,遵从盖吕?萨克定律,即 ===L 2 211T V T V 恒量 一定质量的理想气体,当三个状态参量都变化时,可满足气态方程 nR T V p T V p ===L 2 22111 (3-5-1) 式中n 为气体摩尔数;R 为气体普适恒量。在常温常压下,空气近似遵从以上三个定律和气态方程。由(3-5-1)式中可得 nT pV R = (3-5-2) 式中n 的数值可按如下的方法求得,在标准状况下(p 0=760mmHg 、T 0=273.15K ),1mol 气体的体积为V 0=22.4×103cm 3,n mol 气体的体积为n V 0; 当温度变为T ′,压强仍为标准状态下的数值时,根据盖吕?萨克定律n mol 气体的体积为 00T T nV V ′=′ (3-5-3) 00V T V T n ′′= (3-5-4) 2.气体定律实验仪的结构和原理 本实验用的气体定律实验仪器如图3-5-1所示。它主 要由定压气体温度计、控温线路和体积压强测量计三部分组 成。仪器整体固定在一块支撑木板上,并装入一长方形木匣 里。使用时,打开木匣,竖立起支撑木板,然后安装调试。

戴维南定理验证试验

南京信息工程大学 实验(实习)报告 1.实验目的: 熟悉和掌握多功能电表(万用表)、电流表、电压表的使用方法和测量方法。 2.实验内容: 通过试验验证戴维南定理的正确性,并借助多功能电表(万用表)测量等效电阻、戴维南等效电压。 3.实验步骤: (1)完成上述连线后,启动电源开关,并记录电流表和电压表的读数 U= 2.371V ,I= 5.045mA (2) 求A 、B 两端开路电压th E 和等效电阻th R 。首先将L R 电阻两端开路,用万用表电压挡测量A 、B 两端的开路电压 th E ;在L R 电阻两端开路的同时,再将电池短路,用万用表欧姆挡测量A 、B 两端等效电阻th R th E = 3.8095V ,th R =285.1

(3)得到上述测量值th E 、th R 后,将电阻L R 和th E 、th R 、电流表、电压表重新连线,画出下图电路,启动电源开关,记录电流表和电压表的读数 U=2.371 V ,I= 5.045mA 4.实验分析和总结 由上述实验步骤可以证明戴维南定理的正确性,戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源U 大小就是有源二端电路的开路电压Uo ;电阻R 大小是有源二端电路除去电源的等效电阻R0。 该实验很好的反映了戴维南定理的实际应用,EWB 是较好电路仿真工具,软件能很方便的进行很多原理的仿真,这对我们今后的工作有很大的帮助。通过一节课的上机实验练习及本次报告的书写,我深深的发现了自身的不足,需要继续健身了解该软件,并不断练习巩固,不断总结经验,在一次次试验中得出模拟数据,能够更好地用于实际电路中。

戴维宁定理实验

1.实验目的: 1.1.验证有源二端电路戴维南定理。 1.2.通过实验,熟悉伏安法.半压法.零示法等典型的电路测量法。 2.戴维南定理: 戴维南定理:任何线性有源二端电路都可以用一个电压源Us与电阻R0 串联的等效电路代换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 3.戴维南定理的验证:有源二端网络等效参数的测量方法: 3.1开路电压,短路电流法:用电压表测出二端电路端口开路电压UOC,用电流表测出端口短路电流ISC. 则等效电阻:RO=UOC/ISC,如图

3.2 伏安法测RO:用电压表测出二端电路端口伏安特性曲线的斜率?U/?I 就是电路的等效电阻。 即:R O =?U/?I=UOC/ISC. 3.3 半压法测R O , 调节二端电路所接负载电阻值RL ’,使 UL=UOC/2时。断开电路,测出RL ’,则有:Ro= RL ’。 4. 实验内容与实验步骤 4.1.用开路电压与半压法测量二端电路等效参数与元件参数。 表-1 二端电路等效参数及元件参数 Uoc=Us*R3/(R1+R3)、RO=(R1∥R3)+R2 络 U L =U O C /2 R L ’ = R O

4.2.测量有源二端电路的伏安特性:改变RL阻值,测量二端电路端口电压与电流记录在表-2中,根据测量数据作有源二端电路的伏安特性曲线。 表-2 有源二端电路伏安特性测量表 4.3.测量戴维南等效电路的伏安特性: 构成的用U=Uoc的电压源, R=RO的等效电阻戴维南等效电路如图-5. 改变外电阻RL的大小,测量戴维南等效电路的端口电压与电流,记录在表-3中, 根据测量数据作出戴维南等效电路的伏安特性曲线。 注意:Uoc是有源二端网络的开路电压,不是有源二端网络内的实际电源电压Us!! 比较有源二端电路的伏安特性曲线与戴维南等效电路的伏安特性曲线。验证戴维南定理。

相关主题
文本预览
相关文档 最新文档