当前位置:文档之家› LLC谐振变换器及L6599原理

LLC谐振变换器及L6599原理

LLC谐振变换器及L6599原理
LLC谐振变换器及L6599原理

目录

引言

一、LLC谐振变换器原理 (2)

二、LLC谐振腔之元件设计 (3)

三、L6598\L6599芯片资料 ...................................................................... 错误!未定义书签。

1、L6599 芯片介绍............................................................................................... 错误!未定义书签。

2、芯片与典型方框图 (5)

3、PIN脚功能 (5)

4、典型电源系统图 (6)

5、振荡器 (7)

6、工作在轻载或无载时 (8)

四、 L6599的工作流程

1、L6599供电回路 (8)

2、L6599的启动 (9)

3、L6599稳压原理 (10)

4、L6599的SCP保护及次级OCP保护 (11)

附:过流延时保护电路 (12)

引言

随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。

一、LLC谐振变换器原理

图一、LLC谐振原理图

图二、LLC谐振波形图

图一和图二分别给出了LLC 谐振变换器的电路图和工作波形。图一中包括两个功率MOSFET (S1和S2),其占空比都为0.5;谐振电容Cs ,副边匝数相等的中心抽头变压器Tr ,Tr 的漏感Ls ,激磁电感Lm ,Lm 在某个时间段也是一个谐振电感,因此,在LLC 谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs ,电感Ls 和激磁电感Lm ;半桥全波整流二极管D1和D2,输出电容Cf 。LLC 变换器的稳态工作原理如下:

1)〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二级管导通。此阶段D1导通,Lm 上的电压被输出电压钳位,因此,只有Ls 和Cs 参与谐振。 2)〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs 和Ls 参与谐振,而Lm 不参与谐振。

3)〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr 副边与电路脱开,此时Lm ,Ls 和Cs 一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 4)〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二级管导通。此阶段D2导通,Lm 上的电压被输出电压钳位,因此,只有Ls 和Cs 参与谐振。 5)〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr 原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs 和Ls 参与谐振,Lm 上的电压被输出电压箝位,而不参与谐振。

6)〔t6,t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr 副边与电路脱开,此时Lm ,Ls 和Cs 一起参与谐振。实际电路中Lm>>Ls ,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 通过上面的详细分析,对LLC 软开关型变换器的工作原理及其特性有了一定的了解,下面介绍如何设计谐振腔之元件,进一步加深对它们的认识。

二、 LLC 谐振腔之元件设计

谐振腔之元件包括功率开关管MOSFET ,谐振电容器Cr ,谐振电感Lr 和隔离变压器T1,一般情况谐振电感Lr 是采用隔离变压器T1的漏感。

1.匝比:nor

o nor

in V V n --=

2

2.谐振电容器Cr :)

(4Cr max min nor o c o

nV V nf I ---=

3.谐振电感Lr :s

o C f 2

2

41Lr π=

4.变压器初级感量Lm :s o in o m L nV V f f L )

2(11

4max min min 2

----=

π

5.最大谐振频率fmax :?

??? ?

?-+

=

--min max 211o in s

m o

max nV V L L f f

6.初级电流有效值:2

2

,242???

?

??+??? ??=o m o o RMS p f L nV n I I π 说明:

V in-nor , V in-min , V in-max :输入电压额定值、最小值和最大值; V o-nor , V o-min , V o-max

:输出电压额定值、最小值和最大值;

I o

:输出电流额定值;在普通条件下设计者给定的开关频率

f o :输出电流额定值;在普通条件下设计者给定的开关频率 f min :设计者给定的最小开关频率 V c-max :振荡电容Cs 上最大允许电压 n :变压器初级与次级的变比 C s :振荡电容 L s :振荡电感 L m :激磁电感 f max :最大开关频率

I p,RMS :初级电流有效值

三、 L6598\L6599芯片资料

1、L6599 芯片介绍

意法半导体(ST)日前推出一个专门为串联谐振半桥拓扑设计的双终接控制器芯片L6598,该芯片支持

保护全面和高可靠性的电源设计,特别适用于液晶电视和等离子电视的电源、便携电脑和游戏机的高端适配器、80+ initiative-兼容ATX 电源和电信设备开关电源。

L6599在上一代产品L6598的基础上新增多种功能,如直接连接功率因数校正器(PFC)的专用输出、两级过流保护(OCP)、自锁禁止输入、轻负载突发模式操作和一个上电/断电顺序或欠压保护输入。

新产品工作在50%互补性占空比下,插入一个固定的死区时间,以确保软开关操作。支持高频开关(最高500kHz),能效高,电磁干扰(EMI)辐射低。为了采用自举方法驱动上桥臂开关,新产品整合了一个能够承受600V 以上电压的高压浮动结构和一个同步驱动式高压横向双扩散金属氧化物半导体(LDMOS)器件,节

省了一个外部快速恢复自举二极管。

L6599为两个栅驱动器提供一个输出电流0.6A和输入电流1.2A的典型峰值电流处理能力,使设计人员能够利用一个外部可编程振荡器设定工作频率。非线性软启动可防止涌流,最大限度抑制输出电压过冲。这个器件还有一个可控制的突发模式操作,能够大幅度降低在轻负载和无负载条件下的平均开关频率和相关损耗。

利用这个谐振控制器,设计人员甚至可以在功率校正系统内满足节能要求。在突发模式操作期间,一个专用输出使IC能够关断功率因数校正器(PFC)的预稳压器,以降低这部分电路的无负载功耗。

L6599的其它重要特性包括低功耗(<30mW)、压摆率最高50V/ns的无闩锁操作保证和一个“不自锁”禁用输入,高性能过流保护(OCP)功能提供全面的过负载和短路保护。新增的一个自锁禁用输入让过热保护(OTP)和/或过压保护(OVP)的实现变得容易。 L6599有三个产品型号:L6599N采用PDIP16封装,L6599D和L6599DTR采用SO16N封装。新产品现已投产,订购25,000件时的产品单价为1.20美元。

2、芯片与典型方框图

3、PIN脚功能

N.O 名称功能

1 Css 软启动。这个Pin与地之间接有一个电容,与RFmin之间接有一个电阻。调节芯片软

启动的最大振荡频率中的固定时间。内部开关在每次芯片关闭时(Vcc

LINE<1.25 V or >6 V, DIS>2 V,ISEN>1.5 V, DELAY>2 V)对电容放电,为下次启动进

行软启动准备。

2 DELAY 延迟保护时间设定。通过电容电阻并联后到地。可调节芯片在过流的保护时间与去掉

故障的重新恢复时间。当Isen检测电压超过0.8 V,内部对电容进行150μA恒流充

电,电容也通过电阻进行放电,平常维持在2V左右。当电压超过3.5V,内部关闭对

电容的充电,同时芯片关闭振荡,停止开关工作,达到电路保护作用,当电容通过电

阻放电至0.3V时,芯片重新工作。

3 CF 定时电容。通过内部电流源进行充放电,确定工作的开关频率。

4 Rfmin 最小振荡频率设定。提供一个2V基准电压和一个接地的电阻来设定最小振荡频率。连

接电压反馈回路中的光耦器,还可以根据输出电压大小调整振荡频率。光耦器必须由

一个电阻连接,这个电压确定最大工作频率。与软启动端,接有R-C回路,用于启动

时的振荡频率调整,达到软件启动功能,减少启动浪涌电流。

5 STBY 待机模式(脉冲工作模式设定)。通过回馈回来的电压与内部基准(1.25V)比较,当

低于基准电压时,进行待机模式,要恢复正常模式,需要高于基准50 mV。可以通过

外接电阻、接插口来设定其进行待机模式时的输出电流值。

6 Isen 电流检测端。通过一个电阻或一个电容进行初级电流的无损检测。此功能不能进行单

周期控制,所以需要将电压信号转化成平均电流信号。当电压值超过0.8V(可能有50

mV的回差),Pin1的软启动电容通过内部放电,则振荡频率会上升,因此限制了电源

的输出功率。

7 Line 输入限值检查。通过电阻分压结构接到AC或DC高压端,电容是用来旁路噪声干扰。当

电压低于1.25V时,关闭(不锁定)IC,对软件启动电容放电。重新恢复工作,电压需

要大于1.25V。内部比较器具有15μA迟滞作用。正常工作一般将此电压设在1.25-6V

之间。

8 DIS故障锁死。内部连接一个比较器,当电压超过1.85V时关闭IC,能耗降低到启动前的

水平。不用可以直接接地。

9 PFC_STOP PFC关闭控制端。正常时为开路,在待机时,有意关闭PFC控制器,降低芯片的损

耗(DIS>2 V, ISEN>1.5 V, LINE>6 V and STBY<1.25V.)。当DELAY电压超过2V

和后面开路引起电压低于0.3V,也会启动此功能。不使用可以开路此引脚。

10 GND接地端

11 LVG低端驱动输出端。接半桥电路的下管,与地之间具有拉0.3 A min,推0.8 A min的驱

动能力。

12 VCC电源供电端。主要供IC中的信号回路和下管驱动。有时需要接一个电容(0.1 μF typ.)

到地,以获取干净的电源电压。

13 N.C高压空脚。该引脚没有内部连接,是用来隔离高压引脚用。符合安规要求(PCB上的

爬电距离)

14 OUT高端驱动输出公共端

15 HVG高端驱动输出端。接半桥电路的上管,与Pin14之间具有拉0.3 A min,推0.8 A min

的驱动能力。内部与Pin14之间有一个电阻确保电压不浮动。

16 VBOOT高端驱动自举电压输入端。与Pin14 脚用一个电容连接,具有改善上、下管驱动特性,

内部具有专利技术。

4、典型电源系统图

分PFC、谐振半桥部分。

5、振荡器

振荡频率由定时元件CF选择值决定。Pin3连接一个精准的2V基准电压输出2mA或更大的电流源。以产生更高的频率。

以上网络,包函三部分:

A、最小振荡频率:一个电阻RFmin连接Pin4与地之间,确定电路最小工作频率。

B、最大振荡频率:一个电阻RFmax连接Pin4与光耦(C-E极)之间,光耦调整通过的电流,即调整振荡频率,达到输出电压的调整目的。在光耦完全饱和情况下,RFmax确定最大工作频率。

C、软启动:一个RC串联电路(Css+Rss),产生频率移动,达到软启动功能。

工作频率最大值fmax发生在最大输入电压最小输出负载,fmin发生在最小输入电压最大输出负载。RFmin、RFmax的选取,先要确定工作最大最小频率。

振荡器波形图

HB为半桥中间点电压,在低边MOSFET关闭时,HB快速上升,并通过自举电容到Pin16,以提供高边MOSFET开启的电压。

6、工作在轻载或无载时

谐振半桥电路在工作于轻载时或所有负载变轻时,工作频率会升为最大值。为使输出电压受控,需要持续一定的工作脉冲,尽量减小变压器磁化电流,以减少待机功耗。

为克服此问题,L6599工作于间歇状态(触发模式)。输出一串很少开关周期后长时间使MOSFET关闭状态,这样平均的工作频率很低,平均功耗就小。

这个触发模式利用了Pin5(STBY):通过回馈回来的电压与内部基准(1.25V)比较,当低于基准电压时,进行待机模式,要恢复正常模式,需要高于基准50 mV。可以通过外接电阻、接插口来设定其进行待机模式时的输出电流值。

窄输入电压范围宽输入电压范围

四、L6599的工作流程

详细了解L6599的各引脚功能及基本应用后,下面以JSK-4168-081原理图介绍L6599的工作流程。

1、L6599供电回路

L6599供电回路

5Vsb开关变压器T2B绕组电压经D15整流,Q9、ZD5稳压后输出Vcc1(14V左右),供给PFC 芯片(FAN7530MX Pin8)工作电压,并通过Q7、ZD9稳压后输出Vcc2(12V左右)供给L6599 Pin12工作电压。OCP、OVP、ON/OFF信号通过光耦IC5控制Q9的电压是否输出进而控制PFC、LLC电路是否工作来实现过压保护、过流保护、开关机功能。

2、L6599的启动

Pin12加上Vcc电压后,给

Pin1(CSS)外接电容C13充电,

此时C13可视为短路,R36与

R32并联,电阻减少,L6599的

振荡频率升高,电源功率下降,

当C13充满电时,此时C13可

视为开路,振荡频率由

R32决定,振荡频率降低,

电源输出正常,由此实现变频

软启动功能。同时,VDC通过

R20、R21、R22串联电阻及R30

分压输入Pin7(Line),R30上并

联的电容用来旁路噪声干扰。

Pin7(Line)电压低于1.25V关闭

IC,高于1.25V低于6V时,IC

正常工作,通过对VDC的电压

检测,实现欠压保护功能。

IC完成软启动后,内部振

荡器开始振荡,在Pin15(HVG)

与Pin11(LVG)输出如图所示的

两个占空比接近50%的脉冲,

软启动电路

驱动MOS管开始工作。

欠压保护电路L6599输出的驱动波形

3、L6599稳压原理

次级电压通过取样电阻加在光耦(IC6)内发光管上,并与ICS1的基准电压进行比较,ICS1的稳压值由上偏电阻RS9(或RS8)和下偏电阻RS10决定,稳压值由此公式算得:

Vo=[RS9/RS10+1]*2.5V

当负载由满载转向空载时,引起输出电压上升,ICS1(TL431)R点的电压将上升,而R点的电压是稳定在2.5V的,这将引起AK间流过的电流增大,光耦(IC6)内发光管上通过的电流增大,光耦(IC6)内光敏管上流过的电流也增大,光耦(IC6)内光敏管相当于一个可变电阻,与R34、R33串联起来接到Pin4(RFMIN),此时光耦(IC6)内光敏管电阻变小,引起IC振荡频率升高,使输出电压下降,反之,当负载由空载转向满载时,输出电压降低,反馈到Pin4(RFMIN)引起IC振荡频率降低,调节输出电压升高,实现了稳压的目的。

L6599稳压回路电压取样电路

4、L6599的SCP保护及次级OCP保护

当T1次级短路时,引起输出电压降低,这一电压变化通过光耦IC6反馈到L6599的Pin4(RFMIN),引起6599振荡频率降低,由于此时光耦(IC6)内光敏管的电阻相当于开路,振荡频率大大偏离LLC谐振电路的谐振点,C8上的振荡电压急剧增大,通过C9、R28、R29,D6、D7全波整流输入到Pin6(Isen),当Isen>0.8V时,Pin2(Delay)对C14充电,C14也对R37放电,同时IC内部对Pin1(VSS)软启动电容放电,

引起工作频率上升(功率下降),Pin2(Delay)反馈电压急速上升到 3.5V ,内部关闭对电容充电同时芯片关闭振荡,停止开关工作,延迟保护时间由Pin2(Delay)外接电阻R37(R delay )和外接电容C14 (C delay )决定。

C delay 电容上从2V 到3.5V 时的持续时间:

T MP =10*C delay

C delay 上从3.5V 放电到0.3V 的时间(从保护到重新工作的时间):

T STOP =R delay *C delay *ln(3.5/0.3)≈2.5 R delay *C delay

C14通过R37放电到0.3V 时,L6599会重新工作,由于Pin2(Delay) 不断在3.5V 和0.3V 变化,IC 在保护与正常工作间跳动,输出也会一闪一闪的,即间隔保护模式(在次级OCP 一直没有启动的情况下,才会出现这样的情况,L6599的SCP 保护是不锁定的,只要其Pin2(Delay)放电到0.3V 时又会重新工作)。

当次级的过流延时电路在L6599第一次检测到过流时,过流保护运放(ICS3)输出对CS27和CS33充电,同时通过RS30和RS31分压后给CS28充电,由于L6599第一次检测到过流时,Pin2(Delay)设定的延时时间很短,电容CS27、CS33、CS28上没有积累足够的能量,QS4不能导通,过流保护电路没有启动。在L6599 Pin2(Delay)从3.5V 通过R37放电到0.3V 时,L6599重新工作,过流检测电路再次对CS27、CS33、CS28充电,此时电容上已经积累足够能量,QS4导通,QS3也导通,将光耦(IC5)内发光管拉到QS3的CE 结压降与QS4上BE 结压降之和(PNP 管CE 结压降大约为0.3V ,NPN 管BE 结压降大约0.7V ),使发光管无电流流过,光耦(IC5)光敏管电阻相当于无穷大,Q9因无基极偏压而无输出,关闭L6599的VCC 电压,使主电路关闭,达到自锁保护目的。

在测试时,有时会看到输出一闪,然后再保护,因为次级的OCP 电路要在L6599的SCP 电路第二次动作后才实现保护,所以次级的OCP 电路在保护时间上要滞后于L6599的SCP 电路(大概相差40mS 左右,由其外接的延时电阻电容来决定具体时间),精确的过流点将由次级的OCP 电路来决定。

附:

过流延时保护电路

一、问题的产生

过流保护是电源保护线路中最重要的电路,通常在每个产品中都存在。它在整机发生过流故障时不仅可以及时保护电源板及主机板、功放板等,还可以防止故障进一步扩大化。

但在目前的LCD-TV 中。开机时,存在电流冲击,电流较大,启动已后,电流恢复正常。所在LCD-TV 开机时,较大的冲击电流会使过流保护电路误动作,引起LCD-TV 自动关机。

典型37寸LCD-TV 电源供电系统方框图

V1:12V 2.5A 为供TV 主板、功放板; V2:24V 7.5A 为供TV 背光电源板; V3:5VSB 1A 为供TV 控制MPU 电源。

电源板

主机板:解码、音频功率放大、信号输入处理、视频放大输出

背光电源板:升压供CCLF 灯,产生背光。

控制MPU 系统

V1:12V 2.5A

V2:24V 7.5A

V3:5V 1.0A

进行加电,试验各路冲击电流:

加AC电源:输入220V 50Hz,典型值如下

V1冲击电流:10.0A 2mS

V2冲击电流:8.5A 1mS

V3冲击电流:1.25A 1mS

问题关键在于V1在加AC电源时冲击最大达10.0A 2mS,比额定电流2.5A大了4倍。

二、现有方案

2.1、直接加大过流值,即OCP值

通过OCP保护电路参数的调整,将V1过流点调到10A以上。

理论上可行,但从电路的可靠性讲,长期工作后,一旦发生线路过流,线路不能及时保护,使故障进一步扩大,最终电源板、主板、背光板等均有可能损坏。

因此在《GB/T14714:1993微小型计算机系统设备用开关电源通用技术条件》规定电路OCP值不得超过输出额定电流的200% 。

2.2、调整产品元件参数,加大电源板的输出功率

是第一个方法的延伸,目的使供电电源板具有长期的最大稳定输出功率。

缺点是成本上升幅度大。

三、解决方案

利用延时电路将V1过流采样的控制时间移至冲击电流时间(如2mS)以后,避开启动时冲击电流引起电路的误动作,而真正发生过流故障时,当持续时间长过一定时间(如2mS),线路可以判定为线路过流故障,就可以启动OCP采样控制电路进行电源OCP保护。这样利用脉冲时间差进行区别开机冲击电流与故障过流,达到正确的控制能力。

详图如下:

1、电路结构

以R2、R5为中心的电流取样电路;以IC2为中心的比较放大电路;以Q1、Q2为中心的控制延时电路;以IC3为中心的控制电路。

2、 工作原理

当输出电流增大,在R2、R5上的压降增加,R2、R5上的增加量分别传入IC1A 、B 运放中,与其反相端基准电压进行比较,产生输出电流比较电压。

当输出电流超过额定值时,IC2将输出高电平,通过R11对C2充电,充到Q1开启电压Vgss 时,Q1导通,引起Q2导通,IC2的输出高电平通过Q2、R16加到Q4基极。

Q3、Q4组成的复合可控硅电路,当Q4基极为高电平时,Q4导通,引起Q3导通,将IC3A 的偏值电压短路到地,IC3A 发光二极管截止。

IC3B 光敏三极管也将截止,一次电路中的Q5基极因失去偏值电压而截止,将关断至PWM 控制IC Vcc 端的电压,使PWM IC 停止工作,达到电路过流保护的作用。

3、 实验结果 实验结果如下图:

附图1:无延时电路时,当电源输出端进行短路测试时,电路反应时间为21.2mS ; 附图2:带延时电路,当电路发生过流时,C2两端的电压逐渐上升(CH1波形),当上升到使Q1导通时,电路进行保护动作,电路反应时间为230mS 。

可见,电路保护的延时时间由Ugss 和R11、C2、以及IC2输出的高电平来确定。 公式推导:

)1(RC

t e

Ui Ugs Uc -

-== => Ui Ugs e

RC

t -

=-

1 => RC Ui Ugs t e ??

????

--=)1(log …… 公式1 Ugs 为Q1导通时的G-S 电压;RC 即R11、C2;Ui 指IC2输出电压。以上电路,查资料得:

Ugs=1V ,Ui=5V ,R=R11=1×106Ω,C=C2=1×10-6F; 代入公式1中,得t=223.14mS.与附图2中的测量230mS 基本符合。

附图1 无延时电路,保护反应时间

附图2有延时电路,保护反应时间

4、技术要点

通过调整R11、C2等的参数,合理的延迟OCP 控制时间,避开冲击电流,达到电流过流保护功能。 总结,本方案拥有低成本、高可靠性等优点。是LCD-TV 电源模块中解决冲击电流的首选方案,具有非常高的经济效益与可靠性价值。 5、备注

1、 OCP 值:线路过流保护时的电流值,又称过流点值。

2、 一次电路:与电网直接相连的电路,称一次电路。

浅谈电子整流器工作原理

浅谈电子整流器工作原理 前言 整流器(什么是整流器)是一个简单的将交流(AC)转化为直流(DC)的整流装置,它作为工业应用不可或缺的电子器件已越来越受到人们的亲睐。面对纷繁复杂的电子整流器件,怎样才能判别它的好坏呢?对于有用到电子整流器(整流器的作用)的人来说,了解其基础知识是必不可少的。小编通过搜集各种资料简要的对电子整流器的基础知识进行了以下总结。 电子整流器的工作原理(整流器原理) 电子整流器的基本工作原理如下图所示: 正常情况下,电子整流器通电后逆变器连同电感L、灯丝1、电容、灯丝2组成串联谐振电路,在一定时间内电容两端产生高压,这一高电压引起荧光灯弧光放电使荧光灯启动,然后谐振电路失谐,日光灯进入稳定的点燃状态。当出现灯管老化或者灯管漏气等异常状态时,荧光灯不能正常启动,上面的电路一直

处于谐振状态(除非灯丝烧断或电子整流器损坏),逆变器输出的电流不断增大,通常这个电流会升高到正常电流的3到5倍。如果这时不采取有效的保护措施,会造成极大危害。首先,过大的电流会导致逆变器中作为开关的三极管或场效应管及其它外围部件因过载而烧毁,甚至引起冒烟、爆裂等事故。同时,灯脚对地线或中线会形成长时间的极高电压,对于20W、36W、40W及其它大部分国标/非标灯的电子整流器,这一电压往往会达到一千伏或更高,这不仅为国标GB15143所严格禁止,而且也会危及人身、财产安全。GB15143-94“11、14”及GB15144-94“5.13”部分对电子整流器的异常状态试验包括:灯开路、阴极损坏、去激活、整流效应等,同时规定电子整流器在经过上述试验后不得发生安全性故障并能够正常工作。 电子整流器满足的两大功能要求 荧光灯的工作性能在很大程度上与相配套工作的电子整流器性能有关,在使用中应使荧光灯的工作性能和电子整流器的工作性能相匹配(如灯阻抗和灯的工作特性),以使荧光灯能工作在最佳状态, 使用中电子整流器应满足以下功能要求: ①能够限制和稳定荧光灯的工作电流。 ②在交流市电过零时,也能正常工作。

LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

分类号学号2003611310063 学校代码10487 密级 硕士学位论文 LLC串联谐振全桥DC/DC 变换器的研究

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Research on LLC Series Resonant Full-Bridge DC/DC Converter Candidate :Gong Li Major :Power Electronics and Electric Drive Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China April, 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在_____年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

准谐振和谐振转换两种提高电源效率的技术

准谐振和谐振转换-两种提高电源效率的技术 准谐振和谐振转换-两种提高电源效率的技术 全球对能源成本上涨、环保和能源可持续性的关注正在推动欧盟、美国加州等地的相关机构相继推出降低电子设备能耗的规范。交流输入电源,不论是独立式的还是集成在电子设备中的,都会造成一定的能源浪费。首先,电源的效率不可能是100%的,部分能量在电源大负载工作时被浪费掉。其次,当负载未被使用时,连接交流线的电源会以待机功耗的形式消耗能量。 近年来,对电源效率等级的要求日趋严格。最近,80%以上的效率已成为了基本标准。新倡议的能效标准更是要求效率达到87%及以上。此外,只在满负载下测量效率的老办法已被淘汰。目前的新标准涉及了额定负载的25%、50%、75%和100%这四个点的四点平均水平。同样地,最大允许待机功耗也越来越受到限制,欧盟提议所有设备的待机功耗均应低于500mW,对于我们将讨论的电视机,则小于200mW。 除专家级的高效率电源设计领域之外,电子设备中所用的功率范围从1W 到500W的交流输入电源,一直以来主要采用两种拓扑:标准(或硬开关)反激式(flyback)拓扑,和双开关正激拓扑。这两种拓扑都很易于理解,而它们存在的问题,以及如何予以避免,业界都已有充分的认识。 不过,随着对效率的要求不断提高,这两种拓扑将逐渐为三种新的拓扑所取代:准谐振反激式拓扑、LLC谐振转换器拓扑和不对称半桥拓扑。准谐振反激式拓扑已被成功用于最低功率级到200W以上的范围。在70W-100W范围,LLC谐振转换器比准谐振反激式拓扑更有效。而在这

两个功率级之上,不对称半桥转换器也很有效。 工作原理 准谐振和谐振拓扑都能够降低电路中的导通开关损耗。图1对比了连续传导模式(CCM)反激式、准谐振反激式和LLC谐振转换器的导通开关波形。 所有情况下的开关损耗都由下式表示: 这里,PTurnOnLoss为开关损耗;ID为漏极电流;VDS是开关上的电压;COSSeff是等效输出电容值(包括杂散电容效应);tON是导通时间,而fSW是开关频率。 a)CCM反激式转换器b)准谐振反激式转换器c)LLC谐振转换器 图1CCM反激式、准谐振反激式和LLC谐振转换器的开关波形比较CCM反激式转换器的开关损耗最高。对于输入电压范围很宽的设计,VDS 在500V–600V左右,是输入电压VDC与反射输出电压VRO 之和。进入不连续传导模式(DCM)时,漏电流降为零,开关损耗的第一项也随之降为零。在准谐振转换器中,若在电压波形的第一个(或后一个)波谷时导通,可进一步降低损耗。图中虚线所示为准谐振转换器在第一个谷底导通时的漏极波形。 如果准谐振反激式转换器的匝数比为20,输出电压为5V,则VRO等于100V,因此对于375V的总线电压,开关将在275V时导通。若有效

浅谈有源晶振sin的输出那些事

浅谈有源晶振sin的输出那些事 晶振输出串电阻就来自于最小化设计,对于数字电路里最重要的时钟源部分,应该特别注意保证信号完整性,最小化设计中晶振外围电路除了电阻还要有一些其他器件。 ?无源晶振输出波形为正弦波,有源晶振输出波形为正弦波(sin)或方波。有源晶振自身输出是正弦波,在其内部加了整形电路,所以输出是方波,正弦波通常用的很少,遍及用的都是方波输出(许多时候在示波器上看到的还是波形不太好的正弦波,这是由于示波器的带宽不行。例如:有源晶振 20MHz,假如用40MHz或60MHz的示波器测量,显现的是正弦波,这是由于方波的傅里叶分解为基频和奇次谐波的叠加,带宽不行的话,就只剩下基频20MHz和60MHz的谐波,所以显现正弦波。完美的再现方波需求最少10倍的带宽,5倍的带宽只能算是牵强,所以需求最少100M的示波器)。 ?无源晶振有2个引脚,需要借助于外部的时钟电路(接到主IC内部的震荡电路)才能产生振荡信号,自身无法振荡. ?有源晶振有4个引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件.只需要电源,就可输出比较好的波形一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 ?晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络。电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振;较高的频率是并联谐振。由于晶体自

LLC谐振全桥DCDC变换器设计修改

LLC谐振全桥DC/DC变换器设计 摘要:电力电子变压器(PET)作为一种新型变压器除了拥有传统变压器的功能外,还具备解决传统变压器价格高、体积庞大、空载损耗严重、控制不灵活等问 题的能力,值得深入研究。PET的DC-DC变换器是影响工作效率和装置体积重量 的重要部分,本文以PET中DC-DC变换器为主要研究对象,根据给出的指标,对 全桥LLC谐振变换器的主电路进行了详细的设计,主要有谐振参数的设计,利用 磁集成思想,设计磁集成变压器,可以大大减小变换器的体积和重量,并在参数设 计的基础上完成器件的选型。此外,根据给出的参数,计算出各部分损耗,进而计 算出效率,结果满足设计效率的要求。利用PEmag和Maxwell仿真软件设计磁集 成变压器,验证磁集成变压器参数。运用Matlab/simulink对PET中的DC-DC变换 器模型进行仿真分析,并在实验样机上进行实验研究,实验结果验证了DC-DC变 换器的理论研究和设计方法的正确性及有效性。 关键词:电力电子变压器;LLC谐振变换器;损耗分析;磁集成变压器 中图分类号:TD62 文献标识码:A 文章编号: Design of LLC resonant full bridge DC / DC converter Abstract: The Power Electronic Transformer (PET) as a new power transformer,not only has the functions of traditional transformers, but also has the ability to solve the problems of traditional power transformers that the high price, huge volume, prodigious no-load loss and inflexible control, and it is worth in-depth study.The DC-DC converter of PET is an important part of affecting work efficiency, volume and weight of the device. This paper studies the DC-DC converter mainly, then,according to given indexes, main circuit of full-bridge LLC resonant converter is designed in detail, including the design of resonant parameters. And the magnetic integrated transformer is designed with the idea of magnetic integration, which greatly reduces the converter volume, and the selection of devices is completed on the basis of parameters design.In addition, according to the given parameters, losses of each part and the efficiency are calculated. The results meet the efficiency requirements of design. PEmag and Maxwell simulation software are used to design magnetic integrated transformer, and verified the magnetic integrated transformer parameters.Matlab/simulink is used to simulate and analyze the DC-DC converter performance of PET. A prototype of full-bridge LLC resonant converter is developed and system test platform is built according to the theoretical research and simulation results. The correctness and effectiveness of theoretical research and design methods of the DC-DC converter are verified by analyzing the waveforms of the test. Key words:power electronic transformer; LLC resonant converter; loss analysis; magnetic integrated transformer 煤矿井下存在着各种电压等级的电源以及电气设备,供电系统十分复杂。为了满足不同电压等级的要求[1],目前井下常用传统电力变压器来进行变压和能量传递。这种变压器制作工艺简单、可靠性高,但是其价格高、体积庞大、空载损耗严重、控制不灵活,而且,如果出现电压不平衡、谐波、闪变等现象,无法维护电力设备的正常工作[2]。所以,现在亟待解决的问题是如何保证电气设备在安全工作的情况下,给用户供应可靠稳定的电能[3]。电力电子变压器(PET)应运而生,它除了拥有传统变压器的功能外,还具备解决上述难题的能力,作为一种新型变压器,近年来成为国内外学者研究的热门问题[4-9]。LLC拓扑,作为一种双端谐振拓扑,已经在许多DC/DC功率变换方案中得到应用,但在PET上的应用尚未广泛。本研究将依据LLC全桥DC/DC变换器的原理设计一款PET,利用LLC谐振变换器本身的诸多优势达到提高PET效率的目的。

谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27 作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的 物理意义及教学思路 雷志坤 (广西机电职业技术学院,广西南宁 530007) 摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。 关键词:谐振;品质因数Q 值;物理意义;讨论 中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03 引言 谐振是电路在运行过程中出现的一种特殊物理现象, 其重要性从无线电通信等技术中的应用中可见一斑。具有 电感和电容元件的不含独立激励源二端电路网络,当网络 的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐 振时电感感抗大小等于电容容抗,网络端口的电压和电流 同相位,在电感或电容上将获得比端口信号大得多的信号 响应量。Q 值的物理意义体现了一个电路发生谐振的强弱 程度和电路对输入信号选频性的好坏。然而,在电路分析 教学中,我们常常发现学生(尤其是高、中职学校的学生) 对谐振其品质因数Q 这些重要概念的物理含义理解不清或 一知半解,究其原因主要是因为其概念较为抽象,教材中 又多采用复杂而繁琐的数学公式推导,直观性不强,造成 学生对这些概念的理解出现一定程度的困难,将影响到他 们后续课程的学习效果。 如何才能便捷有效地理解电路中的谐振和品质因数等 概念呢?笔者在多年的教学实践中总结出一些较为理想的 教学方法,现归纳为以下几点供同行们探讨。 一、举例说明谐振概念及其品质因数Q 值的物理意义 1、谐振的概念及典型应用举例 现以最常见的收音机输入回路(即调台电路)为例。 如图1为简单的收音机信号输入等效电路,由天线和电阻 R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133) 吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

准谐振SMPS控制器L6565功能原理及应用

准谐振SMPS控制器L6565功能原理及应用 准谐振SMPS控制器L6565功能原理及应用 1概述 ST公司在近期推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路前馈电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS 运行。 L6565的主要特点如下: QRZVS回扫拓扑电流型初级控制; 线路电压前馈控制保证交付恒定功率; 频率折弯(foldback)功能可获得最佳待机频率; 逐周脉冲与打嗝(hiccup)模式过电流保护(OCP); 超低起动电流(<70μA)和静态电流(<3.5mA); 堵塞功能(开/关控制); 25V±1%的内部基准电压; ±400mA的图腾驱动器,在欠电压闭锁(UVLO) 情况下,保持输出低电平。 L6565的主要应用包括TV/监视器开关型电源(SMPS)、AC/DC适配器/充电器、数字消费类产品、打印机、传真机和扫描设备等。 2功能与工作原理 21封装及引脚功能 L6565采用8脚DIP(L6565N)和8脚SO(L6565D)封装,引脚排列。 L6565的引脚功能分别为: 脚1(INV)误差放大器反相输入; 脚2(COMP)误差放大器输出; 脚3(VFF)线路电压前馈; 脚4(CS)电流感测输入; 脚5(ZCD)变压器退磁零电流检测输入; 脚6(GND)地; 脚7(GD)栅极驱动器输出; 脚8(VCC)电源电压。 22工作原理 图1L6565引脚排列 图2L6565电源电路 图3ZCD及相关电路 (1)电源 L6565的电源电路。IC脚VCC的导通门限电压典型值是135V,关闭门限电压典型值是9 5V。一旦VCC脚导通,IC内部栅极驱动器电压直接由VCC提供,其它内部所有电路的工作电压均由线性调节器产生的7V电压供给。一个内部25V±1%的精密电压,供给初级

浅谈MOSFET电容对LLC串联谐振电路的作用

MOSFET电容对LLC串联谐振电路的作用 LLC的优势之一就是能够在比较宽的负载范围内实现原边MOSFET的零电压开通(ZVS),MOSFET的开通损耗理论上就降为零了。要保证LLC原边MOSFET 的ZVS,需要满足以下三个基本条件: 1)上下开关管50%占空比,1800对称的驱动电压波形; 2)感性谐振腔并有足够的感性电流; 3)要有足够的死区时间维持ZVS。 图a)是典型的LLC串联谐振电路。图b)是感性负载下MOSFET的工作波形。由于感性负载下,电流相位上会超前电压,因此保证了MOSFET运行的ZVS。要保证MOSFET运行在感性区,谐振电感上的谐振电流必须足够大,以确保MOSFET 源漏间等效的寄生电容上存储的电荷可以在死区时间内被完全释放干净。 当原边的MOSFET都处于关断状态时,串联谐振电路中的谐振电流会对开关管MOSFET的等效输出电容进行充放电。MOSFET都关断时的等效电路如下图所示:

通过对上图的分析,可以得出需要满足ZVS的两个必要条件,如下: 公式看上去虽然简单,然而一个关于MOSFET等效输出电容Ceq的实际情况,就是MOSFET的等效寄生电容是源漏极电压Vds的函数,之前的文章对于MOSFET的等效寄生电容进行过详细的理论和实际介绍。,也就是说,等效电容值的大小会随着Vds的变化而变化。如下图所示,以Infineon的IPP60R190P6为例:

LLC串联谐振电路MOSFET的Vds放电过程分为四个阶段,如下图所示,(I) 380V-300V; (II) 300V-200V; (III) 200V-100V; (IV)100V-0V。 从图中可以看出,(I)和(IV)两部分占据了Vds放电时间的将近2/3,此时谐振腔的电感电流基本不变。这两部分之所以占据了Vds放电的大部分时间,主要原因在于当Vds下降到接近于0的时候,MOFET源漏间的寄生电容Coss会指数的增加。因此要完全释放掉这一部分的电荷,需要更长的LLC谐振周期和释放时间。 因此选择合适的MOSFET(足够小的等效寄生电容),对于ZVS的实现至关重要,尤其是当Vds接近于0的时候,等效输出电容要足够小,这样还可以进一步降低死区时间并提高LLC的工作效率。 下图进一步说明如何选择合适的ZVS方案。

双向全桥CLLC谐振变换器的混合式控制策略

双向全桥CLLC谐振变换器的混合式控制策略传统能源的日益匮乏,国内生态环境的不断恶化,使得新能源研究迫在眉睫,以风能、太阳能、生物质能为代表的新能源技术正成为能源技术发展的主力军,而其中起着重要作用的电力电子技术也随之快速发展。如何消除开关损耗,降低电磁干扰,提高能量转换效率一直是电力电子技术行业所关注的问题,而作为能量转换关键环节的双向DC/DC变换器自然就成为了解决这些问题的突破点,故研究高效高频的双向DC/DC变换器将变得具有重要意义。 传统LLC谐振变换器作为双向DC/DC变换器中的一个代表,其技术已日趋成熟。而CLLC谐振变换器在继承传统LLC谐振变换器相关优点的基础上,其在谐振网络部分的右侧比传统LLC谐振变换器额外增加了一个电容,这使其正向运行时在正向第二谐振频率点的直流增益小于1,反向运行时在反向第二谐振频率点的直流增益大于1。 让它能更适合应用在正向降压、反向升压的工作环境中。但目前相关文献对其特点分析的过程和深度不充分,本文对其相应的特点进行补充分析。 并为了适应新能源宽范围的输入电压和更多的应用场合,结合变频控制和移相控制各自的特点,采用一种混合控制策略开展实验研究,为CLLC谐振变换器应用研究提供一种控制策略的参考方案。首先,运用基波近似法得出谐振变换器正反向运行时的直流增益和正反向运行时各自的第一、二谐振频率;并分析了全桥CLLC谐振变换器正向变频运行和正向移相运行的工作过程。 再将CLLC谐振变换器与传统LLC谐振变换器进行对比,叙述了两者谐振网络的区别,并分析了CLLC低压侧额外电容在CLLC变换器运行过程中的作用;明确了CLLC变换器正向稳态工作区域。其次对混合控制策略进行了合理性分析,对CLLC

高级技师论文-浅谈高频高压电源供电的效率与稳定

浅谈高频高压电源供电的效率与稳定 摘要: 论文简述:根据高频高压电源的工作原理和现场使用工况,对照工频高压供电的应用参数,简单阐述了高频高压供电的优越性。并以数字为例,简明扼要的叙述了高频高压电源高效、节能、环保概念的优良设备。在同一除尘器电场的情况下,有着降低消耗,提高转换效率,提高运行电压和电流,提高功率因数,稳定电网安全运行等优点。配以先进的微机控制使运行更可靠。同时,又结合生产使用实际,分析了影响设备稳定运行的几个方面的因素。主要是温度和灰尘对设备的影响,而且两者所牵涉的冷却和密封问题,是两个不可调和的矛盾。也是设备生产和运行首要解决的问题。 关键词:高频高压电源、除尘效率、节能、稳定 前言: 随着科技的发展和人类文明的进步,越来越多的把使用环保和节能型能源,作为一种社会的责任和追求。发电厂的除尘和脱硫装置的使用,就是这种责任的体现,而高频高压电源供电,又是在原工频高压电源供电的基础上脱颖而出。以他独特的优势,兼顾环保和节能,实现了人们珍惜生命和健康的迫切愿望。 1、导出 高频高压电源供电是目前广泛应用在电除尘设备的一项新技术。

对于高频高压电源的论文和设计理念不一而足。我们就以邹县发电厂#1—4 机电除尘器使用的龙净环保GGYAJ 为例,浅谈高频高压电源的效率与稳定。 本文涉及的关键词:高频高压电源:除尘效率:节能:稳定 2、工作原理 高频高压电源是将工频三相交流电整流后,经高频逆变;升压,再二次整流后,以直流负高压输出。为电除尘器提供一个接近直流的脉动电压波形。具有输出波纹小,平均电压电流高,转换效率高,功率因数高等优点。 高频高压电源原理上有三大部分组成。即变换器、高频变压器、控制器。是由三相电源电压输入,全桥可控整流后,经串并联谐振变换成20hz—40hz 高频信号,输入给高频变压器。相对于原工频高压供电方式,有着平衡输入;高效变换,低纹波,高电流电压输出,调制平稳的明显优势。 如图1

浅谈射频放大器下的低噪放大器

浅谈射频放大器下的低噪放大器 射频放大器 射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 分类及用途 射频功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 技术参数 放大器的主要技术指标: (1)频率范围:放大器的工作频率范围是选择器件和电 路拓扑设计的前提。 (2)增益:是放大器的基本指标。按照增益可以确定放 大器的级数和器件类型。G(db)=10log(Pout/Pin)=S21(dB) (3)增益平坦度和回波损耗 VSWR《2.0orS11,S22《-10dB (4)噪声系数:放大器的噪声系数是输入信号的信噪比与输出信号的信噪比的比值,表示信号经过放大器后信号质量的变坏程度。NF(dB)=10log[(Si/Ni)/(So/No)]

浅谈LLC变压器设计经历

浅谈LLC变压器设计经历 适用于LLC变压器,其特征在于,包括:第一MOS开关管、第二MOS开关管、第一电容、电感和至少两个变压器;所述变压器的原边串联、副边并联;所述第一MOS开关管与第二MOS开关管串联后其中点依次通过第一电容和电感与变压器原边串联后的一端相连,变压器原边串联后的另一端接地;所述变压器副边并联后接整流滤波电路。 变压器的饱和问题: 我的变压器设计的工作磁感应强度Bm并不高,为什么我的LLC变压器磁芯温度很高? 由于LLC变压器工作在LC谐振状态,LC谐振回路有个特点就是Q值问题,在这里Q值是大于1的,因而就会有实际加在变压器上的电压要比输入电压高的问题,因而在设计变压器的时候就必须考虑到这一点,否则变压器就不是工作在你设计的磁感应强度上。 由于输入电压高的时候,开关频率也比较高,谐振回路的增益也比较低,饱和的问题不大;但当输入是低压的时候,开关频率比较低,LLC谐振回路的增益较大,因而比较容易发生变压器饱和的问题。考虑到漏感的影响,保守的做法还得乘上耦合系数的倒数。 线径的选择问题: 为什么老化的时候测到的绕组温度很高? LLC变压器工作在高频模式下,交变磁场下的导体除了我们所熟知的趋附效应(Skin effect)外,还会反生一个接近效应(Proximity effect)。和反激的变压器不同,LLC的变压器原边的绕组都绕在一边,电流都是同一个方向,随着绕组层数的增加,接近效应就愈发明显,因而我们就需要选用更细的线径和更多的股数来解决问题。 变压器原副边匝数问题: 绕组是变压器的电路部分,它是用双丝包绝缘扁线或漆包圆线绕成变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44fN?m 式中:E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值

浅谈电路理论在电气工程中的若干应用

浅谈电路理论在电气工程中的若干应用 发表时间:2019-07-23T15:31:52.443Z 来源:《基层建设》2019年第13期作者:张晓伟[导读] 摘要:电路理论是电气工程实践的重要基础,并在实践中加以完善,更好的应用于电气工程的发展与建设当中。 身份证号码:13233519810304XXXX 摘要:电路理论是电气工程实践的重要基础,并在实践中加以完善,更好的应用于电气工程的发展与建设当中。基于此,本文探讨了电路理论在电气工程中的应用价值,分别从电气工程发展以及电气设备安全运行等方面出发,充分利用整流滤波电路、谐振电路以及三相电路等基础电路理论,在电气工程应用上进行指导,提高电力系统的性能,为其安全、稳定的运行提供保障,使电路理论成为更加成熟的经验。 关键词:电路理论;电气工程;应用 电气工程在社会生产建设中发挥着重要的作用,为社会生产生活提供了便捷的服务。电路理论是电气工程实践中总结出来的知识和经验,并在电气工程实践中起到指导性的作用,在电气工程建设中具有很高的应用价值。随着电气科学技术的不断进步,电气工程的应用领域将会更加广泛,并在若干方面,需要应用到动态电路、谐振电路以及三相电路等电路理论。 1 电路理论在电气工程中的应用价值 电路理论主要涉及到物理学、数学以及工程技术等多个学科内容,能够从中了解电力系统运行原理、电器件结构等,同时对各类电路现象予以解释和分析。而在电路的设计与分析当中,电路理论具有十分重要的指导作用。随着电气工程技术的发展,电路理论内容也在实践中逐渐完善,对于电气工程的发展具有积极的推动作用。电路设计与分析是电气工程中的重要环节,而电路理论是电路设计与分析的重要基础,通过实践总结理论,在以理论服务实践,进而说明电路理论在电气工程中具有很高的应用价值,为电路理论的学习提供了重要的指导[1]。 2 电气工程中的电路理论应用 在电路理论的学习中,整流滤波电路、谐振电路以及三相电路是基础的电路理论内容,涉及到电气工程多个方面,具体如下: 2.1 整流滤波电路 为了减少输出电压波形中脉动成分的干扰,需要在整流电路中安装滤波电路,形成整流滤波电路,其中的电容、电感元件具有储能作用,可起到滤除的作用,进而获得准确的直流电压值。在电气工程中,单相桥式整流电容滤波电路的应用较为广泛。在单相桥式整流电容滤波电路当中,负载未接入时,在初始电压为 0 的条件下,将交流电源接入电容器进行充电,该过程中不会受到直流电阻(变压器副绕组)和正向电阻(整流二极管)的影响,由于电阻值很小。当交流电压达到最大值时,会输出恒定的直流电压值,这与缺乏放电回路有关。在充电之后将负载接入,当负载接入时,电容器会出现持续的充电和放电,充电时间常数小,而放电时间常数高,在负载上获得直流电压值,其放电波形呈锯齿状,并出现小幅度的上升脉动。如果未安装滤波电路,则根据非正弦波形计算平均值。在电气工程的多个方面,均需要参考整流滤波电路理论的相关内容。 2.2 谐振电路 谐振电路的相关理论一般应用于电气设备安全检测当中。交流耐压试验和电压互感器铁磁谐振现象分析是电气设备安全检测的常用方法,分别用于检查电气设备绝缘强度和电力系统的运行情况。在交流耐压试验当中,在持续工频电压的作用下,检验电气设备的绝缘强度。为了更加准确的评估电气设备的绝缘强度,需要逐渐升高工频电压。对于电容量较大的电气设备,其现场试验的难度较大,对于试验设备的要求很高,试验过程中,回路电流过高。将被检测设备与可调电抗器串联,然后对电抗器的电感大小进行调节,进而形成谐振,比较电感电压、电容电压以及电源电压。在电容发生谐振后,会产生巨大电流,电感电压、电容电压同样很高,但是电源电压则是电感电压和电容电压的几十分之一或百分之一左右,这在很大程度上降低了试验设备的要求,便于进行现场试验,了解电气设备的绝缘强度,如达不到标准,及时作出改进。在电压互感器铁磁谐振现象的出现,容易损坏电压互感器,直接关系到电力系统的安全运行。这种过电压现象的出现,与电压互感器铁心饱和有关,主要单相接地故障、空载线路突然合闸的影响,进而引起电感参数的异常变化,进而形成并联谐振,互感器电压也会大幅增加,出现电压互感器铁磁谐振现象。在电气设备安全检测中,需要对电压互感器铁磁谐振现象提高警惕。 2.3 三相电路 在三相电路中,采用 Y、V 以及开口△等接法,将互感器连接到电路当中。其中 Y 接法的应用较为普遍和广泛。而在三相对称电路中,应用 V 以及开口△接法。在测量线电压的过程中,需要采用 V 形接法价格两台非接地型单向电压互感器进行连接,配电室电压和电压互感器每相绕组电压之和即为线电压值,结合额定一次线电压、二次电压,计算二次侧三相对称线电压。在≤ 35k V 的三相电路中应用开口△接法,将辅助绕组连接于电路中,用于继电保护,二次侧则选择 Y 接法,用于提供电压。辅助绕组三相电压对称,说明互感器工作正常。而一相电压数值为 0,则说明线路中出现故障。由此可见,三相电路理论能够用于检测电力系统和电力设备的运行情况,对于电气工程建设有着重要的参考价值[2]。 3 结论 电气工程为社会生产建设提供了重要的支持,而面对日益增长的社会需求,电气工程建设也在逐步加快。电气工程的发展离不开科学理论的支持,需要参考电路理论进行设计、分析和建设,然后从实践中总结全新的理论,相互促进和支持。在电气工程中若干应用中,电路理论的作用和价值得以充分凸显。通过学习电路理论,在实践中科学、合理的运用,能够帮助我们进一步了解电气工程及电力行业,为未来参与其中打下良好的基础。 参考文献: [1] 汪圣杰,顾涓涓,胡国华.电路原理中两个关键问题及Or CAD/PSpice16.5仿真软件的应用[J].赤峰学院学报(自然版),2016,32(22):6-7. [2] 娄进.浅谈电气工程中的电力自动化技术应用 [J].广东科技,2012,21(13):50

浅析电磁共振无线充电技术

浅析电磁共振无线充电技术 柴XX1 (1. 理学院光信息科学与技术1002班) 摘要:由电磁共振无线电力传输的基本原理出发,浅析了无线充电技术的应用前景及存在的问题,最后提出了一些发展策略。 关键词:电磁共振;无线充电;电力传输;电磁场;共振器 1前言 由铜制线圈作为电磁共振器,一团线圈附在传送电力方,另一团在接受电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无线传导。这项被他们称为“无线电力”的技术经过多次试验,已经能成功为一个两米外的60瓦灯泡供电。目前这项技术的最远输电距离还只能达到2.7米,但研究者相信,电源已经可以在这范围内为电池充电。而且只需要安装一个电源,就可以为整个屋里的电器供电。 这一系统可以在未来得到广泛应用,例如针对电动汽车的充电区以及针对电脑芯片的电量传输。而采用这项技术研制的充电系统所需要的充电时间只有当前的一百五十分之一。这项技术具有优良的能量传输特性,从而显现出独一无二的优势。在一个较远的距离上,摆脱电线的束缚,能量在空间中分布,而我们需要做的只是在任何一个地方利用它。 本文综述了无线充电技术,或者说无线能量传输技术在生活中的应用,并介绍了此技术在未来可能得到的应用,如太阳能外空间收集、地球能量网、实时定位,最后提出了在应用中待解决的问题。 2无线能量传输工作原理 2.1基本原理 当振荡电路为非理想状态而有电阻时,电阻发热,成为阻尼振荡;当振荡电路中有外加的周期性电动势作用时,将成为受迫振荡;当外加电动势的频率与电路自由振荡的固有频率ω相同时,振幅达最大值,叫电磁共振。 电磁共振是目前正在研究的一种电力传输方式,是利用电流通过线圈产生同频率的磁场共振实现无线供电,磁场的强弱决定了它的传输距离和效率,它可以实现10m左右距离的室内供电。并且它们传递能量的强度不会受到周围事物的影响。但由于目前的实验所需要的线圈直径较大,还仅仅停留在实验阶段,而且,必须对其相应频率进行保护,防止相同频率的电磁波进行干扰,降低效率。 2.2装置原理图

浅析宽电压输入半桥型LLC谐振变换器设计与实验

浅析宽电压输入半桥型LLC谐振变换器设计与实验 半桥型LLC谐振变换器由于拓扑简单、工作效率高而得到广泛研究。此处针对宽电压输入的工作情况,采用脉冲频率调制(PFM),避免了传统PWM控制占空比变化范围大的问题。为了提升变换器效率,对各关键谐振参数进行设计,分析了其对电源输出特性的影响,使得初级开关管实现零电压开通(ZVS),次级二极管实现零电流关断(ZCS)。结合理论数学推导和增益曲线分析,设计了一台100 W的变频半桥型LLC谐振变换器样机,并完成了相关实验,验证了参数设计的正确性,样机的最大效率达到93.95%。同时对变换器进行了损耗分析,以便进一步优化设计。 1 引言 半桥型DC/DC变换器广泛用于中小功率场合。通过增大开关频率,可有效减小电源体积和重量,但会增加开关管损耗,影响电源电能质量及工作效率。在所有工作条件下实现软开关可很好地解决上述问题。相比传统谐振变换器,变频LLC 型谐振变换器由于特殊工作性能可在宽电压输入范围内方便地稳定电压或电流。其结构简单,控制方便,寄生元件亦可参与谐振过程。初级开关管可方便地实现ZVS,关断电流小;次级整流二极管可实现ZCS,消除反向恢复时二极管损耗和振荡。在控制方法上采用PFM,开关管占空比保持在0.5,解决了宽电压输入情况下占空比变化大的问题,使得开关频率增加,从而进一步减小了变换器的体积和重量。 此处分析了变频半桥型LLC谐振变换器的工作原理和软开关特性,分析了参数设计对变换器性能的影响,以此为基础完成了电路参数的优化设计,并通过实验验证了变换器设计的正确性。测试了电路的效率并完成了相应的损耗分析。 2 LLC谐振变换器特点和参数分析 2.1 LLC谐振变换器拓扑 图1示出半桥型LLC谐振变换器结构。LLC谐振变换器存在两个谐振频率:Lr 和Cr的谐振频率,Lr,Cr和Lm共同发生谐振频率

电磁谐振

论文 浅谈电力系统中的铁磁谐振 摘要: 本文主要论述了电力系统中的铁磁谐振产生的主要原因、发生谐振时的现象、危害以及消除谐振的办法 关键词: 铁磁谐振中性点不接地系统电压互感器电容电感 前言 近年由于电网的快速发展、再加上今年又是电网建设年,电网也进行了大量的改造和扩建工程,大到500kV、小到10kV配网都有较大的变化,使得整个网络变得更加复杂、灵活、坚强。但就是因为电网结构的较大变化(如中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加等)以前电网中少有发生的铁磁谐振现象,现在却时有发生,由于谐振时会产生过电压,给电网安全造成了积大的威胁,如不采取有效的消除措施,可能会造成设备损坏、甚至还会诱发产生更为严重的电力系统事故。下面就电网中的铁磁谐振谈谈我个人的认识、见解。 一、概述 铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。 电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV 带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。 二、铁磁谐振的现象 1、铁磁谐振的形式及象征 1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出 2)分次谐波:三相对地电压同时升高、低频变动 3)高次谐波:三相对地电压同时升高超过线电压 2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V 三、铁磁谐振产生的原因及其分析: 1、铁磁谐振产生的原因: 1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击

相关主题
文本预览
相关文档 最新文档