准谐振开关电路
- 格式:pdf
- 大小:48.71 KB
- 文档页数:1
准谐振开关电源的设计1.引言准谐振开关电源是一种采用谐振电路来驱动开关管的电源设计。
通过控制开关管的导通时间和关断时间,实现谐振振荡,从而提供稳定的输出电压。
准谐振开关电源具有高效率、高稳定性、小体积等优点,在各种应用中得到广泛应用。
2.设计原理3.主要电路设计a.输入滤波电路输入滤波电路主要用于抑制电源噪声和滤波杂波,确保输入电源的稳定性。
一般采用电容器和电感器的组合来实现。
b.整流电路整流电路用于将交流电源转换为脉冲直流电压。
常用的整流电路包括单相全波整流电路和三相桥式整流电路。
c.谐振电路谐振电路是准谐振开关电源的核心部分,通过合理的选择谐振频率和谐振元件的参数来实现输出电压的稳定调节。
谐振电路常采用LC谐振电路,谐振元件主要由电感器和电容器组成。
d.输出滤波电路输出滤波电路主要用于去除输出电压中的纹波和杂波,确保输出电压的稳定性。
一般采用电容器和电感器的组合来实现。
4.设计要点a.合理选择谐振频率和谐振元件的参数,确保谐振电路的稳定性和输出电压的精度。
b.控制开关管的导通时间和关断时间,确保开关管工作在合适的状态,减小功耗和热损耗。
c.使用高效率的开关管和电源管理芯片,提高整体电源的转换效率。
d.使用合适的散热装置和温度感知器,确保电源的散热性能和稳定性。
e.遵循安全设计原则,采取必要的保护措施,确保电源的可靠性和使用者的安全。
5.结论准谐振开关电源是一种高效、稳定的电源设计,能够提供稳定的直流电压输出。
设计时需要合理选择谐振频率和谐振元件的参数,并控制开关管的导通时间和关断时间。
此外,合理选择开关管和电源管理芯片,使用合适的散热装置和温度感知器,严格遵循安全设计原则也是必要的。
准谐振开关电源的设计需要综合考虑电路原理、元器件选择、热设计和安全设计等因素,才能获得稳定、可靠的电源设计。
深圳市诚芯微科技有限公司SHENZHEN CHENGXINWEI TECHNOLOGY CO.,LTDCX7501准谐振PSR CC/CV PWM电源开关产品说明书地址:深圳市福田区福田大厦中部10楼联系电话:0755-********传真:0755-********FEATURES●内置800V三极管低成本电源方案●高效率的准谐振主侧调节(QR-PSR)控制● 多模式PSR控制●快速动态响应●内置动态基本驱动器●音频无噪声操作●±4%CC和CV调节● 低待机功耗<70mW●在CV模式下可编程电缆压降补偿(CDC ●内置AC线路和负载CC补偿● 内置保护:⏹短负载保护(SLP)⏹逐周期限流⏹前沿消隐(LEB)⏹引脚浮动保护⏹欠压保护过压保护VDD电压钳位保护⏹过温保护(OTP)● CX7501封装为SOP-7特点CX7501是高性能准谐振(QR)初级侧调节(PSR)PWM电源开关,具有高精度CV/CC控制,是充电器应用的理想选择。
在CV模式下,CX7501采用多模式QR控制,采用AM(Amplitude Modulation)模式和(Frequency Modulation)FM模式的混合模式,提高系统效率和可靠性。
在CC模式下,IC使用具有线路和负载CC补偿的PFM控制。
该IC可以实现快速动态响应。
内置电缆压降补偿(CDC)功能可提供出色的CV性能。
CX7501集成了功能和保护功能欠压锁定(UVLO),VDD过压保护(VDD OVP),逐周期电流限制(OCP),短路保护(SLP),片上热关断,VDD 钳位等。
应用●充电器适配器● AC/DC电源适配器和LED照明典型应用电路CX7501脚位分布图脚位说明脚位脚位名称I/O说明1FB I系统反馈引脚,用于根据辅助绕组的反激电压调节CV模式下的输出电压和CC模式下的输出电流。
2CS I电流检测输入引脚。
.3VDD P芯片电源引脚。
4E O电源BJT发射器5,HV O电源BJT收集器7GND P地内部图框绝对最大额定值(注1)参数值单位HV脚最大电压800V HV脚直流电流@CX75011300mA VDD直流电源电压30V VDD直流钳位电流10mA CS,BASE电压范围-0.3to7V FB电压范围-0.7to7VR JA(℃/W)(SOP7)90o C/W 最大结温150o C 工作温度范围-40to85o C 存储温度范围-65to150o C 引线温度(焊接,10秒)260o C ESD能力,HBM(人体模型)3kV ESD能力,MM(机器模型)250V推荐工作条件(注2)Parameter值单位电源电压,VDD7to24V工作环境温度-40to85o C 最大开关频率@满载70kHz 最小开关频率@满载35kHz电气特性(T A=25O C,VDD=20V,如果没有另外注明)符号参数测试条件最小值典型值最大值单位电源电压部分(VDD引脚)I VDD_st启动电流流入VDD引脚320uAI VDD_Op工作电流0.8 1.5mA I VDD_standby待机电流0.51mAV DD_ON VDD欠压锁定开10.51213.5VV DD_OFF VDD欠压锁定关5.56.57VV DD_OVP VDD欠压保护阈值2426.529VV DD_Clamp VDD钳位电压I(V DD)=7mA262830V控制功能部分(FB引脚)V FBREF内部误差放大器(EA)参考输入1.972.0 2.03V V FB_SLP短负载保护(SLP)阈值0.65V T FB_Short短负载保护(SLP)去抖时间(注3)36msV FB_DEM DemagnetizationComparatorThreshold 25mVT off_min最小关断时间(注3)2usT on_max最大启动时间(注3)20usT off_max最大关断时间5msI Cable_max最大电缆压降补偿(CDC)电流60uAT SW/T DEM CC模式下开关周期和去磁时间之间的比率7/4电流检测输入部分(CS引脚)T L EBCS输入前沿消隐时间500nsV cs(max)电流限制阈值490500510mVT D_OC过电流检测和控制延迟100ns 片上热关断T S D热关断(注3)--155--°CT RC热回收(注3)140--°C BJT段(HV引脚)V CEO集电极-发射极电压480VV CBO集电极-基极电压800V注1.列在上述“最大额定值”的应力可能会导致器件永久性损坏。
一.准谐振反激式开关电源原理分析:准谐振反激式开关电源等效原理图准谐振反激式开关电源等效原理图如上图所示。
其中Lm为原边励磁电感, Lk为原边漏感。
电容Cd包括主开关管Q的输出电容Coss、变压器的匝间电容以及电路中的其他一些杂散电容。
Rp为初级绕组的寄生电阻,包括变压器原边绕组的电阻,铜线的高频趋肤效应、磁材料的损耗以及辐射效应的等效电阻.准谐振反激式开关电源工作在DCM或CRCM状态,副边二极管电流下降到零之后(当副边绕组中的能量释放完毕之后,即变压器磁通完全复位),电容Cd,原边电感Lp=Lm+Lk以及电阻Rp构成一个RLC谐振电路,主开关管Q两端电压Vds将产生振荡,振荡频率由L P、C P决定,衰减因子由R P决定.对于传统的反激式变换器,其工作频率是固定的,因此开关管V ds再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底),视负载情况而定.而这无疑增加了开关管的损耗。
可以设想,如果控制开关管每次都是在振荡电压的谷底导通,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。
准谐振反激式开关电源正是如此,不管负载情况如何,总是在当检测到Vds波形振荡到谷底时,控制器控制主开关管Q开通,降低主开关管Q的开通损耗,同时使得输出电容Cd上的能量损耗达到最小。
这个的实现方法比较简单,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的.二.L6565芯片:L6565芯片特点:在轻负载下也能自动降低工作频率,以保证变换电源能够最大限度的工作在电压过零ZVS 状态.同时因线电压前馈功能,有可以确保变换电源在电网电压波动幅度足够大时,其输出功率仍然维持恒定。
芯片内部集成有启动电路、精密基准电压源、电压误差放大器、电流检测比较器、零点流检测电路、RS 锁存器、图腾柱式驱动级以及打嗝模式比较器和过流保护等功能。
L6565引脚图1 .INV 输出电压采样反馈输入2 。
工程师全面解析全桥逆变软开关电路技术的发展
准谐振电路
(1)最先出现的软开关电路是零电压零电流准谐振电路拓扑结构,20世纪70年代末80年代初准谐振技术得到广泛关注,因为它能够通过谐振来整定电压和电流的波形,使大电压和大电流不能同时出现,这样就大大减少了开关应力和功率损耗。
但是它也存在自身的缺点:谐振使电压峰值很高,要求所用的器件耐压性能好;电流的有效值很大,另外,它要求对脉冲频率调制,变化的频率为电路设计造成了困难。
(2)零电压开关准谐振变换器电压应力大,负载变化范围小,这一限制可通过零电压多谐振技术得到大大改进。
多谐振电路使所有的寄生元素包括半导体开关的结电容和变压器漏电感组合成一个多谐振网,这样就使各种形式的寄生振荡最小化,甚至能够在无负载的情况下实现零电压开关。
1990年,Milan Jovanovic和Fred C.Y.Lee针对半桥零电压开关多谐振变换器(见图3)作了全面的直流分析,第1次通过实验验证了不同开关状态下4种工作模式,并分别作了波形分析,画出了每种模式的等效电路。
(3)适用于逆变器的谐振直流环节目前仍在研究应用中。
2004年,
S.Beherd,S.P.Das和S.R.Doradla提出了一种新型的多用准谐振三相逆变器结构,组成准谐振直流环节的组件包括4个开关元件、2个谐振电感和一个谐振电容,其中2个开关和谐振直流环节串联,另外2个与之并联。
这种拓扑结构采用空间矢量调节,工作于软开关状态,无源或有源三相负载低功率因数和高功率因数负载均适用。
零开关PWM 电路零开关
PWM电路包括零电压开关PWM和零电流开关PWM。
最初的零开关。
准谐振半桥开关电源电路-概述说明以及解释1.引言1.1 概述在电力电子领域,开关电源是一种常见的源波变换器。
准谐振半桥开关电源电路是一种应用广泛且效率高的开关电源拓扑结构。
该电路通过谐振电容和谐振电感实现电流和电压的平滑转换,减小了开关器件的开关损耗,提高了整体能量转换效率。
本文将详细介绍准谐振半桥开关电源电路的工作原理、电路设计方法和性能分析,以及对其应用前景和发展趋势进行讨论。
通过本文的阐述,读者将能够全面了解准谐振半桥开关电源电路在现代电子领域中的重要性和广泛应用价值。
1.2 文章结构文章结构部分将会包括以下内容:1. 简要介绍文章的章节划分,包括引言、正文和结论部分。
2. 解释每个部分的作用和重要性,比如引言部分用于引入主题和背景,正文部分用于详细介绍工作原理和电路设计,结论部分用于总结研究内容。
3. 提及每个部分的具体内容和主题,引导读者对整篇文章的框架有一个清晰的认识。
通过这样的文章结构安排,读者可以更容易地理解文章的逻辑思路和主要内容,有助于他们更有效地阅读和理解文章。
1.3 目的本文旨在介绍准谐振半桥开关电源电路的工作原理、电路设计及性能分析,以便读者了解该电路的使用方法和优势。
通过深入探讨该电路的特点和性能指标,读者能够更好地应用和改进该电路,同时也有利于推动开关电源领域的发展和进步。
希望本文内容能够对电子工程师和相关领域从业者有所帮助,为他们在实际工作中的电路设计和应用提供一些参考和指导。
2.正文2.1 工作原理准谐振半桥开关电源电路是一种有效的功率转换电路,其工作原理基于谐振现象和半桥拓扑结构。
在正常工作状态下,电路由一个电源模块,一个控制模块和一个输出端模块组成。
首先,电源模块将交流电源转换为直流电压,并通过控制模块对功率开关元件进行PWM控制,使其按照一定的频率和占空比进行开关操作。
在半桥拓扑结构中,两个互补的功率开关元件分别连接到电源的正负极,通过不断地开关操作,实现电压的变换和控制。
1207AP(或1207P)是电视机上的准谐振模式PWM控制开关电源电路。
PWM,
即脉冲宽度调制,是一种模拟控制方式。
其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关
稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
1207AP的具体工作原理是:300V电压经过R648送到1207AP的(8)脚进入集成块内部后分为两路,一路加到集成块内部的驱动电路上,作为驱动电路的工作电压;另一路经过恒流源电路给(6)脚外接电容c622充电。
当(6),1207AP开始工作,从(5)脚输出激励脉冲至开关管q601栅极,开关管开始工作,T601(12)脚经过(D601)整流滤波后,经R615、R627、VR601、R633、IC605取样稳压经光电耦合器给IC601(2)脚反馈,使T601(12)脚整流滤波输出稳定的B+140v行电压,(14)脚整流滤波输出行场工作电压,(15)脚整流滤波输出5v-1、5v-2。
需要注意的是,不同型号的1207AP可能存在差异,具体的细节和参数可能有所不同。
如果您需要了解更多关于特定型号的1207AP的信息,建议查阅相关的技术手册或联系专业技术人员。
准谐振开关电路
在PWM电路中接入电感和电容的谐振电路,流经开关的电流以及加在开关两端的电压波形为准正弦波,这种电路被称为准谐振型变换器。
图表示出电流谐振开关和电压谐振开关的基本电路以及工作波形。
图(a)是电流谐振开关,谐振用电感Lr和开关S串联,流经开关的电流为正弦波的一部分。
图(b)所示电路为电压谐振开关,谐振电容Cr与开关并联,加在开关两端的电压波形为正弦波的一部分。
开关断开时,开关两端电压从0以正弦波形状上升,上升到峰值后又以正弦波形状下降为零。
电流谐振开关中开关导通时电流脉冲宽度ton由谐振电路决定,为了进行脉冲控制,需要保持导通时间不变,改变
开关的断开时间。
对于电压谐振开关,开关断开时的电压脉冲宽度toff由谐振电路决定,为了进行脉冲控制,需要保持开关的断开时间不变,改变开关的导通时间。
在以上两种情况下,改变开关工作周期,则谐振变换器就由改变开关工作频率进行控制。
在图所示电路中,开关电压或电流的波形为半波,但也可以为全波,因此谐波开关又可分为半波谐振开关和全波谐振开关两种。
(a)电流谐振式(b)电压谐振型
图准谐振开关电路
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。