当前位置:文档之家› 半导体物理第七章1

半导体物理第七章1

半导体物理第七章1
半导体物理第七章1

第7章 金属-半导体接触

本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:

§7.1金属半导体接触及其能级图

一、金属和半导体的功函数

1、金属的功函数

在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静

止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:

FM M E E W -=0

它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数

和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即

FS S E E W -=0

因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔

C E E -=0χ

被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为

)(FS C S E E W -+=χ

式中,E n =E C -E FS 是费米能级与导带底的能量差。

图7-1 金属中的电子势阱

图7-2 一些元素的功函数及其原子序数

图7-3 半导体功函数和电子亲合能

表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值

二、有功函数差的金属与半导体的接触

把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。所以,当有功函数差的金属和半导体相接触时,由于存在费米能级之差,二者之间就会有电子的转移。

1、金属与n 型半导体的接触 1)W M >W S 的情况

这意味着半导体的费米能级高于金属的费米能级。该系统接触前后的能带图如右所示。当二者紧密接触成为一个统一的电子系统,半导体中的电子将向金属转移,从而降低了金属的电势,提高了半导体的电势,并在半导体表

面形成一层由电离施主构成的带正电的空间电荷层,与流到金属表面的电子形成一个方向从半导体指向金属的自建电场。由于转移电子在金属表面的分布极薄,电势变化主要发生在半导体的空间电荷区,使其中的能带发生弯曲,而空间电荷区外的能带则随同E FS 一起下降,直到与金属费米能级处在同一水平上时达到平衡状态,这时不再有电子的净流动。相对于金属费米能级而言,半导体费米能级下降了 (W m -W s ),如图7-4所示。若以V D 表示这一接触引起的半导体表面与体内的电势差,显然

S M D W W qV -=

称V D 为接触势或表面势。qV D 也就是电子在半导体一边的势垒高度。电子在金属一边的势垒高度是

χφ-=M M W q (7-9)

以上表明,当金属与n 型半导体接触时,若W M >W S ,则在半导体表面形成一个由电离施主构成的正空间电荷区,其中电子浓度极低,是一个高阻区域,常称为电子阻挡层。阻挡层内存在方向由体内指向表面的自建电场,它使半导体表面电子的能量高于体内,能带向上弯曲,即形成电子的表面势垒,因此该空间电荷区又称电子势垒。

2)W m <W s 的情况

这时,电子将从金属流向半导体、在半导体表面形成负的空间电荷区。其中电场方向由表面指向体内,能带向下弯曲。这时半导体表面电子浓度比体内大得多,因而是一个高电导区域,称之为反阻挡层。其平衡时的能带图如图7-5所示。反阻挡层是很薄的高电导层,它对半导体和金属接触电阻的影响是很小的。所以,反阻层与阻挡层不同,在平常的实验中觉察不到它的存在。

2、金属与p型半导体的接触

金属和p型半导体接触时,形成阻挡层的条件正好与n型的相反。即当W m>W s时,能带向上弯曲,形成p型反阻挡层;当W m<W s时,能带向下弯曲成为空穴势垒,形成p型阻挡层。如图7-6所示。

图7-5 金属和n型半导体接触(W M

3、肖特基势垒接触

在以上讨论的4种接触中,形成阻挡层的两种,即满足条件W M>W S的金属与n型半导体的接触和满足条件W M

处于平衡态的肖特基势垒接触没有净电流通过,因为从半导体进入金属的电子流和从金属进入半导体的电子流大小相等,方向相反,构成动态平衡。

在肖特基势垒接触上加偏置电压,由于阻挡层是空间电荷区,因此该电压主要降落在阻挡层上,而阻挡层则通过调整其空间电荷区的宽度来承受它。结果,肖特基势垒接触的半导体一侧的高度将随着外加电压的变化而变化,而金属一侧的势垒高度则保持不变。

三、表面态对接触势垒的影响

根据式(7-9),一种半导体与不同的金属相接触,

电子在金属一侧的势垒高度qφm应当直接随金

属的功函数而变化,即两种金属功函数的差就是

电子在两种接触中的势垒高度之差。但是实际情

况并非如此。表7-2列出几种金属分别与n型Ge、

Si、GaAs接触时形成的势垒高度的测量值。表中可见,金和铝分别与n型GaAs接触时,势垒高度仅相差0.15V。而金的功函数为4.8 V,铝的功函数为4.25 V,两者相差0.55V,远比0.15V大。大量的测量结果表明,不同金属之间虽然功函数相差很大,但它们与同一种半导体接触时形成的势垒高度相差却很小。这说明实际情况中金属功函数对势垒高度的决定作用不是唯一的,还存在着影响势垒高度的其他因素。这个因素就是半导体表面态。

1、关于表面态

在半导体表面的禁带中存在表面态,对应的能级称为表面能级。表面态一般分为施主型和受主型两种。若表面态被电子占据时呈电中性,施放电子后带正电,称为施主型,类似于施主杂质;若表面态空着时为电中性,接受电子后带负电,则称为受主型,类似于受主杂质。表面能级一般在半导体禁带中形成一定的分布。在这些能级中存在一个距离价带顶qφ0的特征能级。在qφ0以下的能级基本被电子占满;而qφ0以上的能级基本上全空,与金属的费米能级类似。

对于大多数半导体,qφ0至价带顶的距离约为禁带宽度的1/3。

2、表面态使能带在表面层弯曲

假定在一个n型半导体表面存在着这样的表面态,则其E F必高于qφ0。由于表面qφ0以上的表面态能级空着.表面以下区域的导带电子就会来填充这些能级,于是使表面带负电,同时在近表面附近形成正空间电荷区,成为电子势垒,平衡时的势垒高度qV D使电子不再向表面态填充。如果表面态密度不高,近表面层电子对表面态的填充水平提高较大,平衡时统一的费米能级就停留在距qφ0较远的高度。这时,表面能带弯曲较小,势垒qV D较低,如图7-7所示。如果表面态密度很高,以至近表面层向其注入大量电子仍难以提高表面能级的电子填充水平,这样,半导体的体内费米能级就会下降很多而靠近qφ0。这时,表面能带弯曲较大,势垒qV D=E g-qφ0-E n,其值最高,如图7-8所示。

图7-7 表面态密度较低时的n型半导体能带图图7-8表面态密度很高时的n型半导体能带图

3、表面态改变半导体的功函数

如果不存在表面态,半导体的功函数决定于费米能级在禁带中的位置,即W s=χ+E n。如果存在表面态,半导体即使不与金属接触,其表面也会形成势垒,且功函数W s要有相应的改变,如图7-7所示。对该图所示之含表面态的n型半导体,其功函数增大为W s=χ+qV D +E n,增量就是因体内电子填充受主型表面态而产生的势垒高度qV D。当表面态密度很高时,因半导体费米能级被钉扎在接近表面态特征能级qφ0处,W s=χ+E g qφ0,与施主浓度无关。表面势垒的高度也不再有明显改变。

4、表面态对金-半接触的影响

如果用表面态密度很高的半导体与金属相接触,由于半导体表面释放和接纳电子的能力很强,整个金属-半导体系统费米能级的调整主要在金属和半导体表面之间进行。这样,无论金属和半导体之间功函数差别如何,由表面态产生的半导体表面势垒区几乎不会发生什么变化。平衡时,金属的费米能级与半导体的费米能级被钉扎在qφ0附近。这就是说,当半导体的表面态密度很高时,由于它可屏蔽金属接触的影响,以至于使得半导体近表面层的势垒高度和金属的功函数几乎无关,而基本上仅由半导体的表面性质所决定。对于含高密度表面态的n型半导体,即使是与功函数小的金属接触,即W m<W s,也有可能形成n型阻挡层。当然,这是极端情况。实际上,由于表面态密度的不同,有功函数差的金属与半导体接触时,接触电势差仍有一部分要降落在半导体表面以内,金属功函数对表面势垒的高度产生不同程度的影响,但影响不大。

这种解释符合实际测量的结果。

因此,研究开发金属-半导体接触型器件时,保持半导体表面的低态密度非常重要。

注:由图7-2查功函数误差很不准确,做习题可利用下表,其值取自1978年出版的“Metal-semiconductor Contacts”表2.1

半导体物理第六章习题答案

半导体物理第六章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第6章 p-n 结 1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =51015cm -3, 求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,00 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即

半导体物理学第七章知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静 止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数 图7-3 半导体功函数和电子亲合能

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理第七章总结复习_北邮全新

第七章 一、基本概念 1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。 金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差 2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。 3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws 4. 半导体与金属平衡接触平衡电势差: q W W V s m D -= 5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。表面空间电荷区=阻挡层=势垒层 6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。电场从半导体指向金属。取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。 【电子从功函数小的地方流向功函数大的地方】 7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm

半导体物理习题第六章第七章答案

第6章 p-n 结 1、一个Ge 突变结的p 区和n 区掺杂浓度分别为N A =1017cm -3和N D =5?1015cm -3,求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ= ,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,0 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即 22 2 2222 2 ()(1) i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证

半导体物理学(刘恩科第七版)课后习题解第一章习题及答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量 E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 212102220 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算 电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理第六章1

第6章 pn结 把一块p型半导体和一块n型半导体键合在一起,就形成了pn结。pn 结是几乎一切半导体器件的结构基础,了解和掌握pn结的性质具有很重要的实际意义。 §6.1 pn结及其热平衡状态下的能带结构 一、pn结的形成及其杂质分布 半导体产业形成50余年来,已开发了多种形成pn结的方法,各有其特点。 1、合金法 把一小粒高纯铝置于n型单晶硅片的清洁表面上,加热到略高于Al-Si 系统共熔点(580℃)的温度,形成铝硅熔融体,然后降低温度使之凝固,这时在n型硅片的表面就会形成—含有高浓度铝的p型硅薄层,它与n型硅衬底的界面即为pn结(这时称为铝硅合金结)。欲在p型硅上用同样的方法制造pn 结,须改用金锑(Au-Sb)合金,即用真空镀膜法在p型硅的清洁表面镀覆一层含锑0.1%的金膜,然后在400℃左右合金化。 合金结的特点是合金掺杂层的杂质浓度高,而且分布均匀;由于所用衬底一般是杂质浓度较低且分布均匀的硅片,因此形成的pn结具有杂质浓度突变性较大的特点,如图6-1所示。具有这种形式杂质分布的pn 结通常称为单边突变结(p+n结或pn+结)。 合金结的深度对合金过程的温度和时间十分敏感,较难控制。目前 已基本淘汰。 N(x) N D N A x j

x N A 图6-1 合金结的杂质分布图6-2 扩散法制造pn结的过程 x j N D 2、扩散法 1956年发明的能精确控制杂质分布的固态扩散法为半导体器件的产业化及其后的长足发展奠定了基础。扩散法利用杂质原子在高温下能以一定速率向固体内部扩散并形成一定分布的性质在半导体内形成pn结。由于杂质在某些物质,例如SiO2中的扩散系数极低,利用氧化和光刻在硅表面形成选择扩散的窗口,可以实现pn结的平面布局,如图6-2所示,从而诞生了以氧化、光刻、扩散为核心的半导体平面工艺,开创了以集成电路为标志的微电子时代。 用扩散法形成的杂质分布由扩散过程及杂质补偿决定。在表面杂质浓度不变的条件下形成的是余误差分布,在杂质总量不变的条件下形成的是高斯分布,如本节后的附图所示。 3、其他方法 形成pn结的方法还有离子注入法、外延法和直接键合法等,而且这些方法已逐渐成为半导体工业的主流工艺。《半导体工艺》课程将详细介绍,这里不赘述。 4、pn结的杂质分布 pn结的杂质分布一般可近似为两种,即突变结和线性缓变结。合金pn结、高表面浓度的浅扩散结、用离子注入、外延和直接键合法制备的结一般可认为是突变结,而低表面浓度的深扩散结一般视为线性缓变结。直接键合法制备的突变结是最理想的突变结。 图6-3 扩散结的杂质分布形式

半导体物理第七章作业答案

第七章 半导体表面层和MIS 结构 (1)p 型Si 的掺杂浓度分别为N =1015/cm 3,1017/cm 3。求表面刚刚达到强反型时的表面层电荷面密度,空间电荷层厚度和表面最大电场。 N =1015/cm 3时, 1710=N /cm 3时, 2/10)4(A F s M eN V d εε=2/10)4(A F s M B N eV Q εε-=kT eV i kT E E i F F Fi e n e n p ==-0i A i F n N e kT n p e kT V ln ln 0==00εεεεs BM s n BM M Q Q Q E -≈+-=]/[1076.8)4(2102/10cm e N eV Q A F s M B ?-=-=εε??==A eN V d A F s M 32/101076.8)4(εε]/[1032.140 0cm V Q Q Q E s BM s n BM M ?=-≈+-=εεεε)(41.0105.110ln 026.01017 V V F =?=]/[1004.1)4(2122/10cm e N eV Q A F s M B ?-=-=εε??==A eN V d A F s M 32/101004.1)4(εε

(2)氧化层厚度为1μm 的Si MOS 结构的p 型衬底的掺杂浓度分别为N =1015/cm 3,1016/cm 3,比较这两种结构的氧化层电容和耗尽层电容在决定结构总电容中的作用。 N A 大d s 小, C D 大, C i 作用大。 (3)在MOS 结构C V -特性测量的应用中,平带电容有什么作用? 可根据平带电容来确定平带电压 (4)从物理上说明C FB /C i 随氧化层厚度及掺杂浓度的变化趋势。由 图查N =1015/cm 3,d i =1000A 0的Si MOS 结构的C FB /C i 值,由此估算 德拜长度。与直接算得的值进行比较。 d i 大, C FB /C i 更接近1; p 0大, L D 小, C FB /C i 更接近1. 查图得C FB /C i =0.7, 估算L D =1.35?103 A ? 直接计算得L D =1.31?103 A ? (5)试讨论平带电压V FB 及阈值电压V T 中各个项的来源: i BM F FB T i ox i fc ms FB C Q V V V C Q C Q V V -+='--=2; V FB 各项的来源分别为:功函数之差、“附着”于半导体表面的电 荷、和氧化层中的电荷对半导体表面层内能带弯曲产生的影响。 V T 各项的来源分别为:平带电压、理想情况半导体内部的电压降 V s =2V F 、理想情况绝缘层上的电压降V i 。 ] /[1057.1500cm V Q Q Q E s BM s n BM M ?=-≈+-=εεεεD i s s i i C C d d C 11100+=+=εεεεi s D i i s D i i FB d L C L d C εεεεεε+=+=1100020p e kT L s D εε=

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带 极大值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===η s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- ==ηηηηη所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场 时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η

半导体物理第七章

第七章 1、功函数:表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。W m=E0-(E F)m W s=E0-(E F)S 2、电子亲和能:使半导体导带底的电子逸出体外所需要的最小能量。?=E0-E c 3、接触电势差:一块金属和一块n型半导体,假定wm>ws接触时,半导体中的电子向金属流动,金属电势降低,半导体电势升高,最后达到平衡状态,金属和半导体的费米能级在同一个水平面上,他们之间的电势差完全补偿了原来费米能级的不同。Vms=(Vs-Vm)/q这个由于接触而产生的电势差称为接触电势差。 4、阻挡层与反阻挡层n p Wm>Ws 阻上弯反阻上弯 WmWs时,与p形成反阻挡层。反阻挡层没有整流作用,选用适当的金属材料可得到欧姆接触。 2、实际生产中,主要利用隧道效应原理。 11、隧道二极管:具有正向负阻特性。正向电流开始随正向电压增加而迅速上升到极大值Ip,随后电流随电压增加而减少,当电压继续增加时电流随之能加。随着电压增大电流反而减少的现象称为负阻。这一电流电压特性曲线的斜线为负,这一特性为负阻特性。 第八章 1、表面态:⑴、在x=0处两边,波函数都是按指数关系衰减,这表明电子的分布概率主要 集中在x=0处,即电子被局限在表面附近。 ⑵、因晶格表面处突然中止,在表面的最外层的每个硅原子将有一个未配对电子,即有一个未饱和的键,与之对应的电子能态。 2、界面态:由于半导体与介质接触而形成接触电势差,在半导体一侧经会形成表面势,将这种由于接触引起的便面能级的变化称为~。晶体界面的存在使其周期场在界面处发生变化。 3、压阻效应:对半导体施加应力时,半导体的电阻率要发生改变,这种现象称为~。 4、多子堆积:Vg<0,Vs<0,表面处能带向上弯曲。热平衡时半导体费米能级应保持定值,随着向表面接近,价带顶逐渐移近甚至高过费米能级,同时价带中空穴浓度随之增加,这样表面层内出现空穴的堆积而带正电荷。 多子耗尽:Vg>0,Vs>0,表面处能带向下弯曲。这时越接近表面,费米能级离价带顶越远,价带中空穴浓度随之降低,在靠近表面附近,价带顶位置比费米能级低得多,根据珀尔兹曼分布,表面处空穴浓度比体内低得多,表面层的负电荷基本上等于电离施主杂志浓度,表面层的这种状态~ 少子反型:Vg进一步增大时,表面处能带进一步下弯,这时,表面出的费米能级位置可能高于禁带中央能量Ei,意味着表面处电子浓度将高过空穴浓度,形成与原来半导体衬底导电类型相反的一层叫做反省层。

半导体物理学第七章知识点说课材料

半导体物理学第七章 知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁 到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最 低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数

和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 材料 χ (eV) W S (eV) N D (cm-3) N A (cm-3) 1014 1015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs 4.07 4.29 4.23 4.17 5.20 5.26 5.32 二、有功函数差的金属与半导体的接触 把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。所以,当有功函数差的金属和半导体相接触时,由于存在费米能级之差,二者之间就会有电子的转移。 1、金属与n 型半导体的接触 图7-4 W M >W S 的金属-n 型半导体接触 前(a)后(b)的能带图 E F m (a) W M E C E FS E 0 χ W S 图7-3 半导体功函数和电子亲合能

半导体物理第1章和第3章作业答案(精)

Solutions To The Problems Of Semiconductor(Part I) Solutions To The Problems Of Chapter 1st&3rd (CEIE of HBU 席砺莼) 1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量Ev(k)分别为: h2k2h2(k?k1)2h2k23h2k2+和Ev(k)= -; Ec(k)=3m0m06m0m0 m0为电子惯性质量,k1=1/2a;a=0.314nm。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 22(k?k1)22kdEc(k)根据=+=0;可求出对应导带能量极小值Emin的km03m0dk 值: kmin=k1, 由题中EC式可得:Emin=EC(K)|k=kmin=2k1; 4m034 由题中EV式可看出,对应价带能量极大值Emax的k值为:kmax=0; 2k122k12h2;∴Eg=Emin-Emax==并且Emin=EV(k)|k=kmax= 12m06m048m0a2 (6.62×10?27)2=0.64eV =?28?82?1148×9.1×10×(3.14×10)×1.6×10 ②导带底电子有效质量mn 2d2EC222h28232dEC=+=;∴ m=m0 n=/223m0m03m08dkdk ③价带顶电子有效质量m’ 2d2EV162 '2dEV=?,∴==?m/m0 n6m0dk2dk2 ④准动量的改变量 1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 133h△k=(kmin-kmax)= k1= [毕] 48a Solutions To The Problems Of Semiconductor(Part I) [解] 设电场强度为E, ∵F=h ∴t=∫0dt=∫t12a0hdk=qE(取绝对值)∴dt=dtqEdk ;E=107V/m时,t=8.3×1013当E=102 V/m时,t=8.3×108(s) (s)。 [毕] 19-33-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×10cm,Nv

半导体物理学刘恩科第七版课后习题解第1章习题解

半导体物理学 第一章习题 (公式要正确显示,请安装字体MT extra) 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: ........................................................................................... 1 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 (3) 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: 2 20122021202236)(,)(3Ec m k m k k E m k k m k V - =-+= 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化

解:109 11010 314.0=-?= =π π a k (1) J m k m k m k E k E E m k k E E k m dk E d k m k dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17 31 210340212012202 1210 12202220 21731 2 103402 12102 02022210120210*02.110 108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430 382324 3 0)(232------=????==-=-== =<-===-==????===>=+== =-+= 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2* 8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.71010054.14 3 10314.0210625.643043)()()4(6)3(2510349 3410 4 3 222 * 1 ----===?=???= ?? ??=-=-=?=-==ππ 所以:准动量的定义:

半导体物理学简答题及答案(精)

半导体物理学简答题及答案(精)

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k )随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化? 外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,f=h(dk/dt,其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度? 答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)

第一章习题 1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为: Ec= (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:得

补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si在(100),(110)和(111)面上的原子分布如图1所示: (a)(100晶面(b)(110晶面 (c)(111晶面

补充题2 一维晶体的电子能带可写为,式中a为晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k状态时的速度; (4)能带底部电子的有效质量; (5)能带顶部空穴的有效质量 解:(1)由得 (n=0,1,2…) 进一步分析,E(k)有极大值,

时,E(k)有极小值 所以布里渊区边界为 (2能带宽度为 (3)电子在波矢k状态的速度 (4)电子的有效质量 能带底部所以 (5能带顶部, 且, 所以能带顶部空穴的有效质量 半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?

答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。 (2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。 (3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。 2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。 As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。这个过程叫做施主杂质的电离过程。能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。 3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。 Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。

半导体物理学第七章知识点

半导体物理学第七章知 识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E 以下的所 有能级,而高于E 的能级则全部是空着的。在一定温度下, 只有E 附近的少数电子受到热激发,由低于E 的能级跃迁到 高于E 的能级上去,但仍不能脱离金属而逸出体外。要使电 子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 表示真空静止电子的能量,金属的功函数定义为E 与E 能量之差,用W 表示: FM M E E W -=0 它表示从金属向真空发射一 个电子所需要的最小能量。 W M 越大,电子越不容易离 开金属。 金属的功函数一般为几 个电子伏特,其中,铯的最 低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 与费米能级之差称为半导体的功函数,用W 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W 是杂质浓度的函数。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数

与金属不同,半导体中费米能级一般并不是电子的 最高能量状态。如图7-3所示,非简并半导体中电子的 最高能级是导带底E 。E 与E 之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 材料 χ (eV) W S (eV) N D (cm-3) N A (cm-3) 1014 1015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs 4.07 4.29 4.23 4.17 5.20 5.26 5.32 二、有功函数差的金属与半导体的接触 把一块金属和一块半导体放在同一个真空环 境之中,二者就具有共同的真空静止电子能级, 二者的功函数差就是它们的费米能级之差,即W -W =E FS -E FM 。所以,当有功函数差的金属和 半导体相接触时,由于存在费米能级之差,二者 之间就会有电子的转移。 1、金属与n 型半导体的接触 1)W M >W S 的情况 这意味着半导体的费米能级高于金属的费米能级。该系统接触前后的能带图如 右所示。当二者紧密接触成为一个统一的电子系统,半导体中的电子将向金属转 移,从而降低了金属的电势,提高了半导体的电势,并在半导体表面形成一层由电 图7-4 W M >W S 的金属-n 型半导体接触前(a)后(b)的能带图 E F m (a) W M E C E FS E 0 χ W S q φqV D (b) 图7-3 半导体功函数和电子亲合能

相关主题
文本预览
相关文档 最新文档