实验十二 用三表法测量交流电路等效参数
- 格式:docx
- 大小:45.66 KB
- 文档页数:6
交流电路参数的测定三表法的实验原理1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。
后一种方法称为“三表法”。
“三表法”是用来测量50Hz频率交流电路参数的基本方法。
如被测元件是一个电感线圈,则由关系可得其等值参数为同理,如被测元件是一个电容器,可得其等值参数为2.阻抗性质的判别方法。
如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。
为此,可采用以下方法进行判断。
(1)在被测无源网络端口(入口处)并联一个适当容量的小电容。
在一端口网络的端口再并联一个小电容C'时,若小电容C'=Zsinr,a,视其总电流的增减来判断。
若总电流增加,则为容性;若总电流减小,贝刂为感性。
图1(a)中,Z为待测无源网络的阻抗,C'为并联的小电容。
图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B'为并联小电容C'的电纳。
在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B'=B",若B'增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。
②设B+B'=B",若B'增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。
由以上分析可见,当B为容性时,对并联小电容的值C'无特殊要求;而当B为感性时,B'<|2B|才有判定为感性的意义。
B'>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。
因此,B'<|2B|是判断电路性质的可靠条件。
竭诚为您提供优质文档/双击可除三表法测电路参数实验报告篇一:用三表法测量电路等效参数实验报告(含数据处理)实验七用三表法测量电路等效参数一、实验目的1.学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法。
2.学会功率表的接法和使用。
二、原理说明1.正弦交流信号激励下的元件的阻抗值,可以用交流电压表、交流电流表及功率表分别测量出元件两端的电压u、流过该元件的电流I和它所消耗的功率p,然后通过计算得到元件的参数值,这种方法称为三表法。
计算的基本公式为:up,电路的功率因数cos??IuIp等效电阻R=2=│Z│cosφ,等效电抗x=│Z│sinφI阻抗的模Z?2.阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别,若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
其原理可通过电压、电流的相量图来表示:图7-1并联电容测量法图7-2相量图(:三表法测电路参数实验报告) 3.本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。
三、实验设备DgJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。
四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。
1.按图7-3接线,将调压器调到表1中的规定值。
2.分别测量15w白炽灯(R)、镇流器(L)和4.7μF电容器(c)的电流和功率以及功率因数。
3.测量L、c串联与并联后的电流和功率以及功率因数。
4.如图7-4,用并联电容法判断以上负载的性质。
Z图7-3图7-4五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。
up=2386.6,cos??=1IuIup镇流器L:Z?=551.7,cos??=0.172IuIup1电容器c:Z?=647.2,cos??=0,??2?f,|Z|?,f=50hz,因此c=4.9?FIuI?cupL和c串联:Z?=180.9,cos??=0.35;并联1?F电容后,电流增大,所以是容IuI白炽灯:Z?性负载L和c并联:Z?性负载由以上数据计算等效电阻R=│Z│cosφ,等效电抗x =│Z│sinφ,填入表7-1中。
三表法测定交流参数
实验目的:
1.学习使用三表法(交流电流表,交流电压表,功率表)测量电路元件等值参数的方法。
2.掌握功率表的基本使用方法。
实验仪器和设备:
1.电工实验箱1台
2.功率表1块
3.数字万用表1块
4.交流电流表1台
实验原理:
实践电感由绝缘线绕制的线圈构成,实际电感Z其可用电阻r和理想纯电感L等效,即Z=r+jwL。
测量电路如下图所示,待测电感Z与电阻R串联,交流毫安表测量流过电感的电流I,功率表测量电感Z与电阻R消耗的总功率P,万用表交流电压挡测量电感Z两端的电压U,Ur, UL分别为电感Z中电阻r和理想电感L两端经计算所得的电压。
实验电路图:
实验内容:
1.使用万用表检查导线,毫安表连接线。
2.按照实验电路图连接好实验电路,并检查确认线路连接无误。
3.将调压器手轮逆时钟方向旋至输出最小处,将调压器插头插进试验台插座,合上单相电源开关,接通交流电源,缓慢调节调压器手轮,然后观察毫安表,功率表的指针偏转情况。
4.调节手轮,使I=300mA,测量并记录电压和功率的读数。
确认数据后将手轮逆时针旋至底,关闭电源。
实验结果:。
三表法测量交流参数实验报告总结
本次实验是以三表法测量交流参数,主要是通过使用电压表、电流表和功率表来测量交流电路中的电压、电流和功率等参数。
通过实验,我们可以更加深入地了解交流电路的基本参数和特性,为今后的学习和实践打下坚实的基础。
在实验中,我们首先需要了解三表法的基本原理和操作方法。
三表法是一种常用的测量交流电路参数的方法,它可以同时测量电压、电流和功率等参数,具有简单、准确、可靠等优点。
在实验中,我们需要将电压表、电流表和功率表依次接入电路中,通过读取表盘上的数值来测量电路中的各项参数。
在实验过程中,我们需要注意一些细节问题。
首先,需要选择合适的电压表、电流表和功率表,以保证测量的准确性和可靠性。
其次,需要正确接线,避免接错或接反导致测量结果出现误差。
最后,需要注意安全问题,避免触电等危险情况的发生。
通过本次实验,我们不仅学习了三表法测量交流参数的基本原理和操作方法,还深入了解了交流电路的基本参数和特性。
同时,我们也发现了一些问题和不足之处,需要在今后的学习和实践中加以改进和完善。
总之,本次实验对我们的学习和实践都具有重要的意义和价值。
实验七 用三表法测量电路等效参数一、实验目的1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。
2. 学会功率表的接法和使用。
二、原理说明1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。
计算的基本公式为:阻抗的模I U Z =, 电路的功率因数UI P =ϕcos 等效电阻 R = 2IP=│Z │cos φ, 等效电抗 X =│Z │sin φ2. 阻抗性质的判别方法可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
其原理可通过电压、电流的相量图来表示:图7-1 并联电容测量法 图7-2 相量图3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。
三、实验设备DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。
四、实验内容测试线路如图7-3所示,根据以下步骤完成表格7-1。
1. 按图7-3接线,将调压器调到表1中的规定值。
2. 分别测量15W 白炽灯(R)、镇流器(L) 和μF 电容器( C)的电流和功率以及功率因数。
3. 测量L 、C 串联与并联后的电流和功率以及功率因数。
4. 如图7-4,用并联电容法判断以上负载的性质。
图7-3 图7-4表 7-1被测阻抗测量值计算值 等效参数Z=R+jX U(V ) I(mA )P (W) cos φ |Z| ()cos φR ()X ()15W 白炽灯R100 1 电感线圈L 40 电容器C 40 0 0 L 与C 串联 40 221 L 与C 并联 40L 与C 串联再并1F 电容 40235∕ ∕L 与C 并联再并1F 电容 40 ∕∕五、实验数据的计算和分析根据表格7-1的测量结果,分别计算每个负载的等效参数。
交流电路等效参数的测定实验报告一、实验目的1、加深对交流电路中电阻、电感和电容元件特性的理解。
2、掌握用交流电压表、交流电流表和功率表测定交流电路等效参数的方法。
3、学习使用功率因数表测量电路的功率因数。
二、实验原理在交流电路中,电阻、电感和电容元件对电流的阻碍作用不同。
电阻元件的阻抗是实数,其值等于电阻值;电感元件的阻抗是感抗,与频率成正比;电容元件的阻抗是容抗,与频率成反比。
对于一个由电阻、电感和电容组成的串联交流电路,其总阻抗为:\Z = R + j(X_L X_C)\其中,\(R\)为电阻值,\(X_L\)为感抗,\(X_C\)为容抗。
感抗\(X_L =ωL\),容抗\(X_C =\frac{1}{ωC}\),\(ω\)为角频率,\(L\)为电感值,\(C\)为电容值。
通过测量电路的电压、电流和功率,可以计算出电路的等效参数。
1、电阻\(R\)的测定根据欧姆定律\(R =\frac{U}{I}\),其中\(U\)为电阻两端的电压,\(I\)为通过电阻的电流。
2、电感\(L\)的测定串联电路的阻抗\(Z =\sqrt{R^2 +(X_L X_C)^2}\),当\(X_C \ll X_L\)时,\(Z \approx \sqrt{R^2 + X_L^2}\),又因为\(X_L =ωL\),所以\(L =\frac{\sqrt{Z^2 R^2}}{ω}\)。
3、电容\(C\)的测定当\(X_L \ll X_C\)时,\(Z \approx \sqrt{R^2 + X_C^2}\),又因为\(X_C =\frac{1}{ωC}\),所以\(C =\frac{1}{ω\sqrt{Z^2 R^2}}\)。
三、实验设备1、交流电源(输出电压可调)2、交流电压表3、交流电流表4、功率表5、电感线圈6、电容器7、电阻箱四、实验步骤1、按图连接电路,将电阻箱、电感线圈和电容器串联接入交流电源。
2、调节交流电源的输出电压,使其为一个合适的值(例如\(10V\))。
交流电路等效参数的测量实验一.实验目的1.学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器。
2.学习用交流数字仪表测量交流电路的电压、电流和功率。
3.学会用交流数字仪表测定交流电路参数的方法。
4.加深对阻抗、阻抗角及相位差等概念的理解。
二.原理说明正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。
计算的基本公式为:电阻元件的电阻:I U R R =或2IPR = 电感元件的感抗IU X LL =,电感f X L π2L =电容元件的容抗IU X C C =,电容C 21fX C π=串联电路复阻抗的模IUZ =,阻抗角 R Xarctg =ϕ 其中:等效电阻 2IPR =,等效电抗22R Z X -=本次实验电阻元件用白炽灯(非线性电阻)。
电感线圈用镇流器,由于镇流器线圈的金属导线具有一定电阻,因而,镇流器可以由电感和电阻相串联来表示。
**A 350V 4UIu+-LR 图19-1电源负载AZWV图19-2**u+-20V2电容器一般可认为是理想的电容元件。
在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。
电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线圈的同名端(标有*号端)必须连在一起,如图19—1所示。
本实验使用数字式功率表,连接方法与电动式功率表相同,电压、电流量程分别选450V 和3A 。
三.实验设备1.交流电压、电流、功率、功率因数表; 2.自耦调压器(输出可调的交流电压);3.30W镇流器,400V /4.7μF电容器,电流插头,25W/220V白炽灯。
三表法测量交流参数实验报告总结三表法是电力系统中常用的测量交流参数的方法之一。
本次实验旨在通过三表法测量电源电压、电源频率以及负载电流,并分析实际测量结果与理论数值之间的误差。
通过本次实验,我对三表法的原理和实验操作有了更深入的了解,并加深了对交流电参数测量的认识。
实验中,我们使用了数字示波器、电阻箱、交流电压源、电流表和万用表等仪器设备。
首先,我们通过示波器测量了电源的电压和频率,为后续的实验提供了准确的参数。
然后,我们依次使用稳压直流电源和电阻箱提供负载电流,并通过万用表测量负载电流的值。
最后,我们使用电流表测量负载电流,并与万用表的测量结果进行比对。
在实验过程中,我们注意到了某些因素可能对测量结果产生误差。
例如,电流表的内阻和负载电阻形成了一个并联电路,导致了一定的分流现象,从而使电流表的测量值比真实值要小。
另外,由于电流表的量程有限,当负载电流超过电流表的量程时,我们无法进行准确的测量,导致了一定的误差。
通过对实验结果的分析,我们发现测量电源电压和频率的结果与示波器的测量值非常接近,误差非常小。
这说明三表法可以有效地测量交流电的电压和频率。
然而,测量负载电流的结果与万用表的测量值存在一定的差异。
这部分差异主要是由于电流表的内阻和分流现象导致的。
综上所述,本次实验通过三表法测量交流参数的方法,对电源电压、电源频率和负载电流进行了测量和分析。
通过与示波器和万用表的比对,我们发现三表法可以准确地测量电源电压和频率,并能够较为精确地测量负载电流。
然而,在测量负载电流时需要注意电表的内阻和分流现象可能导致的偏差。
因此,在实际应用中,应该综合考虑实验条件和仪器设备的特点,选择合适的测量方法,以获得更准确的测量结果。
参考内容:1. 电力系统运行与控制. 王荃, 李颂豪, 郗智勇, 严宣宇. 中国电力出版社, 2018.2. 电气测量技术与仪器. 周宁一, 孔令青, 黄峰, 邓菊生. 清华大学出版社, 2017.3. 电测技术手册. 罗定邦, 李明良. 中国电力出版社, 2007.4. 电力系统测量与仪表. 李慧, 宋自长, 张继伟. 中国电力出版社, 2012.5. 交流参数测量技术. 张鹏. 电力系统自动化, 2009.。
实验报告一、实验目的1. 学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方式2. 学会功率表的接法和利用二、原理说明1. 正弦交流鼓励下的元件值或阻抗值,能够用交流电压表、交流电流表及功率表,别离测量出元件两头的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算取得所求的各值,这种方式称为三表法,是用以测量50Hz交流电路参数的大体方式。
计算的大体公式为阻抗的模│Z│= U I电路的功率因数cosφ= P UI等效电阻R=P I等效电抗X=│Z│sinφ如果被测元件是一个电感线圈,则有:X= XL=│Z│sinφ= 2πf L 如果被测元件是一个电容器,则有:X= X C=│Z│sinφ=1 2πfc2. 阻抗性质的判别方式:在被测元件两头并联电容或串联电容的方式来加以判别,方式与原理如下:(1) 在被测元件两头并联一只适当容量的实验电容, 假设串接在电路中电流表的读数增大,那么被测阻抗为容性,电流减小那么为感性。
(a) (b)图12-1 并联电容测量法图12-1(a)中,Z为待测定的元件,C’为实验电容器。
(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。
在端电压有效值不变的条件下,按下面两种情形进行分析:①设B+B’=B",假设B’增大,B"也增大,那么电路中电流I 将单调地上升,故可判定B为容性元件。
②设B+B’=B",假设B’增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图5-2所示,那么可判定B为感性元件。
I I 2I gB 2B B ’图5-2 I -B'关系曲线由上分析可见,当B 为容性元件时,对并联电容C ’值无特殊要求;而当B 为感性元件时,B ’<│2B │才有判定为感性的意义。
B ’>│2B │时, 电流单调上升,与B 为容性时相同,并非能说明电路是感性的。
实验报告
一、实验目的
1学会用交流电压表、交流电流表和功率表测最元件的交流等效参数的方法 2.学会功率表的接法和使用
二. 原理说明
1正弦交流激励下的元件值或阻抗值,町以用交流电压表、交流电流表及功率表,分别测量出 元件两端的电斥U,流过该元件的电流I 和它所消耗的功率P.然后通过计算得到所求的各值. 这种方法称为三表法,是用以测量50Hz 交流电路参数的基本方法。
计算的基本公式为 阻抗的模 等效电抗
如果被测元件是一个电感线圈,则有:
X=XL= | Z | sincp =2irfL
如果被测元件是一个电容器,则有:
X=Xc= I Z | sin (p =——
2zrfc
2.阻抗性质的判别方法:
在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:
(1) 在被测元件两端并联一只适当容量的试验电容,若串接在电路中电流表的读数增人,则 被测阻抗为容性,电流减小则为感性。
(a) (b)
图12・1并联电容测量法
图12-l(a)中,Z 为待测定的元件,C'为试验电容器。
⑸图是(a)的等效电路,图中G 、B 为待测 阻抗Z 的电导和电纳,B ,为并联电容C'的电纳。
在端电压有效值不变的条件2按卜而两种情 况进行分析:
① 设B+B' =B U ,若B'增大,B ■也增大,则电路中电流I 将单调地上升,故可判断E 为容性元
件。
② 设B+B' =B",若B'增人,而B"先减小而后再增人,电流I 也是先减小后上升,如 图所示,则
可判断B 为感性元件。
P
coscp =-
P R=
p X= | Z I sin (p
电路的功率因数
等效电阻
B 2B B
图5-2 I-B,关系曲线
由上分析可见,当B为容性元件时,对并联电容C'值无特殊要求:而当B为感性元件时,B' <|2B|才有判定为感性的意义。
B' > | 2B |时,电流单调上升,与B为容性时相同,并不能说明电路是感性的。
因此B' v | 2B |是判断电路性质的町靠条件,由此得判定条件为
,2B
C'=—
U)
(2)与被测元件串联一个适当容最的试验电容,若被测阻抗的端电压卞降,则判为容性,端压上升则为感性,判定条件为
式中X为被测阻抗的电抗值,C'为串联试验电容值,此关系式可自行证明。
判断待测元件的性质,除上述借助J•试验电容0测定法外还可以利用该元件电流、电压间的相位关系,若1超前于u,为容性;1滞后于u,则为感性。
三、实验设备
四、实验内容
测试线路如图12-3所示
1.按图12-3接线,并经指导教师检查后,方可接通市电电源。
2.分别测量15W白炽灯(R), 40W 口光灯镇流器(L)和47p f电容器(C)的等效参数。
要求R和C两端所加的电压为220V, L中流过电流小于0 4A。
3测量L、C串联与并联后的等效参数。
4用并接试验电容的方法来判别LC串联和并联后阻抗的性质。
计算所需的电容人小:
因此,L与C串联时为容性.L与C并联时为感性
5.观察并测定功率表电压并联线圈前接法与后接法对测屋结果的影响。
A
B
五.实验注意事项
1.本实验II接用市电UOV交流电源供电,实脸中要特别注意人身安全,不可用于•!!接触摸通电线路的裸露部分,以免触电,进实验室应穿绝缘鞋。
2.自耦调用器在接通电源前,应将其手柄置在零位上(逆时针旋到底),调节时,使其输出电压从零开始逐渐升高。
每次改接实验线路或实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。
必须严格遵守这一安全操作规程。
4,功率表要正确接入电路。
5.电感线圈L中流过电流不得超过04A。
六、预习思考题
1在50Hz的交流电路中,测得一只铁心线圏的P、I和U.如何算得它的阻值及电感量?
答:
Wt=V(UI)2-p2
鈕0=邑皿
UI
I
X L = |z|-sin^
L吕
Ini
2如何用串联电容的方法来判别阻抗的性质?试用I随X'c(串联容抗)的变化关系作定性分析,证明串联试验时,C,满足
厶v 2X1
a)C |
式中X为被测阻抗的电抗值,C'为串联试验电容值。
证明:(电路图)
(1)设X+X =X\若X’增人,X•也增人,则电流I变小,被测阻抗的端电压对应卜•降, 则判断为容性。
(2)设X+X' = X',K X'增大,X"先减小后增兴,电流先增人后减小,被测阴抗的端电床对应也先上升后下降,则判断为感性。
由上分析町见,当x为容性元件时,对串联电容c'值无待殊要求:而当x为感性元件吋,
X,<|2X'|才有判定为感性的意义。
X‘>|2国时,被测阻抗的端电压单调卜•降,与x为容性时
相同,并不能说明电路是感性的。
因此x <2X 是判断电路性质的可靠条件,由此得判定条件 为
eC
七、实验报告
1根据实验数据,完成各项计算。
计算参考公式(其中电感的单位是mH,电容的单位是):
r U 丄 P
Z = — COS 0 =——
I UI R= Zco 妙
X L = A /Z 2-R 2 X C = V Z 2-R 2 L=^ 103 C = —-— IO 6
2M
2戒• Xc
共计算结果己经显示在实验内容的数据表格中 并联电容C'范闱的计算:
由 C < — ^
co
C* >
COS0的误差计算
“ COS0恤值一 cos 必也值 〃= A
cos
riin (fi
计算结果如卜•衣所示:
被测阻抗 计算值 电路等效参数
zg) cose 幅角误差 R(Q)
L(mH) COtF) 25W 白炽灯
3666.7 1.00 0.0% 3694.4 — ■ •
<|2X| 得 Cf
1
4/zfX
串联电容C'范鬧的计算:
幅角误差产生的主要原因是仪农误差
2分析功率表并联电斥线圈前后接法对测最结果的影响。
(1) 前接法所得结果比负我实际损耗的功率人,所增人的值是电流表损耗的功率fRA ,也即电 流表的功
率。
(2) 后接法测出的功率也比负载所损耗的功率大,所増大之值等于工,这也即为电压表所损耗 的功率。
实际结果:
(1) 当被测阻抗为单一用电器时,前接法与后接法的测量结果基本相同.
(2) 后接法测出的功率比前接法犬一些,因并联电压线圈所消耗的功率也计入了功率表的读数 之中,电压表消耗的功率较犬,因此误差较大。
3总结功率表与自耦调压器的使用方法。
功率表使用方法 (1) 接线
a 电流端串联在电路中,电压端并联在待测负載两端
b 两个*号端需接在一起 (2) 读数
a a 开启电源,显示屏出现“P”、“cos”等标识。
b b 按动功能键一次,显示屏出现“P”,然后按确认縫,即可读出功率P 的读数。
c c 继续按动功能键,待显示屏出现“cos”后按确认健,即町读出幅角COS (p 之值。
自耦调压器使用方法
(1) 使用前需将旋钮逆时针旋到底,再接通电源
(2) 接线时,一端接G
(接地端),一端接在W 、V 、U 其中之一 (3) 将电斥表接入,缓缓旋动旋钮,直到电斥表显示电斥为预期输出电圧值
(4) 不用时,要将旋钮逆时针旋到底,确保下次使用时的安全
A 前接法: 理论分析:
B 后接法:。