连铸机漏钢的原因及防范措施
- 格式:doc
- 大小:272.50 KB
- 文档页数:13
攀钢大方坯连铸漏钢原因分析及预防措施摘要:通过对攀钢大方坯连铸漏钢情况分析,找出发生漏钢的主要类型和产生原因。
通过优化操作工艺,制定相应的预防措施,有效地控制了攀钢大方坯连铸漏钢事故。
关键词:漏钢;开浇操作;过热度;保护渣Cause Analysis And Countermeasures Of Bloom Continuous Casting Breakout at PangangChen Liang( Vanadium Recovery and Steelmaking Plant of Pangang)Abstract :Main types and cause of breakout are discussed by means of breakout analysis about bloom cc of Pangang;through modification operation,establishment corresponding countermeasures, the breakout accident about bloom cc of Pangang are effectively controlled.Keywords : breakout;start casting operation; degree of superheat;mold powder1前言漏钢是连铸生产中最严重的事故之一,它不仅影响生产计划的实施,降低铸机台时产量,减少金属收得率,还极易损坏连铸设备[1] 。
攀钢提钒炼钢厂目前有 2 台方坯连铸机,一台为2003 年 9 月投产的六机六流大方坯连铸机,断面有#动态轻压下等设备与技术。
另一台为2005 年 12 月投产的四机四流大方坯连铸机,断面360mm× 450mm(简称 2#方坯),配备有电磁搅拌、液位自动控制。
1#方坯投产至 2006 年度上影响了连铸生产。
YJ0713-连铸车间65Mn套眼漏钢事故分析案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。
该案例是连续铸钢漏钢事故分析与处理里案例,体现了凝固理论、金属学等知识点和岗位技能,与本专业连续铸钢、炉外精炼课程漏钢事故分析单元的教学目标相对应。
连铸车间65Mn套眼漏钢事故分析1.背景介绍某中型转炉炼钢厂,采用喷吹颗粒镁预脱硫,拥有三座120t的转炉, 采用、LF炉、RH精炼装置,两台不同断面的大型厚板坯连铸机,连铸机采用双排热电偶漏钢预报装置及电磁搅拌技术。
该厂主要生产管线、优碳钢、耐候钢等中厚板。
2.主要内容2.1.事故经过2012年3月4日,连铸车间浇注65Mn钢种,连浇过程发生水口套眼现象,导致被迫更换水口,更换水口过程拉速降至几乎为零,发生了漏钢事故。
2.2.事故原因分析一、精炼套眼原因分析120吨区域自2011年至今共浇铸65Mn钢种5个较次,下面将不同时期精炼进站条件及冶炼状况进行对比,具体内容如下:(一)精炼进出站温度的控制从5个浇次精炼进出站温度变化情况来看,进出站温度控制变化比较大,3月4日进站温度最低,但是出站温度与其他浇次相比并不低,因此温度的变化不是造成本次套眼事故的主要原因。
(二)精炼进出站S含量的变化:从精炼进出站S含量来看,5各浇次精炼进站S含量发生的巨大的变化,2012年3月4日进站钢水S含量急剧上升,与2011年6月4日相比,进站S 上升0.013%,上升比例达86.7%,由于钢种自身液相线温度的限制,直接给精炼脱S造成影响,导致3月4日精炼出站S含量高,脱硫率下降。
(三)精炼冶炼周期的变化3月4日本浇次进站温度最低、精炼S含量最高,从冶炼周期来看,冶炼时间与其他浇次相比最短,严重威胁到精炼软吹时间及夹杂物上浮的效果。
成果降低铸机漏钢报警率引言铸机漏钢是铸造过程中常见的问题,会导致生产效率低下、资源浪费和产品质量下降。
为了解决这个问题,本文提出了一种方法来降低铸机漏钢报警率,提高生产效率和产品质量。
铸机漏钢的原因分析铸机漏钢是指铸铁、铸钢等金属将液态金属漏出铸造模具而导致的问题。
主要原因包括以下几个方面:1.模具设计不合理:模具设计不合理会导致金属流动不畅,容易引起漏钢情况的发生。
2.模具材料问题:模具材料质量不好或不适合特定的铸造工艺,容易发生漏钢。
3.操作不当:操作人员没有掌握好铸机的操作技巧,容易导致金属流动不畅,从而发生漏钢。
解决方法为了降低铸机漏钢报警率,我们采取以下措施:1. 优化模具设计模具设计是铸造过程中最关键的一环。
我们需要合理设计模具的结构,确保金属的流动畅通无阻。
具体措施如下:•减少模具的缝隙:通过优化模具的结构,减少模具内部的缝隙,防止金属流动到无法铸造的位置。
•设计合理的浇口:浇口是金属注入模具的通道,必须设计为合适的大小和位置,以确保金属顺利流入模具。
2. 选择高质量的模具材料模具材料的质量对铸造过程起着至关重要的作用。
我们需要选择高强度、高耐火性的模具材料,以确保模具的耐用性和稳定性。
3. 提高操作人员的技能水平操作人员的技能水平直接影响铸造过程中金属的流动情况。
我们将采取以下措施来提高操作人员的技能水平:•培训:定期组织操作人员进行铸造技术的培训,提高其对铸造工艺的理解和掌握。
•经验分享:定期组织操作人员之间的经验分享会,让他们相互学习和交流。
预期效果和评估指标通过以上措施,我们希望达到以下效果:1.降低漏钢报警率:通过优化模具设计、选择高质量的模具材料和提高操作人员的技能水平,我们预计能够有效降低漏钢报警率。
2.提高生产效率:减少漏钢问题的发生,可以提高铸造生产线的运行效率,降低生产成本。
3.提高产品质量:有效降低漏钢问题的发生,可以提高产品的一次合格率,提高客户的满意度。
评估指标包括漏钢报警率、生产效率和产品质量指标。
漏钢预报管理漏钢预报管理是钢铁行业中一项重要的生产管理技术,它可以帮助企业准确预测和控制漏钢现象,提高生产效率和产品质量。
本文将从漏钢的定义、原因、预测方法和管理措施等方面进行探讨。
我们来了解一下什么是漏钢。
漏钢是指在连铸过程中,由于各种原因导致钢水在连铸机结晶器到达浇口之前流失的现象。
漏钢不仅会造成资源浪费,还会影响产品质量,甚至导致事故发生。
因此,预测和管理漏钢现象对于钢铁企业来说至关重要。
那么,导致漏钢现象的原因有哪些呢?首先,连铸机设备的故障是导致漏钢的主要原因之一。
设备的不合理设计、磨损和老化等问题都可能导致钢水漏出。
其次,操作人员的不当操作也是导致漏钢的一个重要原因。
操作不规范、操作技术不熟练等都会增加漏钢的风险。
此外,钢水的温度、浇注速度、结晶器的结构等因素也会对漏钢产生影响。
针对漏钢现象,我们可以采取一些预测方法来提前预警和预防。
首先,通过连铸机设备的监测和检测系统,可以实时监测设备的运行状态,并及时发现设备故障。
其次,可以通过对操作人员进行培训和考核,提高其操作技术和意识,减少人为因素对漏钢的影响。
此外,还可以通过温度、浇注速度等参数的实时监控,及时调整操作参数,降低漏钢风险。
除了预测方法,科学的漏钢预报管理也是非常重要的。
首先,需要建立完善的数据采集和分析系统,对连铸过程中的各种参数进行收集和分析,找出与漏钢相关的规律和因素。
其次,需要建立漏钢预报模型,通过对历史数据的分析和建模,预测钢水漏出的可能性和程度。
最后,根据预测结果,制定相应的管理措施,减少漏钢风险。
在漏钢预报管理中,还需要注意一些关键问题。
首先,需要确保数据的准确性和及时性,只有准确的数据才能进行有效的预测和管理。
其次,需要加强对设备和操作人员的监督和管理,确保设备正常运行和操作规范。
此外,还需要进行定期的漏钢风险评估,及时发现和解决潜在的风险隐患。
漏钢预报管理是钢铁行业中一项重要的生产管理技术,它可以帮助企业准确预测和控制漏钢现象,提高生产效率和产品质量。
连铸机典型漏钢的特征及成因分析摘要:连铸机在运行过程中,漏钢问题属于常见问题之一,漏钢问题的出现将会严重影响到连铸机运行质量,降低工作效率,所以需要通过分析典型漏钢的特征与出现原因,以此来防止漏钢问题的发生。
本文通过对连铸机的运行进行研究,并结合实际对连铸机漏钢特征、原因提出个人观点,希望为关注连铸机典型漏钢问题的人群提供参考。
关键词:连铸机;典型漏钢;故障分析引言:连铸机的主要作用就是对高温钢水进行持续浇筑,为了保证浇筑质量,需要对漏钢问题进行严格控制,通过控制钢水成分、温度等方式可以较少漏钢带来的危害,进而提高浇筑效果。
因此,有必要对连铸机漏钢特征与原因进行分析。
一、连铸机漏钢类型与原因高温钢水在结晶器内部发生凝固时,将会出现凝固收缩的情况,此时体积将会变小。
通常情况下,凝固收缩问题可以分为相变收缩、温降收缩两个不同的阶段,钢水在凝固时会因为各种原因而导致浇筑出的胚壳出现局部脆弱的问题,进而发生漏钢的情况。
漏钢问题发生时,往往会伴随着非常大的声音,并且在顶弯区域能够看到钢花喷出[1]。
除此之外,还能够在主控室的钢水液位监控中,发现液位大幅下滑,漏钢问题出现时,其曲线多会表现出小幅下降转大幅下降或始终急速下降的趋势。
在钢水浇筑时,漏钢问题非常常见而且很难避免,因为其产生的原因非常复杂,连铸机较为典型的漏钢问题可以分为以下几种。
(一)粘结型漏钢粘结型漏钢是极为常见的漏钢问题,一般会在结晶器出口发生。
在连铸机运行期间,初生坯壳会在结晶器周围生成热点,热点会在拉坯作用下出现破裂,粘结在结晶器钢板上,在坯壳经过下口气隙区时,如果裂口无法及时焊合,就会导致漏钢问题的发生。
在发生粘结型漏钢时,坯壳振痕会出现不对称的情况,而且在多数时间都会在结晶器的内部残留一截坯壳。
粘结型漏钢的出现原因大致可以分为以下几种。
1.保护渣当保护渣自身的理化性能无法与钢种、钢水温度等参数匹配时,就有可能出现粘结型漏钢的问题,因为保护渣的熔化速度、熔点等参数性能都将会影响到连铸机的浇筑质量。
钢水包发生渗钢、漏钢、穿钢的原因分析及处理预案滑动水口机构部分漏钢事故一般发生在以下5个部位:1.座砖与钢包包底之间渗钢;2.上水口与水口座砖之间的间隙渗钢;3.上水口与上滑板之间渗钢;4.上下滑板之间渗钢;5.下滑板与下水口之间渗钢。
具体原因可能存在以下几个问题:1滑动水口机构原因1)滑动机构因长时间高温使用,或在操作中不小心被碰撞等等,使滑动机构变形量大,导致滑板界面受力不均,受力面小的部位会形成微小间隙,可能造成滑板间渗钢。
2)安装下滑板的滑动小车因长时间装卸滑板也会与上滑板机构间慢慢产生误差,导致上下滑板间形成微小缝隙。
3)机构用的弹簧因长时间在高温环境下使用,有时虽然没到服役期,也有可能会产生变形失效,在钢水静压下,会使滑板间出现缝隙,可能导致滑板间渗钢,严重时可能会行成整个机构穿钢。
4)下水口顶紧套变形,使下水口装不正,或下水口顶紧套滑动小车的子母扣因长时间使用磨损,使下水口与下滑板间不能很好的起到顶紧作用,造成渗钢。
2滑板的原因1)滑板表面平整度不符合要求,平整度低,滑板间形成微波缝隙。
2)滑板质量存在问题,在浇注时,尤其是在连滑的二次滑板,表面划痕严重,或在滑板口处形成马蹄形熔损,钢水会渗入较深的划痕内,此处温度相对较低,钢水会冷凝形成夹钢,若继续开动滑板,尤其在连铸上大行程的往复拉动,此时可能会因为夹钢导致滑板间缝隙加大,造成漏钢事故。
3现场操作原因1)耐火泥没活好,稀稠不合适,在安装下水口的火泥过稀会被挤出,起不到很好的支撑作用,过稠则不能很好的铺展开。
而且在用高压压缩空气吹水口眼内残泥时,过稀的耐火泥会被吹出空隙,这就为下水口渗钢埋下了隐患。
2)上水口机构内干的耐火泥没清理干净,或存在钢渣,滑板面上存在少许耐火泥,使用时因疏忽没有清理干净,在给下水口涂抹火泥时,火泥里混有颗粒状的干耐火泥渣,这给生产带来了很多隐患。
3)连铸机操作存在的问题。
当钢包开浇后,下水口上挂上了大包长水口进行保护浇注,此时应尽量避免带着大包长水口大行程往复拉动滑板,这可能会因操作不当使下水口松动,极有可能导致下水口渗钢。
小方坯连铸漏钢原因分析及控制措施银强许继勇勇庆雷于广〔日照钢铁第一炼钢厂〕摘要本文针对日钢小方坯漏钢实际情况,从设备、工艺参数、原辅料以及操作等方面进展了分析,并制定了具体的控制措施,取得较好的效果。
关键词小方坯;连铸;漏钢;控制措施Analysis on breakout of billet continuous casting and counter measuresZHANG Yinqiang , XU Jiyong , CHEN Yong , ZHANG Qinglei , YU Guang(NO.1 Steel-making Plant of Rizhao Iron&Steel Co.Ltd.)Abstract: The present paper analyzes the causes of breakout of the continuous casting machine of theNO.1 Steel-making Plant of Rizhao Iron &Steel Co.Ltd.. from the equipment,process parameters,position of molten steel,mould powder performance and operating condition.The corresponding measures have been take and good effect has been achieved.Key words: bloom ;continuous casting; breakout ; measure1前言日照钢铁第一炼钢厂现有3台小方坯和1台大方坯连铸机。
自投产四年多以来,小方坯溢漏率一直居高不下,漏钢问题始终是制约生产的重要因素。
2008年以前小方坯铸机平均溢漏率一直在1%左右,漏钢事故比拟频繁,不仅造成设备状况恶化、增加一线操作工人的劳动强度,同时对生产工艺的稳定非常不利。
方坯连铸机漏钢原因分析及改进措施摘要:近年来,随着社会经济的迅猛发展,钢铁工业中的连铸工艺技术也随之不断提升,漏钢事故的发生率虽日趋下降,但仍然还存在隐患。
本文就钢厂的方坯连铸机漏钢的各种原因进行详细分析,比如保护渣的性能情况、钢水过热、结晶器的精准度以及操作失误等。
并针对漏钢源头提供相应的解决措施,最大限度的降低连铸机的漏钢率。
关键词:方坯连铸机;漏钢;粘结;角部纵裂;夹渣1 前言在钢铁工业的连铸生产过程中,一旦发生漏钢事故,产生的影响是巨大的。
轻度的漏钢会导致铸坯质量受损从而无法投入使用,若是严重的漏钢,则会破坏设备,甚至危及工作人员的安全。
在当前连铸工艺技术日益高效的大背景下,只有最大限度的减轻和限制漏钢次数,才能够不断提升连铸机器的作业率,从而更好的保证一切生产操作的顺利运行。
2 连铸机的参数某一炼钢厂有两台4机4流全弧型单点矫直连铸机,年生产力在200万T,浇铸的断面有四种,所生产的主要钢种包括:建筑用钢、低合金钢以及焊接钢等。
连铸机是使用浸入式水口加保护渣的方式进行操作。
3 夹渣漏钢、粘结漏钢和角部裂纹的原因分析3.1 夹渣漏钢的特点和原因夹渣漏钢的主要特点是,坯壳是有一定的弯弧,给人撕裂的印象,但又与裂纹漏钢并不相似。
并且,在漏钢后,结晶器内一般没有残留的坯壳。
连铸坯壳在形成的时候夹杂着保护渣或是有极大颗粒的高熔点杂物,从而造成热的传递大大减少而形成了坯壳漏钢。
出现夹渣漏钢的主要因素有以下几点:第一,当结晶器发生震动的时候,平衡度不够而造成的左右摆度不均衡,结晶器内部的渣子因此被带入钢水中,当其临近坯壳的时候,就会导致传热过低的情况,从而造成坯壳根本不能够耐受钢水所产生的压力,就出现了漏钢事故。
第二,操作人员的操作不当,导致结晶器的钢水液面波过大,因此而产生卷渣漏钢情况。
第三,钢水不够纯净。
冶炼过程中,如果钢水的纯净度不够或者被二次氧化,导致杂质不断增多,当杂质积累到一定的数量,就会被卷入结晶器的钢水当中,于是就会产生与结晶器震动不平稳的时候相类似的漏钢情况。
连铸小方坯漏钢原因分析摘要连铸漏钢是连铸严重生产事故,本文结合连铸漏钢现象及原因全面分析,较详细地讨论漏钢产生的原因。
关键词:结晶器、漏钢、保护渣、过热度。
从小方坯连铸漏钢现象可分为:角裂漏钢、中部漏钢、拉断漏钢、起步漏钢。
从连铸漏钢的原因分析可分为:1.操作不当引起的漏钢。
2.钢的过热度不合理。
3.结晶器保护渣引起的漏钢。
4.结晶器对弧不好。
5.结晶器振动频率、振幅不合理。
6.二冷喷淋水不合理。
7.结晶器装配不合理。
具体分析:一.操作不当引起的原因:1.结晶器水口不对中,造成结晶器中的钢液温度冷却不均,造成铸坯壳薄厚不均漏钢.2.钢液位没有看住,造成钢液过低漏钢或溢钢后造成钢坯拉断漏钢。
或由于生产各种原因造成节奏不稳定,导致拉速波动大,凝固曲线偏离铜管内腔曲线,易发生坯壳厚度不均匀,在结晶铜管使用后期易发生出结晶器口角裂漏钢,角裂漏钢往往发生在拉速调整后的短时间内,因此,要尽可能保证拉速稳定,不能以调整拉速来适应钢水温度、冶炼周期和供钢节奏,而是应积极保证钢水供应和钢水质量,满足连铸需求;浸入式水口寿命短,更换频繁,更换时需将中间包整体升高,出现其它流次水口插入深度过浅,液面不稳定现象,易造成卷渣漏钢;原水口耐材不配套,上下水口之间接冷钢,用小氧管吹烧形成的氧化渣进入结晶器,易造成下渣漏钢。
3.结晶器中的渣圈捞不及时,造成铸坯卷渣漏钢.4.水口堵塞或机械折断,造成漏钢.二.钢的过热度不合理:1)裂纹漏钢与中包温度和拉速关系密切,保证钢水有一定的过热度,能保证钢水顺利浇完。
理论研究表明,过热度每增加10℃,结晶器出口坯壳厚度减少3%,温度过高,就会造成出结晶器坯壳薄和高温强度低,受到的应力一旦撕破坯壳,就容易产生裂纹漏钢.三.结晶器保护渣引起的漏钢:1)加保护渣不及时,造成铸坯与结晶器铜管之间没有润滑。
2)保护渣选择不合理,即:熔点、溶速不合理。
结晶器保护渣作用:绝热保温、防止二次氧化、吸收夹杂物、润滑坯壳与结晶器铜管,减少摩擦阻力。
小方坯连铸漏钢原因分析及预防措施发表日期:2007年10月31日【编辑录入:meimei】摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。
关键词:小方坯;漏钢分析;改进措施安阳钢铁股份有限公司第二炼钢厂(以下简称安钢二炼钢)2号方坯连铸机采用浸入式水口加保护渣保护浇注工艺。
2004年铸机平均溢漏钢率为0.68%,上半年平均为0.9%,最高月份为1.2%,溢漏事故多,已严重影响了连铸生产。
为促进连铸生产顺行,同时也为铸机高效化生产打下基础,于2005年元月开始对2号方坯连铸机溢漏钢进行攻关,并取得了显著效果。
1工艺现状安钢二炼钢2号连铸机始建于1989年,铸机类型为国产SFR-6型四机四流小方坯连铸机,铸坯断面为120 mm×120mm,采用定径水口、浸人式水口、保护渣和事故摆槽等浇注方式。
目前,主要浇注钢种为Q235B、HRB335、HRB400、Q345B等钢种,连铸机主要技术参数为:流间距1 100 mm;正常拉速2.8~3.5 m/min;铜管长度850 mm;铜管壁厚12.5 mm;铜管材质为脱氧磷铜;水缝宽度3.5 mm;结晶器倒锥度(0.56%~0.76%)/m;结晶器水量95~100m3/h;结晶器水压0.6~0.7 MPa;振动结构形式为半板簧振动。
2漏钢事故概况2004年2号机溢漏钢569次,统计结果见图1,角裂漏钢占69%,为主要漏钢类型,下渣漏钢和拉断漏钢分别占14.9%和6.7%。
因此,控制角裂漏钢可以大幅度降低溢漏钢率。
角裂漏钢铸坯的形貌如图2所示,角裂漏钢主要发生在出结晶器坯壳距角部10~25 mm处,漏钢长度100~200 mm,沿漏钢部位的上下有纵裂缺陷。
摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。
YJ0701-板坯连铸机粘接漏钢事故分析案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。
该案例是连续铸钢事故分析与处理案例,体现了连续铸钢等岗位工艺参数、凝固理论知识点和具体岗位操作步骤,与本专业连续铸钢等课程事故预防与处理单元的教学目标相对应。
使用,更适合在连续铸钢工等工种的职工培训中使用:通过本案例复习课程内容并将知识系统整理,解决生产实际问题。
本案例可迁移为其他事故预防的教学,学生通过本案例学习,具有加他事故分析的能力。
板坯连铸机粘接漏钢事故分析1背景介绍某中型转炉炼钢厂,采用喷吹颗粒镁预脱硫,拥有三座loot的转炉,采用CAS-OBs LF炉、RH精炼装置,四台不同断面的大型厚板坯连铸机,连铸机采用双排热电偶漏钢预报装置。
该厂主要生产管线、船板等中厚板。
2主要内容2.1事故经过2012年12月26 R,某铸机浇注浇次1212826(断面2000mmX250mm,钢种45-1)第21炉2Q08199浇注4: 46时发生结晶器外弧粘连漏钢,至当日22:00处理完毕,共造成铸机非计划停浇17小时14分,构成粘连漏钢事故。
2.1.1精炼处理2Q08199炉次是3#LF炉处理,使用12#钢包,包龄44次。
钢水到站后热修包报12#钢包为止常周转包,但在处理过程中升温速度慢,温降异常。
铸机要点4:20,要温1538°C。
2Q08199炉次在3廿LF炉处理61min,加热40min,软吹4mino 具体处理过程如下:3:15到站,到站温度1514°C, 3: 17进加热位并加入一批渣料。
3:20第一次升温,3: 33停止(升温13min),测温1506°C,取钢样。
3:35第二次升温,3:45钢样成分回来后,调硅铁133kg、镭铁61kg、碳粉60kg, 3:54升温结束。
漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温) 的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板厚度较薄,不足以支持铜板的热膨胀。还可能是在引锭杆插入结晶器时,导致结晶器下部损坏而造成结晶器变形。结晶器锥度过大会增加拉坯阻力,导致结晶器磨损加大。倒锥度加上热缩造成气隙厚度增加,进而加大角部磨损,因此,要降低使表面温度升高的传热。此现象始终伴随着钢水静压力,这会诱发角部表面产生拉伸应变,从而引发裂纹。这种裂纹会以固定方式大大降低坯壳厚度,可能最终导致漏钢。结晶器圆角半径越大,气隙就越大。该气隙阻碍了热传递,致使形成薄坯壳,容易漏钢。在板坯/大方坯连铸机中,4个分离的铜板被固定,形成空穴环绕在其之间。如果2个铜板之间的接合处有气隙,初始金属就会渗入气隙并开始凝固,在后期造成悬挂,导致漏钢。因而,结晶器调整的不合适就会影响热传递机理,造成漏钢。 结晶器中钢液面高度不适——连铸期间,结晶器中的钢液面需要维持在结晶器高度的70%~80%。如果钢液面降到浸入式水口以下,那么随后加入的钢水形成的凝固坯壳较薄,容易漏钢。在换水口、换中间包或中间包水口堵塞期间可能发生钢液面下降。当限制钢水从中间包流进结晶器时,如果不调整拉速,可能发生漏钢。因此,如果塞棒控制不合适导致转动而造成钢水溢流,粘结到结晶器顶部,造成悬挂,拉坯受阻,导致漏钢。钢液面的降低还会造成夹渣。如果有充足时间使塞棒关闭浸入式水口,钢液面可降低到允许极限以下。如果浇注再次开始,钢水会抑制结晶器保护渣,造成夹渣。因此,在全连铸换钢包时,中间包钢液面下降,如果操作不当,中间包渣可通过浸入式水口进入结晶器内的钢水中。钢流的氧化产物、不当的脱氧产物、方坯结晶器中铝丝喷加不当造成Al2O3偏高而形成的高粘度渣,都可能渗入坯壳形成夹渣,局部抑制坯壳形成,降低坯壳和结晶器间的润滑度,易粘结,导致拉坯中断,发生漏钢。对于定径水口自动控制系统,结晶器内钢水液面不稳定会造成拉速的波动,影响保护渣向结晶器和坯壳间的稳定填充,破坏渣膜的连续性,容易使坯壳厚度不均匀,导致表面凹陷或角裂漏钢。生产中更换浸入式水口时液面波动比较大,也容易造成角裂或卷渣漏钢。 中间包浇注流偏心——中间包浇注流偏心导致传热不均,造成凝固坯壳厚薄不均,坯壳薄弱处强度降低,难以承受钢水静压力,因而漏钢。浸入式水口的不对中,钢流中心偏斜,坯壳局部冲刷严重,结晶器内坯壳冷却的均匀性会受到很大影响,严重时也会导致漏钢。中间包壳使用时间较长容易发生局部变形,造成水口不对中或插入深度不统一;修砌中包时上水口和座砖安装不当也会造成浸入式水口的不对中。生产中可以通过对比漏钢坯壳各表面的振痕深度来判断水口对中与否。 气雾冷却喷嘴堵塞——足辊区设在结晶器下方,在此水经喷嘴直接喷于坯壳上。坯壳受到辊子的压力,使坯壳更光滑。此时,传递的热量最大,便于形成更厚的坯壳。如果喷嘴堵塞,坯壳厚度将变薄,易造成漏钢。万一堵塞,需要靠拉辊施加外力,如果超过极限,就会造成坯壳表面破裂,漏钢。 引锭杆不规则性——钢水一旦在结晶器引锭杆上方凝固,形成足够厚度的坯壳,就将引锭杆慢慢拉出。如果不按规律拉出引锭杆,则易发生漏钢。同样地,引锭杆装配不牢固会使钢水从结晶器流出,导致漏钢。如果引锭杆在引锭杆头提升前从坯壳中过早的分离出来,易导致漏钢。 漏钢类型 根据漏钢坯壳的外观,大致把漏钢分成以下几类: 悬挂或粘结引起漏钢——钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润减不良/不均等原 因造成的。 裂纹引起漏钢——坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。 夹渣漏钢——坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物,结晶器中铝丝喷加不当造成Al2O3偏高,这些都促使坯壳夹渣,抑制坯壳生长,造成漏钢。 薄壳漏钢——观察方坯连铸机中这类漏钢 是由结晶器中坯壳厚度不均造成的,原因可能是结晶器中浇注流偏心,或结晶器冷却管严重变形。 停止浇注引起漏钢——连铸过程中发生中断而未能断开停止浇注,如果衔接点不能承受 重新浇铸施加的拉力,则整炉钢都会溢漏。控制漏钢的措施考虑到漏钢对连铸机利用率和 有效性的影响,须采取必要措施控制漏钢的发生。 ●仅在浇注平台吹氩后进行测温,确保温度的均匀性。根据钢的化学成分,浇注流温度必须保持过热约60℃,才能把钢包放置在回转台上,以确保钢水在中间包内过热25~35℃。 ●根据在钢包中监测的温度控制拉速。钢中的碳含量一一定时,确保温度随拉速减小而升高,拉速随温度降低而增大。因此,要依据钢的温度和碳含量正确调整拉速。逐步增加拉速,通过一定的拉速来保持稳态连铸。连铸中的任何中断都要降低拉速。 ●任何保护渣都有有效期,因此过期后不应使用。保护渣只有在铸造期间才能打开,放在高瓦数灯泡下使其干燥。再次铸造时不能使用敞开袋的保护渣。按照规定的钢化学成分选择合适的保护渣。铸造开始时,要用粘性低和熔点低的初始保护渣。对于方坯连铸机,要确保结晶器中亚麻籽油分布均匀。 ●对于板坯/大方坯连铸机,测量熔渣池厚度,以判断渣池厚度是否超过10mm及由附着于钢板上的钢、铜和铝丝组成的设备行程,这有助于避免夹渣、坯壳润滑均匀。 ●对于高速方坯连铸机,可使用多种锥度的结晶器,代替传统线性锥度结晶器。要检查结晶器的变形情况(如果有)。选择合适的结晶器锥度并根据钢韵等级和其在板坯/大方坯连铸机上的凝固方式,调节锥度以适应窄面。 ●在连铸开始前,通过测量水压的增加,检查结晶器中的水流量,查明堵塞情况( 如果有)。总的说来,检查进出口水温、压力和流量的差异,还有流量设备。水质也要检查。根据钢的等级和其凝固方式,调整结晶器冷却模式,即水流量(1/min),以适应各种结晶器表面。为控制粘结,使用热电偶检测结晶器壁温变化,并降低拉速,以使坯壳继续均匀生长。对于给定的连铸机,要确保进出口水温之间的差异不能在连铸期间超过规定值。 ●保证沿铜板的圆角半径最大值是0.2mm。如果角缝存在于铜板接合处,在开始连铸前要用石膏或石灰填充角缝。 ●在连铸机上安装结晶器液面自动控制器,以保持结晶器的钢液面。为区别结晶器中的钢水和炉渣,并检查夹渣情况,在结晶器上安装电磁传感器。 ●在铸造前,要调整中间包水口,进行对中。处理中间包水口堵塞,把钢包放置在回转台上之前,要确保Ca—Si芯的金属丝喷入,符合高铝钢的要求,以便形成低熔点铝酸钙。使用冷冻器避免塞棒转