板坯连铸机粘接漏钢事故分析.doc
- 格式:doc
- 大小:278.50 KB
- 文档页数:13
板坯连铸机粘结漏钢的原因分析及预防刘雷锋摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。
连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。
连铸技术迅速发展起来。
本文对此进行了分析研究。
关键词:坯;连铸;连铸工艺连铸漏钢是个常见现象。
钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。
对于薄板坯连铸来说更易发生漏钢事故。
漏钢对连铸生产危害很大。
即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。
因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。
现对某厂自2008~2013年薄板坯漏钢率进行统计。
2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。
1 工艺流程某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸2 薄板坯漏钢类型某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。
3 薄板坯漏钢特征、原因及预防措施3.1 粘结漏钢粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。
据统计,粘结漏钢发生率最高,高达50%以上。
(1)铸坯粘结漏钢后特征。
粘结漏钢后铸坯特征。
坯壳呈“V”字型或“倒三角”状,粘结点明显。
(2)粘结漏钢的原因:1)保护渣性能不好。
保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。
连铸机漏钢事故分析4一、事故经过丁白班发生漏钢事故。
经分析此次漏钢为粘结漏钢,漏钢发生在外弧侧,此次漏钢更换了结晶器和弯曲段,一段有局部粘钢,在线清理后继续使用。
二次拉钢开浇时间为18:46分,漏钢处理5小时零8分钟。
事故经过为:发生漏钢的炉次为快换中包第一炉,钢种Q235B,铸机等钢水到站大包未测温,中包温度为1542〔℃〕,钢水成分未见异常。
本炉次13:19分大包开浇,13:21分中包开浇。
〔1〕开浇后,待结晶器内钢液面没过坯壳后,试棒,再开流,待液面上升正常后,启动拉矫,拉速升至0.3m/min。
此时主控室通知结晶器外弧第9、8、3个热电偶温度异常,中包工立即停拉矫收流;〔2〕再次启动拉矫后,拉速升至0.3m/min,主控室再次通知结晶器外弧第9个热电偶温度仍异常,中包工打到拉速爬行状态,收流观察坯壳未见异常。
〔3〕主控通知第9个热电偶温度异常消除,中包工开流操作上升液面,拉速由0.3m/min自动升至0.4m/min,开始更换结晶器内的旧保护渣;〔4〕保护渣更换完毕后,缓慢提速至0.6m/min,此时,结晶器北侧的中包工发现内弧露出坯壳〔换包后7分钟,漏钢前10分钟〕,立即停拉矫。
〔5〕停拉矫几秒后,再次启动拉矫,拉速升至0.3m/min,收流观察液面及坯壳未见异常,拉速自动升至0.4 m/min;〔6〕提速至0.5 m/min时,再次收流观察液面及坯壳,无异常,缓慢升速至0.6 m/min时,结晶器南侧的操作工发现外弧露出坯壳,立即打到爬行拉速,收流观察液面及坯壳,无异常后,升速至0.3 m/min,再次收流观察液面及坯壳,无异常后开大流升液面缓慢提速至0.70 m/min时发生漏钢。
漏钢点发生在外弧侧,距换包接头距离为3200mm,踞结晶器液面为800mm,踞结晶器左窄面为900mm,位于热电偶第4、5位置。
漏钢时水口插入深度为140mm,塞棒行程82mm。
漏钢前热电偶有波动,北侧结晶器液面有结壳现象。
连铸机典型漏钢的特征及成因分析摘要:连铸机在运行过程中,漏钢问题属于常见问题之一,漏钢问题的出现将会严重影响到连铸机运行质量,降低工作效率,所以需要通过分析典型漏钢的特征与出现原因,以此来防止漏钢问题的发生。
本文通过对连铸机的运行进行研究,并结合实际对连铸机漏钢特征、原因提出个人观点,希望为关注连铸机典型漏钢问题的人群提供参考。
关键词:连铸机;典型漏钢;故障分析引言:连铸机的主要作用就是对高温钢水进行持续浇筑,为了保证浇筑质量,需要对漏钢问题进行严格控制,通过控制钢水成分、温度等方式可以较少漏钢带来的危害,进而提高浇筑效果。
因此,有必要对连铸机漏钢特征与原因进行分析。
一、连铸机漏钢类型与原因高温钢水在结晶器内部发生凝固时,将会出现凝固收缩的情况,此时体积将会变小。
通常情况下,凝固收缩问题可以分为相变收缩、温降收缩两个不同的阶段,钢水在凝固时会因为各种原因而导致浇筑出的胚壳出现局部脆弱的问题,进而发生漏钢的情况。
漏钢问题发生时,往往会伴随着非常大的声音,并且在顶弯区域能够看到钢花喷出[1]。
除此之外,还能够在主控室的钢水液位监控中,发现液位大幅下滑,漏钢问题出现时,其曲线多会表现出小幅下降转大幅下降或始终急速下降的趋势。
在钢水浇筑时,漏钢问题非常常见而且很难避免,因为其产生的原因非常复杂,连铸机较为典型的漏钢问题可以分为以下几种。
(一)粘结型漏钢粘结型漏钢是极为常见的漏钢问题,一般会在结晶器出口发生。
在连铸机运行期间,初生坯壳会在结晶器周围生成热点,热点会在拉坯作用下出现破裂,粘结在结晶器钢板上,在坯壳经过下口气隙区时,如果裂口无法及时焊合,就会导致漏钢问题的发生。
在发生粘结型漏钢时,坯壳振痕会出现不对称的情况,而且在多数时间都会在结晶器的内部残留一截坯壳。
粘结型漏钢的出现原因大致可以分为以下几种。
1.保护渣当保护渣自身的理化性能无法与钢种、钢水温度等参数匹配时,就有可能出现粘结型漏钢的问题,因为保护渣的熔化速度、熔点等参数性能都将会影响到连铸机的浇筑质量。
连铸漏钢的事故类型及原因、预防措施所谓漏钢是指连铸初期或浇注过程中,铸坯坯壳凝固情况不好或因其他外力作用引起坯壳断裂或破漏使内部钢水流出的现象。
漏钢是连铸生产中恶性事故之一,严重的漏钢事故不仅影响连铸机的正常生产,降低作业率,而且还会破坏铸机设备,造成设备损坏。
漏钢事故因发生的时间不同及发生在铸机上的位置不同分为多种形式,其产生的原因也各不相同,主要分为以下几点:⑴开浇漏钢:开浇起步不好而造成漏钢。
⑵悬挂漏钢:结晶器角缝大,角垫板凹陷或铜板划伤,致使在结晶器中拉坯阻力增大,极易发生起步悬挂漏钢。
⑶裂纹漏钢:在结晶器坯壳产生严重纵裂、角裂或脱方,出结晶器后造成漏钢。
⑷夹渣漏钢:由于结晶器渣块或异物裹入凝固壳局部区域,使坯壳厚度太薄而造成漏钢。
⑸切断漏钢:当拉速过快,二次冷却水太弱,使液相穴过长,铸坯切割后,中心液体流出。
⑹粘结漏钢:铸坯粘结在结晶器壁而拉断造成的漏钢。
开浇漏钢(1)中包塞棒头部及上水口碗部烘烤不良。
因碗部较低,传统烘烤方法烘烤火焰达不到碗部,致使碗部温度比其他部位温度低100~200℃。
钢水温度低易造成冷钢垫棒、钢流失控,被迫提高拉速,导致坯头未充分凝固,造成开浇漏钢。
(2)纸绳松动,钢水从其缝隙中渗漏;纸绳受潮,遇钢水后爆炸产生缝隙,钢水从缝隙中渗漏。
(3)铁屑层过薄,造成钢水将纸绳燃烧后从缝隙渗出;铁屑层过厚,将导致坯头强度不足,坯壳被拉断;铁屑受潮、有油污或有杂物,遇钢水后爆炸或燃烧,钢水将纸绳燃烧后从缝隙渗出或坯头强度不足,坯壳被拉断。
(4)传统的封堵引锭方式是用纸绳将引锭头与结晶器间四周的缝隙塞紧、塞实。
钢水到站测温时,先在引锭头上均匀铺撒20~30mm厚的铁钉屑,然后在铁钉屑上按规定交叉摆放好钢板条。
如果钢板条摆放不好,会使钢水直接冲刷铁屑和纸绳;若钢板条熔化不充分,则初生坯壳过薄,拉坯时将导致坯壳撕破。
(5)操作中存在以下问题:开浇钢流过大,将铁屑冲散或将钢水溅到结晶壁上、角缝上形成夹钢;起步提速过快,每次超过0.1m/min,初生坯壳承受不了其拉力;有异物进入结晶器,并咬入初生坯壳中。
连铸机漏钢的原因及防范措施1.机械密封磨损:由于连铸机设备长期高速运转,机械密封件会因为摩擦而磨损,导致钢水从密封部位泄漏出来。
2.设备老化:随着连铸机的使用时间增加,设备可能会出现老化现象,如设备结构松动、焊缝开裂等,从而引发漏钢问题。
3.冷却系统故障:连铸机的冷却系统中通常使用大量的冷却水来保持设备和钢水的温度。
如果冷却系统存在故障,例如水管破裂、阀门关闭不严等,就会导致钢水泄露。
4.操作不当:操作人员的操作技术和操作规程不当可能导致连铸机漏钢。
例如,钢水浇注时没有及时关闭阀门、不按照规定程序进行操作等。
1.定期检查和维护机械密封:定期检查和维护机械密封是防止漏钢的关键。
可以根据生产情况设定维护频率,及时更换磨损的机械密封件,确保设备的正常工作和钢水的密封。
2.防止设备老化:定期检查设备的结构和焊缝,及时发现问题并修复,避免设备老化导致的漏钢。
3.定期维护和检查冷却系统:定期维护和检查冷却系统,确保冷却水管道和阀门的完好和紧密连接。
定期清洗冷却系统,防止积垢和堵塞。
4.提高操作技术和规程:加强操作人员的培训,提高其操作技术水平。
制定和执行严格的操作规程,确保每个环节都按照规程进行操作,避免因操作不当导致的漏钢问题。
5.安装漏钢探测器:安装漏钢探测器来及时检测和报警漏钢,以便能够迅速停机修复,避免漏钢问题扩大。
6.提高设备的自动化程度:通过提高设备的自动化程度,减少人为的操作,从而降低操作失误导致的漏钢风险。
总之,连铸机漏钢的原因多种多样,需要通过定期检查和维护设备,提高操作技术和规程,安装漏钢探测器等方式来加强防范措施,确保连铸机的正常运行和钢水的安全。
韶钢新一钢8#连铸机粘结漏钢分析摘要:针对新一钢8#连铸机投产以来所出现的几次粘结漏钢事故进行分析,找出了导致粘结漏钢主要原因并采取了相应的控制措施之后,铸机粘结漏钢事故得到明显遏制。
关键词:连铸机粘结漏钢1 概况新一钢8#连铸机采用中冶连铸比较成熟设计方案,采用全板簧振动仿弧系统,液压振动系统,二冷高压水雾化冷却,二冷动态配水,铸坯质量跟踪与判定系统,结晶器液面自动控制系统,连续矫直技术,结晶器电磁搅拌系统,铸坯凝固末端电磁搅拌系统等先进技术。
8#铸机浇铸采用全程保护浇铸的形式。
自投产以来平均每天浇铸两个浇次。
其中普碳钢每个浇次平均15炉,螺纹钢每个浇次平均12炉。
主要浇铸的钢种有:HPB235,HRB335、HRB400和30MnSi。
自2011年4月底热试以来,已取得良好浇铸成绩。
表1是2011年6~8月份8#连铸机主要作业指标。
2 存在问题铸机于2011年4月底正式投入试生产,在试产期间,各项指标均达到考核值,铸坯坯壳厚、质量检验合格率达到100%。
在不断理顺工艺、设备和管理基础上,该八机八流铸机以其低故障、高效率的优势为铸机顺产、达产起到关键性的作用。
但是随着浇铸强度加大,产量日益提高,铸机中常出现的问题在8#机也逐渐暴露出来。
在6~8月间发生了几次粘结漏钢事故,给铸机管理带来很大的困难,影响着铸机稳定顺行。
现对铸机所发生的7次粘结漏钢进行统计,具体情况见表2所示。
从表2上可以看出,致使发生粘接漏钢事故的主要因素有:中包温度与拉速匹配关系;结晶器保护渣的使用;设备维护水平和生产操作水平。
3 原因分析3.1 温度与拉速不匹配虽然浇铸过程尽可能让中包钢水温度均衡,以保证拉速恒定。
但是在多炉连浇中不可避免出现中包钢水重量和中包钢水温度的波动。
若没积累一定的现场经验或他人及时提醒,很容易出现在大包开浇前期因压包温度上升快致拉速偏快,而大包浇铸后期温降快致拉速偏慢。
出现浇铸中拉速与温度不相匹配的情况,这必然加大拉坯阻力,增加拉漏的几率。
连铸方坯漏钢原因分析以及预防措施摘要:本文分析了新疆伊犁钢铁有限责任公司炼钢厂连铸小方坯漏钢的成因和影响因素,并在此基础上提出了在实际生产过程中解决连铸小方坯漏钢的基本思路以及解决措施,取得了良好的效果。
关键词:连铸小方坯漏钢分析措施1前言近年来,随着国内连铸工艺技术的进步,连铸漏钢事故得到了有效地抑制,但仍是一种不能完全避免的事故。
在连铸生产中,漏钢是危害性很大的事故。
它不仅产生废品、降低连铸机作业率和影响产量,而且损坏设备,极大地降低企业经济效益。
制约着铸机拉速、全流率等主要技术经济指标的提高,因此降低漏钢率是连铸工序历来十分重视的问题。
连铸日趋高效化的今天,要保障生产的顺利进行,就必须对漏钢原因进行分析,寻找防范措施,促进连铸高效化。
2漏钢原因2012年伊钢连铸车间漏钢共计58次。
以纵裂漏钢和角裂漏钢为主要漏钢类型,其中纵裂漏钢占41%,角裂漏钢占36%。
由于发生漏钢事故主要表现在纵裂漏钢和角部纵裂漏钢。
因此下面主要分析这两种漏钢类型的特点和机理以及产生的原因。
2.1形成的原因铸坯的表面纵裂纹产生于结晶器[1.2],由于热流分布不均匀,造成坯壳厚度不均匀,在坯壳薄的地方产生应力集中,结晶器壁与坯壳表面间的摩擦力使坯壳承受较大的负荷,在牵引坯壳向下运动时产生纵向应力,这种应力与从结晶器窄面,到宽面中心线的距离呈直线增加,最大处在铸坯的中间,而钢水静压力随着坯壳往下移动呈直线增加,静压力使得坯壳向外鼓,表面裂纹得到进一步增大,当不能承受钢水静压力时出现纵裂漏钢。
在结晶器内,初生凝固坯壳由于角部为二维传热,凝固较其它部位快,气隙形成早,热阻增加,坯壳在结晶器中下部运行过程中生长慢,故坯壳较其它部位薄,在各种因素引起的拉应力作用下,便产生应力集中。
当坯壳薄弱处承受不住应力作用时,形成角部微小纵裂纹,出结晶器后失去支撑以及受二冷强冷影响,裂纹进一步扩大,出现漏钢。
2.2影响因素1结晶器的影响结晶器的锥度对纵裂纹形成具有决定性的作用[3]。
大方坯连铸机粘结漏钢的原因分析及控制发表时间:2016-10-18T08:56:12.853Z 来源:《科技中国》2016年6期作者:谭奇峰张波余衍丰[导读] 本文主要针对韶钢7号大方坯连铸机某次漏钢进行完整的取样及分析找出了漏钢的类型及原因提出控制措施。
(宝钢特钢韶关有限公司广东韶关512123)摘要:方坯连铸漏钢的类型及原因诸多,影响因素复杂,本文通过某次漏钢后残留的坯壳进行科学的检验及分析确定出了漏钢的类型,结合当时实际工况及技术参数阐述了漏钢的原因及提出应对措施。
关键词:方坯粘结漏钢原因措施1.前言:通常把断面大于220mm×220mm的铸坯称为大方坯,大方坯主要用于轧制硬线、管材、棒材、型材以及轴承钢、齿轮钢等特殊用钢。
大方坯连铸机对比小方坯铸机设备精度更高,投资成本更大,如果生产中发生发生漏钢事故危害极大,不但对设备造成较大损失还会导致停机甚至危害操作人员的安全。
国内冶金工作者对连铸的漏钢原因做了大量的研究及实践,本文主要针对韶钢7号大方坯连铸机某次漏钢进行完整的取样及分析找出了漏钢的类型及原因提出控制措施。
2.主要工艺及装备:韶钢7号连铸机是2013年从达利涅引进的5机5流大方坯连铸机,主要断面为280×280、320×320、320×425,铸机半径14m,冶金长度27m,拥有E-EMS、F-EMS,动态轻压下等技术,结晶器铜管为多锥度弧形,常用拉速0.5-0.9m/min。
3.漏钢原因调查3.1生产过程3.1.1漏钢炉次成份及温度3.1.3保护渣使用情况:所用结晶器保护渣为生产日期为2016年1月23日,2月中旬开始在7号机低碳系列钢使用,3月16日在15CrMoG钢四炉单流统计,渣耗量约0.60 kg/t。
3.1.4结晶器铜管磨损情况:1流铜管使用次数为342炉钢,与目标使用次数800炉相比,炉次较少,从漏钢后的铜管内壁状态反映铜管磨损状况良好。
连铸小方坯漏钢原因分析摘要连铸漏钢是连铸严重生产事故,本文结合连铸漏钢现象及原因全面分析,较详细地讨论漏钢产生的原因。
关键词:结晶器、漏钢、保护渣、过热度。
从小方坯连铸漏钢现象可分为:角裂漏钢、中部漏钢、拉断漏钢、起步漏钢。
从连铸漏钢的原因分析可分为:1.操作不当引起的漏钢。
2.钢的过热度不合理。
3.结晶器保护渣引起的漏钢。
4.结晶器对弧不好。
5.结晶器振动频率、振幅不合理。
6.二冷喷淋水不合理。
7.结晶器装配不合理。
具体分析:一.操作不当引起的原因:1.结晶器水口不对中,造成结晶器中的钢液温度冷却不均,造成铸坯壳薄厚不均漏钢.2.钢液位没有看住,造成钢液过低漏钢或溢钢后造成钢坯拉断漏钢。
或由于生产各种原因造成节奏不稳定,导致拉速波动大,凝固曲线偏离铜管内腔曲线,易发生坯壳厚度不均匀,在结晶铜管使用后期易发生出结晶器口角裂漏钢,角裂漏钢往往发生在拉速调整后的短时间内,因此,要尽可能保证拉速稳定,不能以调整拉速来适应钢水温度、冶炼周期和供钢节奏,而是应积极保证钢水供应和钢水质量,满足连铸需求;浸入式水口寿命短,更换频繁,更换时需将中间包整体升高,出现其它流次水口插入深度过浅,液面不稳定现象,易造成卷渣漏钢;原水口耐材不配套,上下水口之间接冷钢,用小氧管吹烧形成的氧化渣进入结晶器,易造成下渣漏钢。
3.结晶器中的渣圈捞不及时,造成铸坯卷渣漏钢.4.水口堵塞或机械折断,造成漏钢.二.钢的过热度不合理:1)裂纹漏钢与中包温度和拉速关系密切,保证钢水有一定的过热度,能保证钢水顺利浇完。
理论研究表明,过热度每增加10℃,结晶器出口坯壳厚度减少3%,温度过高,就会造成出结晶器坯壳薄和高温强度低,受到的应力一旦撕破坯壳,就容易产生裂纹漏钢.三.结晶器保护渣引起的漏钢:1)加保护渣不及时,造成铸坯与结晶器铜管之间没有润滑。
2)保护渣选择不合理,即:熔点、溶速不合理。
结晶器保护渣作用:绝热保温、防止二次氧化、吸收夹杂物、润滑坯壳与结晶器铜管,减少摩擦阻力。
板坯连铸漏钢原因分析及其防止措施楚志宝,李作鑫,杜金玉,王国强,李凯玉(济南钢铁集团总公司第一炼钢厂,山东济南 250101)摘要:通过统计分析板坯连铸生产中出现的漏钢事故,认为钢水温度低、拉速快和保护渣理化性能不合理易导致粘结漏钢;对弧不良、钢水温度高、拉速快是造成裂纹漏钢的主要原因;开浇和接头漏钢主要是中间包上水口和塞棒烘烤效果不好及出苗时间不足造成的。
提出了优化保护渣性能指标、强化设备检修精度、严格执行工艺技术规程和完善生产准备等防范漏钢的具体措施。
关键词:连铸板坯;粘结漏钢;裂纹漏钢;接头漏钢;保护渣中图分类号:TF777.1 文献标识码:BDiscussion on Breakout Reason in CC Slab and Its Countermeasures CHU Zhi-bao, LI Zuo-xin, DU Jin-yu, WANG Guo-qiang, LI Kai-yu (No.1 Steel-making Plant of Jinan Iron and Steel Group, Jinan 250101, China)Abstract:The breakout is statistically analyzed in practice production. It is shown that the breakout by sticking is caused by low temperature of molten steel and high withdrawal speed and illogicality capability of protecting slags. The most reason of cracking breakout is badness of arc and high temperature of molten steel and high withdrawal speed. The breakout reason of beginning pouring and joint is that the nozzle and stopper in the turndish are not good with firing and the exceed mould time is shortage. Then some countermeasures such as optimizing the capability of protecting slags and intensifying precision of the equipment and strictly executing the regulation of technique and perfecting the preparation of produce are put forward.Keywords:continuous casting slab;breakout by sticking;cracking breakout;joint breakout;protecting slag1 前言漏钢是连铸生产中的常见事故。
小方坯连铸漏钢原因分析及预防措施发表日期:2007年10月31日【编辑录入:meimei】摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。
关键词:小方坯;漏钢分析;改进措施安阳钢铁股份有限公司第二炼钢厂(以下简称安钢二炼钢)2号方坯连铸机采用浸入式水口加保护渣保护浇注工艺。
2004年铸机平均溢漏钢率为0.68%,上半年平均为0.9%,最高月份为1.2%,溢漏事故多,已严重影响了连铸生产。
为促进连铸生产顺行,同时也为铸机高效化生产打下基础,于2005年元月开始对2号方坯连铸机溢漏钢进行攻关,并取得了显著效果。
1工艺现状安钢二炼钢2号连铸机始建于1989年,铸机类型为国产SFR-6型四机四流小方坯连铸机,铸坯断面为120 mm×120mm,采用定径水口、浸人式水口、保护渣和事故摆槽等浇注方式。
目前,主要浇注钢种为Q235B、HRB335、HRB400、Q345B等钢种,连铸机主要技术参数为:流间距1 100 mm;正常拉速2.8~3.5 m/min;铜管长度850 mm;铜管壁厚12.5 mm;铜管材质为脱氧磷铜;水缝宽度3.5 mm;结晶器倒锥度(0.56%~0.76%)/m;结晶器水量95~100m3/h;结晶器水压0.6~0.7 MPa;振动结构形式为半板簧振动。
2漏钢事故概况2004年2号机溢漏钢569次,统计结果见图1,角裂漏钢占69%,为主要漏钢类型,下渣漏钢和拉断漏钢分别占14.9%和6.7%。
因此,控制角裂漏钢可以大幅度降低溢漏钢率。
角裂漏钢铸坯的形貌如图2所示,角裂漏钢主要发生在出结晶器坯壳距角部10~25 mm处,漏钢长度100~200 mm,沿漏钢部位的上下有纵裂缺陷。
摘要:从钢种、结晶器状况、过热度、拉速、振动、保护渣性能、工艺操作等方面分析了安钢二炼钢2号方坯连铸机产生漏钢的原因,并采取相应措施,取得了较好的效果。
承钢板坯粘结漏钢的原因分析周学禹、徐立山、梁静召、徐海斌、李鹏(河北钢铁集团承钢公司承德067002)摘要:承钢1650mm板坯连铸机在生产初期存在粘结漏钢现象,针对漏钢的原因进入深入的分析和研究,找出了粘结漏钢的主要原因,并制定了详细的措施,确保生产能顺利的进行。
关键词:板坯;粘结漏钢;分析总结;措施执行1前言承钢公司1650mm直弧形板坯连铸机投产于2008年7月,铸机半径8 m,冶金长41m,工作拉速0.8-1.4m/min,断面为180mm、200m m×(900-1650)mm,连铸机设计年产量为300万吨,定尺为6-12m。
从2008年7月投产初期,由于钢水质量,设备磨合和工艺操作等诸多因素影响,导致漏钢事故较多,其中粘结漏钢占漏钢总数的80%,粘结漏钢严重影响生产的顺行,如何解决粘结漏钢问题成为顺产的首要问题。
通过有关技术人员的共同努力,终于找出漏钢的真正原因,并针对具体问题制定了详细的预防措施,通过各项措施的落实和执行,粘结漏钢的次数明显减少,为生产的顺行奠定了良好的基础。
2 漏钢类别与原因2.1 开浇漏钢开浇漏钢是指引锭头刚拉出结晶器下口即漏钢。
主要原因是,塞引锭头时加入冷料过多或过少,杂质过多行或有油污;引锭头与结晶器壁间的缝隙没有塞严;出苗时间短,开浇时钢流过大将冷料冲散等。
设备原因有结晶器与扇形段对弧不准都极易产生开浇漏钢。
2.2 悬挂漏钢结晶器内初生坯壳局部和结晶器内腔铜板或角缝挂住,或冒钢、坯壳与结晶器上沿挂住而引起的漏钢。
通常是由于结晶器角缝过大;内腔铜板表面变形;保护渣润滑中断等原因均会导致悬挂漏钢。
2.3 粘结漏钢由于结晶器液位波动,凝固坯壳与铜板之间无液渣,严重时粘结,使得摩擦阻力增大,粘结处被拉断,并向下和两边扩大,形成“V”型破裂线,到达出结晶器口即漏钢。
3、粘结漏钢产生机理粘结漏钢产生机理见图1。
在浇注过程中,结晶器弯月面的钢水处于异常活跃的状态,在钢水进入结晶器后开始形成凝固坯壳,由于流入坯壳与结晶器铜壁之间的液渣被阻断,当结晶器铜板与初生坯壳的摩擦力大于初生坯壳的强度时,与铜板产生粘结,被粘着的部分和向下拉的铸坯的界面凝固壳破振动和滑动时坯壳被拉断,在破断处流入钢液,重新形成新的薄坯壳。
YJ0701-板坯连铸机粘接漏钢事故分析案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。
该案例是连续铸钢事故分析与处理案例,体现了连续铸钢等岗位工艺参数、凝固理论知识点和具体岗位操作步骤,与本专业连续铸钢等课程事故预防与处理单元的教学目标相对应。
板坯连铸机粘接漏钢事故分析1 背景介绍某中型转炉炼钢厂,采用喷吹颗粒镁预脱硫,拥有三座100t的转炉, 采用CAS-OB、LF炉、RH精炼装置,四台不同断面的大型厚板坯连铸机,连铸机采用双排热电偶漏钢预报装置。
该厂主要生产管线、船板等中厚板。
2 主要内容2.1 事故经过2012年12月26日,某铸机浇注浇次1212B26(断面2000mm×250mm,钢种45-1)第21炉2Q08199浇注4:46时发生结晶器外弧粘连漏钢,至当日22:00处理完毕,共造成铸机非计划停浇17小时14分,构成粘连漏钢事故。
2.1.1 精炼处理2Q08199炉次是3#LF炉处理,使用12#钢包,包龄44次。
钢水到站后热修包报12#钢包为正常周转包,但在处理过程中升温速度慢,温降异常。
铸机要点4:20,要温1538℃。
2Q08199炉次在3#LF炉处理61min,加热40min,软吹4min。
具体处理过程如下:3:15到站,到站温度1514℃,3:17进加热位并加入一批渣料。
3:20第一次升温,3:33停止 (升温13min),测温1506℃,取钢样。
3:35第二次升温,3:45钢样成分回来后,调硅铁133kg、锰铁61kg、碳粉60kg,3:54升温结束。
进行钙处理,取钢样,并进行软吹。
因钢包包况不好,钢水温降大,4:05测温1516℃。
温度低向工长室反馈,并与热修包核实钢包状况。
经再次核实,12包为小修2次包(12#钢包,小修1次,0:30出钢,进站后因无氩气倒14#包,未在LF炉处理)。
4:05第三次升温,加热10min,其间在4:11测温(1529℃、1527℃),4:14钢样成分回来,4:15停止加热测温1540℃,补喂钙线80m,底吹氩控制为软吹流量,汇报工长室,通知铸机钢水温度、软吹状况。
4:19停止软吹,吊包上2#铸机连浇,吊包前测温1534℃、1535℃。
2.1.2 连铸浇注2Q08199炉次4:24完成座包,4:27正常开浇,拉速控制0.95m/min。
该炉次中包测温依次为1509、1505、1503、1498、1499、1501℃(该钢种液相线温度1490℃),平均过热度12.5℃。
在过热度小于10℃时,4:41提拉速至1.00m/min。
4:46操作工发现外弧水口位置附近液面发死,坯壳较厚,立刻要求停浇。
在机长按急停时,液面出现下降,浇注平台上升起大量白气,随后有燃烧黑烟冒出。
最后确定为漏钢,而漏钢预报未发出报警。
炉次开浇时,连铸主值及主控被通知本炉钢水温度较低,待后续炉次钢水上铸机后即可停浇转出。
2Q08199炉次浇注19分钟时发生漏钢,此时第22炉钢水刚完成座包1分钟。
从液面控制曲线来看,在4:35出现自动抬棒趋势变化,到停浇时共提升棒量5mm,证明存在套眼情况。
2.2 事故原因分析从漏钢坯壳看,外弧水口位置附近有粘连痕迹,在吊出结晶器过程,坯壳在粘连处撕裂,如图1、图2所示:图1结晶器内坯壳粘连部分(外弧) 图2 二冷0段内坯壳部分根据漏钢坯壳确认漏钢原因为粘连漏钢。
因浇次第21包钢水已浇注19分钟,浇注钢水超过50吨,能够确定结晶器漏钢处所浇注钢水为浇次第21包钢水,即2Q08199炉次。
2Q08199炉次钢水从精炼处理到浇注过程共存在以下几个问题:(1)使用的12#钢包尽管为周转包(小修2次),但其小修1次时投用过程运转并不完整,仅在出钢和精炼进站期间承载钢水。
未经LF炉钢水加热和连铸浇注,包壁温度很不稳定,使其再次投用时,实际上并未达到周转包包温。
钢包指车工未将该异常信息及时传递给调度室和精炼;(2)精炼处理过程的操作受到包况影响很大,全处理61min,其中分三次加热累计达到40min。
过程脱硫效果一般(进站S:0.013%,成品S:0.012%),钙处理结果很差(成品Ca:0.0007%)。
在钢水条件差的情况下仅实现软吹4min。
(3)炉次开浇8-10分钟时,塞棒出现缓慢提升,说明存在一定的套眼情况。
成品Ca含量偏低也能证明这一问题。
这也反映了钢水纯净度确实并不理想。
(4)在结晶器外弧发生实际粘钢过程,结晶器漏钢预报系统未出现报警,漏钢之前液面监控并无异常,操作工最后依据经验控制停浇为时已晚。
连铸漏钢预报系统是监控浇注过程坯壳状况最重要的辅助手段,针对此次粘连漏钢发生过程未出现报警的问题,特对漏钢预报进行了检查。
图3 漏钢之前结晶器外弧热电偶数据图4 漏钢时结晶器外弧热电偶数据按系统内时间进行推算,在4:45:36之前,结晶器外弧热电偶并无温度变化,基本保持图3中的趋势。
在4:45:36之后,9#上排热电偶最先出现温度升高,之后7#、8#、10#等周围的热电偶(上排)也出现不同程度的升温。
而9#热电偶升温最大值为21℃。
到4:46:36时出现漏钢,过程中热点偶变化时间为1分钟,但下排热电偶的温度变化量非常小。
程序设定要求,上、下两排热电偶需独立统计,并且同时满足上下两排热电偶温度变化曲线交叉条件时(见图5)才能触发粘钢报警。
而本次粘钢过程,低位热电偶升温并未达到设定要求,因此未能提前报警。
图5 结晶器漏钢热电偶温度变化规律综合以上因素,造成本次粘连漏钢的主要因素包括以下三方面:(1)12#钢包小修一次使用异常,本次使用时为非正常周转包(小修2次),修砌作业区未将该信息传递给调度室和精炼作业区,造成处理时过程温降异常。
(2)当班精炼作业区对钢包出现温降异常处理不当,造成LF炉处理周期紧,软吹时间不足造成钢水纯净度下降,是造成本次事故的主要原因。
(3)连铸浇钢工在浇注过程中未能发现结晶器液面异常,而结晶器漏钢预报系统在关键时刻未能发挥作用,未能及时避免事故发生。
2.3 预防措施(1)最大限度的降低有害杂质(如S、P)和夹杂物含量,以保证铸机的顺行和提高铸坯质量。
如钢水中S含量大于0.03%,容易产生铸坯纵裂纹,钢水中夹杂物含量高,容易造成弧形铸机铸坯中内弧夹杂物集聚,影响产品质量。
(2)钢水的成分:保证加入钢水中的合金元素能均匀分布,且成分控制在较窄的范围内,保证产品性能的稳定性。
(3)钢水的可浇性,要保持适宜的稳定的钢水温度和脱氧程度,以满足钢水的可浇性。
如铝脱氧,钢水中Al2O3夹杂含量高,流动性差,容易造成中间包水口堵塞而中断浇注。
(4)观察保护渣的使用状况,确保保护渣有良好性能。
如测量结晶器液渣层厚度经常保持在8~15mm,保护渣消耗量不小于0.4kg/t钢,及时捞出渣中的结块等。
(5)提高操作水平,控制液位波动。
浇注过程中采取自动浇注,随时观察结晶器漏钢预报系统动态,发现问题及时处理。
(6)确保合适的拉速,拉速变化幅度要小。
升降拉速幅度以0.05m/min为宜。
3 分析路径该案例是连续铸钢事故分析与处理案例,本生产案例体现了连续铸钢等岗位工艺参数、凝固理论知识点和具体岗位操作步骤,与钢铁冶炼专业连续铸钢等课程事故预防与处理单元的教学目标相对应。
根据国家职业标准关于连续铸钢工种要求,对应教学目标,从此生产案例归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。
采用现场参观、记录数据、分组头脑风暴、汇报讲评等手段,引导学生通过复习、观察、记录、讨论、讲评、讲授等方式学习连续铸钢事故预防与处理知识,掌握工序工艺参数、工艺制度确定技能,达到教学目标要求。
学生走上工作岗位,减少事故是保证企业经济效益,稳定生产,保证质量的重要项目。
漏钢是连铸生产最常见的事故,而粘结漏钢又占漏钢事故的最大比例。
事故预防与分析是高技能人才的重要能力,牵涉到“人、机、料、法、环”多方面因素,事故分析与处理也是一个很好的代表性工作任务。
下面以某厂连铸坯粘接漏钢为例,通过对事故经过、事故原因分析、提出预防改进措施,说明案例教学的经过。
4 教学目标(1)进行事故判定,掌握粘接漏钢的成因和相关的预防措施;(2)严细操作,注重岗位接口沟通。
(3)全面复习所学知识,并将知识转化为能力。
5 教学方式方法建议采用现场调研、问题讨论、点评、案例分析、讲授、课堂练习、大作业。
具体教学过程设计如下:5.1 课前计划(1)学生掌握知识:连续铸钢生产的基本原理、工艺、设备;(2)学生分组,指定组长;(3)与现场联系,进行现场教学准备,包括安全教育、劳保用品、行走路线,现场兼职教师,现场教室等;(4)安全教育,教师带领学生下厂调研,记录10炉钢连铸生产工艺参数,收集事故相关资料;(5)学生根据所学知识和实习、调研中获得的资料,总结漏钢事故的产生原因、预防措施;(6)与技术人员交流,请技术人员准备讲授连铸生产中出现的漏钢事故。
(可选)(7)教室设置成学习岛,准备投影,为每组准备2张0开白纸,大号记号笔1支、作业纸每人2张。
5.2 课中计划(1)学生按小组就座学习岛周围,选举记录人、发言人。
(2)每人总结一条漏钢事故的产生原因并提出预防措施,按顺时针顺序轮流发言,记录人将操作要点在0开白纸上按人、机、料、法、环分别记录。
要求每人发言,可以轮空,直到所有人员无法补充为止,时间8~10分钟;(3)整理完成后,小组发言人上台展示0开白纸上的记录,并向全体师生汇报交流漏钢事故的产生原因和预防措施;发言学生汇报完成后,同组学生可以补充。
汇报完成,本组自评,其它组进行点评打分,现场技术人员参与对学生汇报的操作要点评价,指出优点和不足,每组时间5~8分钟;(4)技术人员讲授实际生产中漏钢事故案例,时间20分钟;(可选)(5)教师讲授漏钢事故案例,引导学生分析本案例漏钢的产生原因,熟悉预防措施,时间30分钟。
5.3 课后计划布置作业,见6.3。
6 思考题及考评6.1 课前思考题布置课前思考题,保证学生下厂调研知道找什么材料、看什么操作、思考为什么如此操作。
(1)连铸机漏钢分为哪几种类型?(2)连铸坯粘接漏钢的产生原因、处理手段和预防措施是什么?(3)从凝固理论讲,铸坯裂纹、漏钢产生的根本产生原因是什么?6.2 课堂练习课堂提问或者集体回答,目的:及时复习、巩固知识,检查教学效果。
练习题(1)(多选题)防止连铸发生粘结漏钢的措施有()。
BCDA.提高浇注温度,促进保护渣熔化B.使用低粘度保护渣C.确保合适的负滑脱率D.加强钢水管理,提供合格钢水(2)(多选题)防止连铸过程发生漏钢的有效措施有()等。