当前位置:文档之家› Linux网络设备驱动基本原理和框架

Linux网络设备驱动基本原理和框架

Linux网络设备驱动基本原理和框架
Linux网络设备驱动基本原理和框架

网络设备驱动基本原理和框架

一、协议栈层次对比

二、网络子系统

Kernel Space的分层架构:

1.Linux网络子系统的顶部是系统调用接口层。它为用户空间提供的应用程

序提供了一种访问内核网络子系统的方法(socket)。

2.位于其下面是一个协议无关层,它提供一种通用的方法来使用传输层协

议。

3.然后是具体协议的实现,在Linux中包括内核的协议TCP,UDP,当然还

有IP。

4.然后是设备无关层,它提供了协议与设备驱动通信的通用接口;

5.最下面是设备的驱动程序。

设备无关接口将协议与各种网络驱动连接在一起,这一层提供一组通用函数供底层网络设备驱动使用,让它们可以对高层协议栈进行操作。

●需要从协议层向设备发生数据,需要调用dev_queue_xmit函数,这个函

数对数据进行列队,然后交由底层驱动程序的hard_start_xmit方法最终完成传输。

●接收通常是使用netif_rx执行的。当底层设备程序接收到一个报文(发生

中断)时,就会调用netif_rx将数据上传至设备无关层。

三、设备无关层到驱动层的体系结构

下图为设备无关层(Device agnostic interface)到驱动层(Device Driver)的体系结构:

解释:

1)、网络协议接口层向网络层协议提供提供统一的数据包收发接口,不论上层协议为ARP还是IP,都通过dev_queue_xmit()函数发送数据,并通过netif_rx()函数接受数据。这一层的存在使得上层协议独立于具体的设备。

2)、网络设备接口层向协议接口层提供统一的用于描述具体网络设备属性和操作的结构体net_device,该结构体是设备驱动功能层中各函数的容器。实际上,

网络设备接口层从宏观上规划了具体操作硬件的设备驱动功能层的结构。3)、设备驱动功能层各函数是网络设备接口层net_device数据结构的具体成员,是驱使网络设备硬件完成相应动作的程序,他通过hard_start_xmit()函数启动发送操作,并通过网络设备上的中断触发接收操作。

4)、网络设备与媒介层是完成数据包发送和接受的物理实体,包括网络适配器和具体的传输媒介,网络适配器被驱动功能层中的函数物理上驱动。对于Linux 系统而言,网络设备和媒介都可以是虚拟的。

1、网络协议接口层

这里主要进行数据包的收发,使用函数原型为:

dev_queue_xmit(struct sk_buff *skb);int netif_rx(struct sk_buff *skb);

这里使用了一个skb_buff结构体,定义于include/linux/skbuff.h中,它的含义为“套接字缓冲区”,用于在Linux网络子系统各层间传输数据。他是一个双向链表,在老的内核中会有一个list域指向sk_buff_head也就是链表头,但是在我研究的linux2.6.30.4内核中已经不存在了,如下图:

sk_buff中重要的数据成员

struct device *dev;正在处理该包的设备

__u32 sadd;r//IP元地址

__u32 daddr;//IP目的地址

__u32 raddr;//IP路由器地址

unsigned char *head;//分配空间的开始

unsigned char *data;//有效数据的开始

unsigned char *tail;//有效数据的结束

unsigned char *end;//分配空间的结束

unsigned long len;//有效数据的长度

sk_buff的操作:

1)分配:分配一个sk_buff结构,供协议栈代码使用

struct sk_buff *alloc_skb(unsigned int len, int priority);

struct sk_buff *dev_alloc_skb(unsigned int len);

分配一个缓冲区。alloc_skb函数分配一个缓冲区并初始化skb->data和skb->tail 为skb->head。参数len为数据缓冲区的空间大小,通常以L1_CACHE_BYTES 字节(对ARM为32)对齐,参数priority为内存分配的优先级。dev_alloc_skb()函数以GFP_ATOMIC优先级进行skb的分配。

2)释放:

void kfree_skb(struct sk_buff *skb);

void dev_kfree_skb(struct sk_buff *skb);

Linux内核内部使用kfree_skb()函数,而网络设备驱动程序中则最好使用

dev_kfree_skb()。

sk_buff中比较重要的成员是指向数据包中数据的指针,如下图所示:

用于寻址数据包中数据的指针,head指向已分配空间开头,data指向有效的octet开头,tail指向有效的octet结尾,而end指向tail可以到达的最大地址。如果不这样做而分配一个大小固定的缓冲区,如果buffer不够用,则要申请一个更大的buffer,拷贝进去再增加,这样降低了性能。

3)变更

unsigned char *skb_put(struct sk_buff *skb, int len);将taill指针向后移动len长度,并返回tail移动之前的值。用于向skb有效数据区域末尾添加数据。unsigned char *skb_push(struct sk_buff *skb, int len);将data指针向前移动len 长度。并返回移动之后的值。用于向skb有效数据区域前端添加数据(包头)。unsigned char *skb_pull(struct sk_buff *skb, int len);

void skb_reserve(struct sk_buff ×skb,int len);

下图分别对应了这四个函数,看了这张图应该对这4个函数的作用了然于胸。

2、网络设备接口层

网络设备接口层的主要功能是为千变万化的网络设备定义了统一,抽象的数据结构net_device结构体,以不变应万变,实现多种硬件在软件层次上的统一。每一个网络设备都由struct net_device来描述,该结构可使用如下内核函数进行动态分配:

struct net_device *alloc_netdev(int sizeof_priv, const char *mask, void(*setup)(struct net_device *))

sizeof_priv是私有数据区大小;mask是设备名,setup是初始化函数,在注册该设备时,该函数被调用。也就是net_deivce的init成员。

struct net_device *alloc_etherdev(intsizeof_priv)

这个函数和上面的函数不同之处在于内核知道会将该设备做一个以太网设备看待并做一些相关的初始化。

net_device结构可分为全局成员、硬件相关成员、接口相关成员、设备方法成员和公用成员等五个部分。

●主要全局成员:

char name[INFAMSIZ] 设备名,如:eh%d

unsigned long state 设备状态

unsigned long base_addr I/O基地址

unsigned int irq 中断号

●主要设备方法有

首先看打开和关闭网络设备的函数:

int (*open)(struct net_device *dev);

打开接口。ifconfig激活时,接口将被打开

int (*stop)(struct net_device *dev);

停止接口,ifconfig eth% down时调用

要注意的是ifconfig是interface config的缩写,通常我们在用户空间输入: ifconfig eth0 up 会调用这里的open函数。

在用户空间输入:

ifconfig eth0 down 会调用这里的stop函数。

在使用ifconfig向接口赋予地址时,要执行两个任务。首先,它通过ioctl(SIOCSIFADDR)(Socket I/O Control Set Interface Address)赋予地址,然后通过ioctl(SIOCSIFFLAGS)(Socket I/O Control Set Interface Flags)设置dev->flag中的IFF_UP标志以打开接口。这个调用会使得设备的open方法得到调用。类似的,在接口关闭时,ifconfig使用ioctl(SIOCSIFFLAGS)来清理IFF_UP 标志,然后调用stop函数。

int (*init)(struct net_device *dev)

初始化函数,该函数在register_netdev时被调用来完成对net_device结构的初始化

int (*hard_start_xmit)(struct sk_buf*skb,struct net_device *dev)

数据发送函数

int (*hard_header)(struct sk_buff *skb, struct net_device *dev, unsigned short t ype, void *daddr, void *saddr, unsigned len);

该方法根据先前检索到的源和目的硬件地址建立硬件头

int (*rebuild_header)(struct sk_buff *skb);

以太网的mac地址是固定的,为了高效,第一个包去询问mac地址,得到对应的mac地址后就会作为cache把mac地址保存起来。以后每次发包不用询问了,直接把包的地址拷贝出来。

void (*tx_timeout)(struct net_device *dev);

如果数据包发送在超时时间内失败,这时该方法被调用,这个方法应该解决失败的问题,并重新开始发送数据。

struct net_device_stats *(*get_stats)(struct net_device *dev);

当应用程序需要获得接口的统计信息时,这个方法被调用。

int (*set_config)(struct net_device *dev, struct ifmap *map);

改变接口的配置,比如改变I/O端口和中断号等,现在的驱动程序通常无需该方法。

int (*do_ioctl)(struct net_device *dev, struct ifmap *map);

用来实现自定义的ioctl命令,如果不需要可以为NULL。

void (*set_multicast_list)(struct net_device *dev);

当设备的组播列表改变或设备标志改变时,该方法被调用。

int (*set_mac_address)(struct net_device *dev, void *addr);

如果接口支持mac地址改变,则可以实现该函数。

3、设备驱动接口层

net_device结构体的成员(属性和函数指针)需要被设备驱动功能层的具体数值和函数赋予。对具体的设置xxx,工程师应该编写设备驱动功能层的函数,这些函数型如xxx_open(),xxx_stop(),xxx_tx(),xxx_hard_header(),xxx_get_stats(),xxx_tx_time out()等。

4、网络设备与媒介层

网络设备与媒介层直接对应于实际的硬件设备。

网络设备的注册

网络设备注册方式与字符驱动不同之处在于它没有主次设备号,并使用下面的函数注册

int register_netdev(struct net_deivce*dev)

网络设备的注销

void unregister_netdev(struct net_device*dev)

四、驱动实现

1).初始化(init)

设备探测工作在init方法中进行,一般调用一个称之为probe方法的函数

初始化的主要工作时检测设备,配置和初始化硬件,最后向系统申请这些资源。此外填充该设备的dev结构,我们调用内核提供的ether_setup方法来设置一些以太网默认的设置。

2)打开(open)

open这个方法在网络设备驱动程序里是网络设备被激活时被调用(即设备状态由down变成up)

实际上很多在初始化的工作可以放到这里来做。比如说资源的申请,硬件的激活。如果dev->open返回非0,则硬件状态还是down,

注册中断、DMA等;设置寄存器,启动设备;启动发送队列

一般注册中断都在init中做,但在网卡驱动程序中,注册中断大部分都是放在open中注册,因为要经常关闭和重启网卡

3)关闭(stop)

stop方法做和open相反的工作

可以释放某些资源以减少系统负担

stop是在设备状态由up转为down时被调用

4)发送(hard_start_xmit)

在系统调用的驱动程序的hard_start_xmit时,发送的数据放在一个sk_buff结构中。一般的驱动程序传给硬件发出去。也有一些特殊的设备比如说loopback把数据组成一个接收数据在传送给系统或者dummy设备直接丢弃数据。

如果发送成功,hard_start_xmit方法释放sk_buff。如果设备暂时无法处理,比如硬件忙,则返回1。

5)接收

驱动程序并存在一个接受方法。当有数据收到时驱动程序调用netif_rx函数将skb交交给设备无关层。

一般设备收到数据后都会产生一个中断,在中断处理程序中驱动程序申请一块sk_buff(skb)从硬件中读取数据位置到申请号的缓冲区里。

接下来填充sk_buff中的一些信息。

中断有可能是收到数据产生也可能是发送完成产生,中断处理程序要对中断类型进行判断,如果是收到数据中断则开始接收数据,如果是发送完成中断,则处理发送完成后的一些操作,比如说重启发送队列。

接收流程:

1、分配skb=dev_alloc_skb(pkt->datalen+2)

2、从硬件中读取数据到skb

3、调用netif_rx将数据交给协议栈

中断处理

网络接口通常支持3种类型的中断:新报文到达中断、报文发送完成中断和出错中断。中断处理程序可通过查看网卡的中断状态寄存器,来分辨出中断类型。

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

(整理)嵌入式系统的以太网接口设计及linux内核网络设备驱动.

嵌入式系统的以太网接口设计及linux驱动 1 以太网概述 以太网(Ethernet)是当今局域网采用的最通用的通信协议标准。在以太网中,所有计算机被连接在一条电缆上,采用带冲突检测的载波侦听多路访问(CSMA/CD)方法,采用竞争机制和总线拓扑结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆、多端口集线器、网桥或交换机构成。 按照OSI(Open System Interconnection Reference Model,开放式系统互联参考模型)7层参考模型,以太网定义的是物理层(PHY)和数据链路层(对应以太网的MAC层)的标准。 2 嵌入式处理器上扩展以太网接口 以太网接口控制器主要包括MAC乘PHY两部分,如图1所示为嵌入式处理器集成MAC层控制器。 MAC层控制器和PHY的连接是通过MII、RMII等接口实现的。在IEEE802的标准系列中,数据链路层包括LLC和MAC两个子层。其中MAC负责完成数据帧的封装、解封、发送和接受功能。PHY层的结构随着传输速率的不同而有一定的差异。对于1OBaseT等网络,从以太网PHY芯片输出的就是传输所需的差分信号。但是还需要一个网络隔离变压器组成图2的结构。网络隔离变压器可起到抑制共模干扰、隔离线路以及阻抗匹配等作用。 本文介绍一种新款网络接口芯片DM9000A,它可以很方便的实现与嵌入式CPU的接口,实现扩展以太网口的功能。DM9000A是中国台湾DAVICOM公司推出的一款高速以太网接口芯片,其基本特征是:集成10/100M物理层接口;内部带有16K字节SRAM用作接收发送的FIFO缓存;支持8/16bit两种主机工作模式:

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

Linux网络设备驱动开发实验

实验三:Linux网络设备驱动开发实验 一、实验目的 读懂linux网络设备驱动程序例子,并且实际加载驱动程序,加载进操作系统以后,会随着上层应用程序的触发而执行相应动作,具体执行的动作可以通过代码进行改变。 ●读懂源码及makefile ●编译驱动程序 ●加载 ●多种形式触发动作 二、预备知识 熟悉linux驱动基本原理,能读懂简单的makefile。 三、实验预计时间 80-120分钟左右 四、驱动程序部分具体步骤 要求读懂一个最简单的驱动程序,在驱动程序的诸如“xxx_open”、“xxx_read”等标准接口里面加入打印语句。可参考多模式教学网上的驱动样例。 五、用于触发驱动动作的应用程序及命令 驱动程序就是以静态的标准接口库函数形式存在,网络设备驱动会受到两大类情况的触发,一种是linux里面的控制台里面的命令,另一种是套接口应用程序,首先要搞清都有哪些具体的命令和应用程序流程,应用程序参考多模式教学网的例子。 六、运行测试 提示:需要将驱动程序以dll加载进系统中,并且触发应用程序调用各种文件操作的接口函数,使得驱动有所动作,打印出相关信息。 1.编译驱动: cd /某某目录/vnetdev/ make clean make 2.加载驱动与打开网卡: insmod netdrv.ko

ifconfig vnet0 up 3.运行应用程序 ../raw 4.通过命令“修改网卡MTU”触发驱动执行动作: ifconfig vnet0 mtu 1222 5.显示内核打印: cat /var/log/messages 6.卸载: ifconfig vnet0 down rmmod netdrv.ko 7.修改代码中的某些函数中的打印信息,重新试验上述流程。 至此大家都应该真正理解和掌握了驱动程序-操作系统-应用程序的三者联动机制。 七、实验结果 由图可知能正常加载网卡驱动,并且能够打印调试信息。

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

PCI驱动编程基本框架

Linux将所有外部设备看成是一类特殊文件,称之为“设备文件”,如果说系统调用是Linux 内核和应用程序之间的接口,那么设备驱动程序则可以看成是Linux内核与外部设备之间的接口。设备驱动程序向应用程序屏蔽了硬件在实现上的细节,使得应用程序可以像操作普通文件一样来操作外部设备。 1. 字符设备和块设备 Linux抽象了对硬件的处理,所有的硬件设备都可以像普通文件一样来看待:它们可以使用和操作文件相同的、标准的系统调用接口来完成打开、关闭、读写和I/O控制操作,而驱动程序的主要任务也就是要实现这些系统调用函数。Linux系统中的所有硬件设备都使用一个特殊的设备文件来表示,例如,系统中的第一个IDE硬盘使用/dev/hda表示。每个设备文件对应有两个设备号:一个是主设备号,标识该设备的种类,也标识了该设备所使用的驱动程序;另一个是次设备号,标识使用同一设备驱动程序的不同硬件设备。设备文件的主设备号必须与设备驱动程序在登录该设备时申请的主设备号一致,否则用户进程将无法访问到设备驱动程序。 在Linux操作系统下有两类主要的设备文件:一类是字符设备,另一类则是块设备。字符设备是以字节为单位逐个进行I/O操作的设备,在对字符设备发出读写请求时,实际的硬件I/O紧接着就发生了,一般来说字符设备中的缓存是可有可无的,而且也不支持随机访问。块设备则是利用一块系统内存作为缓冲区,当用户进程对设备进行读写请求时,驱动程序先查看缓冲区中的内容,如果缓冲区中的数据能满足用户的要求就返回相应的数据,否则就调用相应的请求函数来进行实际的I/O操作。块设备主要是针对磁盘等慢速设备设计的,其目的是避免耗费过多的CPU时间来等待操作的完成。一般说来,PCI卡通常都属于字符设备。 2. 设备驱动程序接口 Linux中的I/O子系统向内核中的其他部分提供了一个统一的标准设备接口,这是通过include/linux/fs.h中的数据结构file_operations来完成的: struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

Windows驱动程序开发环境配置

Windows驱动程序开发笔记 一、WDK与DDK环境 最新版的WDK 微软已经不提供下载了这里:https://https://www.doczj.com/doc/d517529939.html,/ 可以下并且这里有好多好东东! 不要走进一个误区:下最新版的就好,虽然最新版是Windows Driver Kit (WDK) 7_0_0,支持windows7,vista 2003 xp等但是它的意思是指在windows7操作系统下安装能编写针对windows xp vista的驱动程序, 但是不能在xp 2003环境下安装Windows Driver Kit (WDK) 7_0_0这个高版本,否则你在build的时候会有好多好多的问题. 上文build指:首先安装好WDK/DDK,然后进入"开始"->"所有程序"->"Windows Driver Kits"->"WDK XXXX.XXXX.X" ->"Windows XP"->"x86 Checked Build Environment"在弹出来的命令行窗口中输入"Build",让它自动生成所需要的库 如果你是要给xp下的开发环境还是老老实实的找针对xp的老版DDK吧,并且xp无WDK 版只有DDK版build自己的demo 有个常见问题: 'jvc' 不是内部或外部命令,也不是可运行的程序。 解决办法:去掉build路径中的空格。 二、下载 WDK 开发包的步骤 1、访问Microsoft Connect Web site站点 2、使用微软 Passport 账户登录站点 3、登录进入之后,点击站点目录链接 4、在左侧的类别列表中选择开发人员工具,在右侧打开的类别:开发人员工具目录中找到Windows Driver Kit (WDK) and Windows Driver Framework (WDF)并添加到您的控制面板中 5、添加该项完毕后,选择您的控制面板,就可以看到新添加进来的项了。 6、点击Windows Driver Kit (WDK) and Windows Driver Framework (WDF),看到下面有下载链接,OK,下载开始。下载后的文件名为: 6.1.6001.18002.081017-1400_wdksp-WDK18002SP_EN_DVD.iso将近600M大小。

Linux网络设备驱动

嵌入式培训专家
Linux网络设备驱动
主讲:宋宝华
https://www.doczj.com/doc/d517529939.html,

华清远见
今天的内容
vLinux网络设备驱动架构 vLinux网络设备驱动数据流程
? NON-NAPI模式数据接收流程 ? NAPI模式数据接收流程 ? 数据发送流程
vLinux网络协议栈的实现
? TCP/UDP/IP/MAC各层数据传递 ? 网络系统调用与socket

华清远见
Linux网络设备驱动架构

华清远见
net_device
struct net_device_ops { int (*ndo_open)(struct net_device *dev); int (*ndo_start_xmit) (struct sk_buff *skb, struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); void (*ndo_tx_timeout) (struct net_device *dev); ... }
struct net_device { struct net_device_stats stats; const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; ... }
struct ethtool_ops { int (*get_settings)(struct net_device *, struct ethtool_cmd *); int (*set_settings)(struct net_device *, struct ethtool_cmd *); void (*get_drvinfo)(struct net_device *, struct ethtool_drvinfo *); int (*get_regs_len)(struct net_device *); ... }

Linux设备驱动程序简介

第一章Linux设备驱动程序简介 Linux Kernel 系统架构图 一、驱动程序的特点 ?是应用和硬件设备之间的一个软件层。 ?这个软件层一般在内核中实现 ?设备驱动程序的作用在于提供机制,而不是提供策略,编写访问硬件的内核代码时不要给用户强加任何策略 o机制:驱动程序能实现什么功能。 o策略:用户如何使用这些功能。 二、设备驱动分类和内核模块 ?设备驱动类型。Linux 系统将设备驱动分成三种类型 o字符设备 o块设备 o网络设备 ?内核模块:内核模块是内核提供的一种可以动态加载功能单元来扩展内核功能的机制,类似于软件中的插件机制。这种功能单元叫内核模块。 ?通常为每个驱动创建一个不同的模块,而不在一个模块中实现多个设备驱动,从而实现良好的伸缩性和扩展性。 三、字符设备 ?字符设备是个能够象字节流<比如文件)一样访问的设备,由字符设备驱动程序来实现这种特性。通过/dev下的字符设备文件来访问。字符设备驱动程序通常至少需要实现 open、close、read 和 write 等系统调用 所对应的对该硬件进行操作的功能函数。 ?应用程序调用system call<系统调用),例如:read、write,将会导致操作系统执行上层功能组件的代码,这些代码会处理内核的一些内部 事务,为操作硬件做好准备,然后就会调用驱动程序中实现的对硬件进 行物理操作的函数,从而完成对硬件的驱动,然后返回操作系统上层功 能组件的代码,做好内核内部的善后事务,最后返回应用程序。 ?由于应用程序必须使用/dev目录下的设备文件<参见open调用的第1个参数),所以该设备文件必须事先创建。谁创建设备文件呢? ?大多数字符设备是个只能顺序访问的数据通道,不能前后移动访问指针,这点和文件不同。比如串口驱动,只能顺序的读写设备。然而,也 存在和数据区或者文件特性类似的字符设备,访问它们时可前后移动访

Linux驱动框架及驱动加载

本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。 Linux设备驱动概述 1. 内核和驱动模块 操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。 Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。 如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。 我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。 理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。 lsmod

如何实现Linux设备驱动模型

文库资料?2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd. 如何实现Linux 设备驱动模型 设备驱动模型,对系统的所有设备和驱动进行了抽象,形成了复杂的设备树型结构,采用面向对象的方法,抽象出了device 设备、driver 驱动、bus 总线和class 类等概念,所有已经注册的设备和驱动都挂在总线上,总线来完成设备和驱动之间的匹配。总线、设备、驱动以及类之间的关系错综复杂,在Linux 内核中通过kobject 、kset 和subsys 来进行管理,驱动编写可以忽略这些管理机制的具体实现。 设备驱动模型的内部结构还在不停的发生改变,如device 、driver 、bus 等数据结构在不同版本都有差异,但是基于设备驱动模型编程的结构基本还是统一的。 Linux 设备驱动模型是Linux 驱动编程的高级内容,这一节只对device 、driver 等这些基本概念作介绍,便于阅读和理解内核中的代码。实际上,具体驱动也不会孤立的使用这些概念,这些概念都融合在更高层的驱动子系统中。对于大多数读者可以忽略这一节内容。 1.1.1 设备 在Linux 设备驱动模型中,底层用device 结构来描述所管理的设备。device 结构在文件中定义,如程序清单错误!文档中没有指定样式的文字。.1所示。 程序清单错误!文档中没有指定样式的文字。.1 device 数据结构定义 struct device { struct device *parent; /* 父设备 */ struct device_private *p; /* 设备的私有数据 */ struct kobject kobj; /* 设备的kobject 对象 */ const char *init_name; /*设备的初始名字 */ struct device_type *type; /* 设备类型 */ struct mutex mutex; /*同步驱动的互斥信号量 */ struct bus_type *bus; /*设备所在的总线类型 */ struct device_driver *driver; /*管理该设备的驱动程序 */ void *platform_data; /*平台相关的数据 */ struct dev_pm_info power; /* 电源管理 */ #ifdef CONFIG_NUMA int numa_node; /*设备接近的非一致性存储结构 */ #endif u64 *dma_mask; /* DMA 掩码 */ u64 coherent_dma_mask; /*设备一致性的DMA 掩码 */ struct device_dma_parameters *dma_parms; /* DMA 参数 */ struct list_head dma_pools; /* DMA 缓冲池 */ struct dma_coherent_mem *dma_mem; /* DMA 一致性内存 */ /*体系结构相关的附加项*/ struct dev_archdata archdata; /* 体系结构相关的数据 */ #ifdef CONFIG_OF

Linux 系统下4G 终端模块驱动的实现

龙源期刊网 https://www.doczj.com/doc/d517529939.html, Linux 系统下4G 终端模块驱动的实现 作者:邹龙王德志刘忠诚周治坤 来源:《电脑知识与技术》2015年第28期 摘要:文章分析了Linux系统的设备驱动原理,USB接口设备的驱动程序编写与内核编译原理,结合实例完成了4G模块的驱动程序与内核编译,并对编译后的Linux系统进行了验证,验证了系统内核能够正确识别4G模块并分配内存,成功实现了Linux系统的4G模块驱动。 关键词:Linux;设备驱动;4G;USB 中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)27-0206-04 Abstract: The device driver of Linux system is analyzed, and the USB interface device driver is compiled with the kernel principle. The 4G module is compiled with an example. The Linux system is verified by the 4G system. The system kernel can correctly identify the 4G module and allocate memory.. Key words: Linux; device driver; 4G; USB Linux系统以其良好的可剪裁性、强稳定性以及易操作等特点,已在物联网,程序控制,电子消费,智能家居等领域得到广泛的使用。4G网络的推广和应用也在各领域展开。因此,将Linux设备与4G网络有机地结合起来,为新一代物联网构造一个更加高速,更加安全,更加稳定的网络通信环境,将会成为一个应用热点。 本文介绍了一种Linux系统驱动4G模块的方法,Linux系统通过USB接口驱动4G终端 模块,实现4G网络的接入。首先,文章介绍了整体的软硬件应用环境,然后分析了Linux系统下的设备驱动以及USB接口设备驱动的编写原理,完成了4G终端模块在Linux系统中的驱动程序编写和内核编译,并且最后对驱动的内核烧入进行了验证性测试。 1 Linux系统设备驱动原理 当一个新的硬件设备接入Linux系统时[1],我们需要加载与其对应的驱动程序,之后驱动程序会根据自己的类型向Linux系统注册,注册成功后系统会为驱动程序配置与其类型相应的软件接口以及反馈一个主设备号给驱动程序,然后驱动程序会根据这个主设备号在/dev目录下创建一个设备文件,这样,我们就可以通过这个设备文件来对接入的硬件设备进行控制了。 1.1 Linux系统设备驱动类型

Linux设备驱动程序学习(10)-时间、延迟及延缓操作

Linux设备驱动程序学习(10)-时间、延迟及延缓操作 Linux设备驱动程序学习(10) -时间、延迟及延缓操作 度量时间差 时钟中断由系统定时硬件以周期性的间隔产生,这个间隔由内核根据HZ 值来设定,HZ 是一个体系依赖的值,在中定义或该文件包含的某个子平台相关文件中。作为通用的规则,即便如果知道HZ 的值,在编程时应当不依赖这个特定值,而始终使用HZ。对于当前版本,我们应完全信任内核开发者,他们已经选择了最适合的HZ值,最好保持HZ 的默认值。 对用户空间,内核HZ几乎完全隐藏,用户HZ 始终扩展为100。当用户空间程序包含param.h,且每个报告给用户空间的计数器都做了相应转换。对用户来说确切的HZ 值只能通过/proc/interrupts 获得:/proc/interrup ts 的计数值除以/proc/uptime 中报告的系统运行时间。 对于ARM体系结构:在文件中的定义如下: 也就是说:HZ 由__KERNEL__和CONFIG_HZ决定。若未定义__KERNEL__,H Z为100;否则为CONFIG_H Z。而CONFIG_HZ是在内核的根目录

的.config文件中定义,并没有在make menuconfig的配置选项中出现。Linux的\arch\arm\configs\s3c2410_defconfig文件中的定义为: 所以正常情况下s3c24x0的HZ为200。这一数值在后面的实验中可以证实。 每次发生一个时钟中断,内核内部计数器的值就加一。这个计数器在系统启动时初始化为0,因此它代表本次系统启动以来的时钟嘀哒数。这个计数器是一个64-位变量( 即便在32-位的体系上)并且称为“jiffies_64”。但是驱动通常访问jiffies 变量(unsigned long)(根据体系结构的不同:可能是jiffies_64 ,可能是jiffies_64 的低32位)。使用jiffies 是首选,因为它访问更快,且无需在所有的体系上实现原子地访问64-位的jiffies_64 值。 使用jiffies 计数器 这个计数器和用来读取它的工具函数包含在,通常只需包含,它会自动放入jiffi es.h 。 jiffies 和jiffies_64 必须被当作只读变量。当需要记录当前jiffies 值(被声明为volatile 避免编译器优化内存读)时,可以简单地访问这个unsigned long 变量,如: 以下是一些简单的工具宏及其定义:

linux设备驱动

Linux设备驱动 操作系统的目的之一就是将系统硬件设备细节从用户视线中隐藏起来。例如虚拟文件系统对各种类型已安装的文件系统提供了统一的视图而屏蔽了具体底层细节。本章将描叙Linux核心对系统中物理设备的管理。 CPU并不是系统中唯一的智能设备,每个物理设备都拥有自己的控制器。键盘、鼠标和串行口由一个高级I/O芯片统一管理,IDE控制器控制IDE硬盘而SCSI控制器控制SCSI硬盘等等。每个硬件控制器都有各自的控制和状态寄存器(CSR)并且各不相同。例如Adaptec 2940 SCSI控制器的CSR与NCR 810 SCSI控制器完全不一样。这些CSR被用来启动和停止,初始化设备及对设备进行诊断。在Linux中管理硬件设备控制器的代码并没有放置在每个应用程序中而是由内核统一管理。这些处理和管理硬件控制器的软件就是设备驱动。Linux 核心设备驱动是一组运行在特权级上的内存驻留底层硬件处理共享库。正是它们负责管理各个设备。 设备驱动的一个基本特征是设备处理的抽象概念。所有硬件设备都被看成普通文件;可以通过和操纵普通文件相同的标准系统调用来打开、关闭、读取和写入设备。系统中每个设备都用一种特殊的设备相关文件来表示(device special file),例如系统中第一个IDE硬盘被表示成/dev/hda。块(磁盘)设备和字符设备的设备相关文件可以通过mknod命令来创建,并使用主从设备号来描叙此设备。网络设备也用设备相关文件来表示,但Linux寻找和初始化网络设备时才建立这种文件。由同一个设备驱动控制的所有设备具有相同的主设备号。从设备号则被用来区分具有相同主设备号且由相同设备驱动控制的不同设备。例如主IDE硬盘的每个分区的从设备号都不相同。如/dev/hda2表示主IDE 硬盘的主设备号为3而从设备号为2。Linux通过使用主从设备号将包含在系统调用中的(如将一个文件系统mount到一个块设备)设备相关文件映射到设备的设备驱动以及大量系统表格中,如字符设备表,chrdevs。 Linux支持三类硬件设备:字符、块及网络设备。字符设备指那些无需缓冲直接读写的设备,如系统的串口设备/dev/cua0和/dev/cua1。块设备则仅能以块为单位读写,典型的块大小为512或1024字节。块设备的存取是通过

Windows驱动程序框架理解_经典入门

标题: 【原创】Windows驱动程序框架 windows驱动程序入门比较坑爹一点,本文旨在降低入门的门槛。注:下面的主要以NT式驱动为例,部分涉及到WDM驱动的差别会有特别说明。 首先,肯定是配置好对应的开发环境啦,不懂的就百度下吧,这里不再次描述了。 在Console控制台下,我们的有一个入口函数main;在Windows图形界面平台下,有另外一个入口函数Winmain。我们只要在这入口函数里面调用其他相关的函数,程序就会按照我们的意愿跑起来了。在我们用IDE开发的时候,也许你不会发现这些细微之处是如何配置出来的,一般来说我们也不用理会,因为在新建工程的时候,IDE已经帮我们把编译器(Compiler)以及连接器(Linker)的相关参数设置好,在正式编程的时候,我们只要按照规定的框架编程就行了。 同样,在驱动程序也有一个入口函数DriverEntry,这并不是一定的,但这是微软默认的、推荐使用的。在我们配置开发环境的时候我们有机会指定入口函数,这是链接器的参数/entry:"DriverEntry"。 入口函数的声明 代码: DriverEntry主要是对驱动程序进行初始化工作,它由系统进程(System)创建,系统启动的时候System系统进程就被创建了。 驱动加载的时候,系统进程将会创建新的线程,然后调用执行体组件中的对象管理器,创建一个驱动对象(DRIVER_OBJECT)。另外,系统进程还得调用执行体组件中的配置管理程序,查询此驱动程序在注册表中对应项。系统进程在调用驱动程序的Driv erEntry的时候就会将这两个值传到pDriverObject和pRegistryPath。 接下来,我们介绍下上面出现的几个数据结构: typedef LONG NTSTATUS 在驱动开发中,我们应习惯于用NTSTATUS返回信息,NTSTATUS各个位有不同的含义,我们可以也应该用宏NT_SUCCESS来判断是否返回成功。 代码: NTSTAUS的编码意义: 其中 Ser是Serviity的缩写,代表严重程度。 00:成功01:信息10:警告11:错误 C是Customer的缩写,代表自定义的位。

相关主题
文本预览
相关文档 最新文档