当前位置:文档之家› 硅晶体生长及缺陷形成与控-制-lecture-for-undergraduates2014

硅晶体生长及缺陷形成与控-制-lecture-for-undergraduates2014

晶体缺陷习题及答案解析

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ 242 Gb s d ≈(G 切 变模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明: (1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[22a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时, 能否通过交滑移转移

浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用 1103011036 周康粉体一班 摘要:晶体缺陷对晶体的力学性能既有有利的方面,也有不利的方面。少量晶体缺陷对于晶体的物理性能能够产生重要影响,所以可以根据不同的晶体缺陷,开发利用其产生的影响,充分发挥可能产生的作用,研究并制备具有不同性能的材料,以适应人们不同的实际需要和时代的发展需求。 关键词:晶体缺陷; 性能; 铁磁性; 电阻; 半导体材料;杂质 引言:在讨论晶体结构时,我们认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。 晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础内容。研究晶体缺陷因此具有了尤其重要的意义。本文着重对晶体缺陷及其对晶体的影响和应用进行阐述。 1.晶体缺陷的定义和分类 1.1 晶体缺陷的定义 在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年弗仑克尔l首先指出,在任一温度

下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷. 1.2 晶体缺陷的分类 1.2.1、按缺陷的几何形态分类可分为四类:点缺陷、线缺陷、面缺陷、体缺陷。 1.点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。包括:空位(vacancy)、间隙原子(interstitial particle)、异类原子(foreign particle)。 点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。2..线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。线缺陷的产生及运动与材料的韧性、脆性密切相关。 3.面缺陷:面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。如晶界、相界、表面、堆积层错、镶嵌结构等。面缺陷的取向及分布与材料的断裂韧性有关。 固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。 1.2.2、按缺陷产生的原因分类: 热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。

晶体硅电池组件EL缺陷分析

晶体硅电池组件EL缺陷分析 EL检测仪,又称太阳能组件电致发光缺陷检测仪,是跟据硅材料的电致发光原理对组件进行缺陷检测及生产工艺监控的专用测试设备。给晶体硅电池组件正向通入1-1.5倍Isc 的电流后硅片会发出1000-1100nm的红外光,测试仪下方的摄像头可以捕捉到这个波长的光并成像于电脑上。因为通电发的光与PN结中离子浓度有很大的关系,因此可以根据图像来判断硅片内部的状况。 缺陷种类一:黑心片 EL照片中黑心片是反映在通电情况下电池片中心一圈呈现黑色区域,该部分没有发出1150nm的红外光,故红外相片中反映出黑心,此类发光现象和硅衬底少数载流子浓度有关。这种电池片中心部位的电阻率偏高。 缺陷种类一:黑心片 缺陷种类二:黑团片 多晶电池片黑团主要是由于硅片供应商一再缩短晶体定向凝固时间,熔体潜热释放与热场温度梯度失配导致硅片内部位错缺陷。 缺陷种类二:黑团片 缺陷种类三:黑斑片 黑斑片一般是由于硅料受到其他杂质污染所致。通常少数载流子的寿命和污染杂质含量及位错密度有关。黑斑中心区域位错密度>107个/cm2,黑斑边缘区域位错密度>106个/cm2均为标准要求的1000~10000倍这是相当大的位错密度。

缺陷种类三:黑斑片 缺陷种类四:短路黑片 缺陷种类五:非短路黑片 短路黑片、非短路黑片成因 电池片黑片有两种,全黑的我们称之为短路黑片,通常是由于焊接造成的短路或者混入了低效电池片造成的。而边缘发亮的黑片我们称之为非短路黑片,这种电池片大多产生于单面扩散工艺或是湿法刻蚀工艺,单面扩散放反导致在背面镀膜印刷,造成是PN结反,也就是我们通常所说的N型片,这种电池片会造成IV测试曲线呈现台阶,整个组件功率和填充因子都会受到较大影响。 缺陷种类六:网格片 网格片是由于电池片在烧结过程中温度不当所致,网纹印属于0级缺陷,下图所示的网格片组件可以判为A级品。

单晶硅与多晶硅的区别、功能及优缺点

单晶硅与多晶硅的区别、功能及优缺点 单晶硅 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。 单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。 单晶硅在火星上是火星探测器中太阳能转换器的制成材料。火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。航天器材大部分的零部件都要以单晶硅为基础。离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。 单晶硅在太阳能电池中得到广泛的应用。高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观;4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。 单晶硅广阔的应用领域和良好的发展前景北京2008年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。

硅单晶中晶体缺陷的腐蚀显示

硅单晶中晶体缺陷的腐蚀显示 实验安排:4人/组 时间:两小时 地点:北方工业大学第三教学楼2403房间 实验所用主要设备:金相显微镜 一、实验目的 硅单晶中的各种缺陷对器件的性能有很大的影响,它会造成扩散结面不平整,使晶体管中出现管道,引起p-n 结的反向漏电增大等。各种缺陷的产生和数量的多少与晶体制备工艺和器件工艺有关。晶体缺陷的实验观察方法有许多种,如透射电子显微镜、X光貌相技术、红外显微镜及金相腐蚀显示等方法。对表面缺陷也可以用扫描电子显微镜来观察。由于金相腐蚀显示技术设备简单,操作易掌握,又较直观,是观察研究晶体缺陷的最常用的方法之一。金相腐蚀显示可以揭示缺陷的数量和分布情况,找出缺陷形成、增殖和晶体制备工艺及器件工艺的关系,为改进工艺,减少缺陷、提高器件合格率和改善器件性能提供线索。 二、原理 硅单晶属金刚石结构,在实际的硅单晶中不可能整块晶体中原子完全按金刚石结构整齐排列,总又某些局部区域点阵排列的规律性被破坏,则该区域就称为晶体缺陷。硅单晶中的缺陷主要有点缺陷、线缺陷和面缺陷等三类。晶体缺陷可以在晶体生长过程中产生,也可以在热处理、晶体加工和受放射性辐射时产生。 在硅单晶中缺陷区不仅是高应力区,而且极易富集一些杂质,这样缺陷区就比晶格完整区化学活拨性强,对化学腐蚀剂的作用灵敏,因此容易被腐蚀而形成蚀坑,在有高度对称性的低指数面上蚀坑形状通常呈现相应的对称性,如位错在(111)、(100)、(110)面上分别呈三角形、方形和菱形蚀坑。 用作腐蚀显示的腐蚀剂按不同作用大体可分为两类,一类蚀非择优腐蚀剂,它主要用于晶体表面的化学抛光,目的在于达到清洁处理,去除机械损伤层和获得一个光亮的表面;另一类是择优腐蚀剂,用来揭示缺陷。一般腐蚀速度越快择择优性越差,而对择优腐蚀剂则要求缺陷蚀坑的出现率高、特征性强、再现性好和腐蚀时间短。 通常用的非择优腐蚀剂的配方为: HF(40-42%):HNO3(65%)=1:2.5 它们的化学反应过程为: Si+4HNO3+6HF=H2SiF6+4NO2+4H2O 通常用的择优腐蚀剂主要有以下二种: (1)希尔腐蚀液(铬酸腐蚀液) 先用CrO3与去离子水配成标准液: 标准液=50g CrO3+100g H2O 然后配成下列几种腐蚀液: A. 标准液:HF(40-42%)=2:1(慢速液) B. 标准液:HF(40-42%)=3:2(中速液) C. 标准液:HF(40-42%)=1:1(快速液) D. 标准液:HF(40-42%)=1:2(快速液) 一般常用的为配方C液,它们的化学反应过程为: Si+CrO3+8HF=H2SiF6+CrF2+3H2O (2)达希腐蚀液

晶体缺陷和强度理论

非晶合金的强度研究及进展 非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。 1非晶合金的发展历史 自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 μm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。 上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。 目前人们所研究的大块非晶合金体系中,Pd系、La 系和Zr系多组元合金具有优秀的非晶形成能力,其中美国Johnson 课题组开发的Zr-Ti-Cu-Ni-Be 和日本

单晶硅中可能出现的各种缺陷分析

单晶硅中可能出现的各种缺陷分析 缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷: 点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。 线缺陷:线缺陷指二维尺度很小而们可以通过电镜等来对其进行观测。 面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。我们可以用光学显微镜观察面缺陷。 体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。 一、点缺陷 点缺陷包括空位、间隙原子和微缺陷等。 1、空位、间隙原子 点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。 1.1热点缺陷 其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长

的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。间隙原子和空位目前尚无法观察。 1.2杂质点缺陷 A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子 B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用 一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。 2、微缺陷 2.1产生原因 如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。 2.2微缺陷观察方法 1)择优化学腐蚀: 择优化学腐蚀后在横断面上呈均匀分布或组成各种形态的宏观漩涡花纹(漩涡缺陷)。宏观上,为一系列同心环或螺旋状的腐蚀图形,在显微镜下微缺陷的微观腐蚀形态为浅底腐蚀坑或腐蚀小丘(蝶形蚀坑)。在硅单晶的纵剖面上,微缺陷通常呈层状分布。 2)热氧化处理: 由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰长大或转化为氧化层错或小位错环后,才可用择优腐蚀方法显示。 3)扫描电子显微技术,X射线形貌技术,红外显微技术等方法。 2.3微缺陷结构

晶体缺陷

晶体的缺陷及其在半导体中的应用 内容摘要 缺陷对晶体来说是很难被消除的,缺陷的存在会影响晶体的某些性质。晶体中的缺陷包括点缺陷、线缺陷、面缺陷以及体缺陷。不管是哪种类型的缺陷,它都会对晶体材料的性质产生影响。人们可以根据实际需要,通过人为地向晶体引入缺陷来开发制备出对人们有用的材料。该文简要介绍了缺陷的类型、定义、运动以及一些缺陷的简单应用。 【关键词】缺陷运动半导体影响

Crystal defects and the application of defects in semiconductor Abstract Defects in the crystal is very difficult to be eliminated, the defect will affect some properties of the crystal. Crystal defects including point defects, line defects, surface defects and bulk defects. No matter what type of defect, it will affect some properties of the crystal . People can produce some crystal material which is useful by artificially introducing defects to the crystal according to actual needs. This paper briefly describes the type of defect, definitions, sports, and some applications of defects. 【Key Words】Defects Movement Semiconductor Impact

光致发光技术在晶体硅太阳电池缺陷检测中的应用

光致发光技术在晶体硅太阳电池缺陷检测中的应用近年来,光伏产业发展迅猛,提高效率和降低成本成为整个行业的目标。在晶体Si太阳电池的薄片化发展过程中,出现了许多严重的问题,如碎片、电池片隐裂、表面污染、电极不良等,正是这些缺陷限制了电池的光电转化效率和使用寿命。同时,由于没有完善的行业标准,Si片原材料质量也是参差不齐,一些缺陷片的存在直接影响到组件乃至光伏系统的稳定性。因此,太阳能行业需要有快速有效和准确的定位检验方法来检验生产环节可能出现的问题。 发光成像方法为太阳电池缺陷检测提供了一种非常好的解决方案,这种检测技术使用方便,类似透视的二维化面检测。本文讨论的是光致发光技术在检测晶体Si太阳电池上的应用。光致发光(photoluminescence,PL)检测过程大致包括激光被样品吸收、能量传递、光发射及CCD成像四个阶段。通常利用激光作为激发光源,提供一定能量的光子,Si片中处于基态的电子在吸收这些光子后而进入激发态,处于激发态的电子属于亚稳态,在短时间内会回到基态,并发出荧光。利用冷却的照相机镜头进行感光,将图像通过计算机显示出来。发光的强度与本位置的非平衡少数载流子的密度成正比,而缺陷处会成为少数载流子的强复合中心,因此该区域的少数载流子密度变小导致荧光效应减弱,在图像上表现出来就成为暗色的点、线,或一定的区域,而在电池片内复合较少的区域则表现为比较亮的区域。因此,通过观察光致发光成像能够判断Si片或电池片是否存在缺陷。 1 实验 实验选取大量低效率电池进行研究,现举典型PL图像进行分析说明。电池所用Si片为125 mm×125 mm,厚度(200±10)μm,晶向<100>,p型CZ太阳能级Si片。PL测试仪器的基本结构如图1,激光源波长为808 nm,激光装置中带有均化光器件,使光束在测量的整个区域均匀发光。由于载流子的注入,Si片或电池片中会产生电流使其发出荧光,在波长为1 150 nm时的红外光最为显著,所以选用了适当的滤光片和摄像头组合,使波长在1 150 nm附近的荧光得以最大的通过。冷却的摄像头(-50℃)在室温暗室中可以感光并生成512×512像素的图像,曝光时间为1 s。整个实验装置由微机程序控制。虽然PL可以直接测量Si片,但为了实验的对比性,本文均采用对电池的测量图像作对比。

第三节硅单晶

第三节硅单晶 一、直拉硅单晶 1961年1月,上海有色金属研究所第三研究室组建直拉硅单晶研制组,从制作设备开始,制成华东地区第一台直拉硅单晶炉。8月26日拉出1根重30克的硅单晶,受到复旦大学谢希德教授的称赞。11月又试制成掺磷、电阻率1~10欧姆·厘米的硅单晶。 [硅单晶] 1961年12月,上海金属加工厂在国产直筒式直拉硅单晶炉上试拉单晶,翌年2月拉制出重36克硅单晶,最初液态硅易结晶,成晶困难,在内层保温罩上加一层钼片,状况改观,电阻率均匀性也有提高。 1964年10月,为研制百万次电子计算机需要,上海市冶金工业局、市科学技术委员会联合向上海有色金属研究所下达研制生产电阻率为0.025~0.03欧姆·厘米的重掺硼硅单晶。该所第四研究室组成研制组,采用充氩工艺,完成了20个品种,供上海元件五厂制作11伏和37.5伏稳压管,经试用性能满足要求。翌年3月市冶金工业局邀请有关专家鉴定,确认工艺稳定,质量可靠,用多种方法掺杂均获得满意结果,并成功地验证了美国贝尔电话公司发表的电阻率曲线,填补了国内空白。国家科委以《重掺硼单晶的科学研究》为题,印成500本单行本内部发行。 随后该所又研制成硅外延衬底用电阻率为0.001~0.009欧姆·厘米重掺砷硅单晶和电阻率为0.003~0.009欧姆·厘米重掺锑硅单晶。经该所硅外延组和中国科学院上海冶金研究所长期使用,质量稳定可靠,是理想的硅外延衬底材料。市科委硅外延领导小组确认该成果填补了国内空白,要求除该所继续生产外,总结经验移交上海金属加工厂生产。1965年,该厂生产的硅单晶头部有滑移线、小角度晶界等缺陷,总工程师葛涛组织有关人员专题研究,总结经验教训,采取“引晶细长,放肩圆滑,直径均匀,尾呈圆锥”的16字经验。并延长停炉时间,缺陷得到改善,位错密度在5×103个/平方厘米以下。1971年该厂在DJL-70硅单晶炉增加投料量试验,改进加热系统,扩大石墨器件尺寸,产量上升。1974年拉制出直径100毫米重5公斤硅单晶。为适应器件厂提高硅单晶的利用率的要求,1978年7月又首次拉制出符合质量要求的等直径硅单晶。 1970年,上海冶炼厂用直拉法制备硅单晶。为提高质量,1973年起采用偏心拉晶工艺,径向电阻率不均匀性小于20%,充氩减压工艺,降低氩气消耗

硅及其化合物教案

无机非金属材料的主角──硅教学设计(1) 教学目标: 【知识与技能】 1.了解硅元素在自然界中的存在形式; 2.知道二氧化硅的性质; 3.了解硅酸的性质及制法,了解硅酸钠的性质; 4.知道硅、二氧化硅的在信息技术、材料科学等领域的应用。 【过程与方法】 1.帮助学生学习运用对比的方法来认识物质的共性和个性,促进学生对新旧知识进行归纳比较能力的发展。 2.通过硅及其化合物等内容体现从物质的结构猜测物质的性质,推出物质的用途的思维过程,建构“结构——性质——用途”学习的共同模式,。 3.本节多数内容属于了解层次,部分段落阅读自学,提高的阅读能力、收集资料能力、自学能力和语言表达能力。 【情感态度与价值观】 1.用硅给现代人类文明进程所带来的重大影响(从传统材料到信息材料),为学生构架一座从书本知识到现代科技知识和生活实际的桥梁。开阔学生眼界,提高科技文化素养,理解更多的现代相关科学理论与技术; 2.促进学生逐渐形成正确的科学社会观,学生认识到“科学技术是第一生产力”,关心环境,资源再生及研究、探索、发现新材料等与现代社会有关的化学问题,提高学生社会责任感。【教学重点】二氧化硅的主要化学性质。 【教学难点】二氧化硅晶体结构 【教学过程】 [导课]问题: [问题]:请简要阅读课文后回答课文标题中“无机非金属材料的主角-硅”“主角”两个字在这里的涵义是什么?(学生回答:硅含量仅次于氧,硅的氧化物和硅酸盐构成地壳的主要部分) [板书]第四章非金属元素及其化合物 [板书]§4-1无机非金属材料的主角-硅 [讲述]硅的氧化物及硅酸盐构成了地壳中的大部分岩石、沙子和土壤,约占地壳质量90%以上。各种各样的硅酸盐和水、空气和阳光构成了人类及生物生存的根基。自古至今,在无机非金属材料中,硅一直扮演着主角的角色。 [问题]碳和硅元素结构上又和碳有什么不同?推测硅单质的性质有哪些? [学生阅读]P74中间自然段。 [回答]硅位于元素周期表ⅣA,与碳元素同族。原子最外层均有四个电子。硅同 碳元素一样,其原子即不容易失去电子又不容易得到电子,主要形成四价的化合物。其中二氧化硅是硅的最重要的化合物。“最重要”三个字是如何体现呢?接下来具体进行了解二氧化硅有关性质。 [板书]一、二氧化硅和硅酸 [投影]金刚石、晶体硅、二氧化硅的晶体模型及水晶标本。

单晶硅中可能出现的各种缺陷

单晶硅中可能出现的各种缺陷 缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷:点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。线缺陷:线缺陷指二维尺度很小而第三维尺度很大的缺陷,也就是位错。我们可以通过电镜等来对其进行观测。面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。我们可以用光学显微镜观察面缺陷。体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。 一、点缺陷点缺陷包括空位、间隙原子和微缺陷等。 1、空位、间隙原子点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。 1.1热点缺陷其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长的硅单晶,在冷却过程中过饱

和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。间隙原子和空位目前尚无法观察。 1.2杂质点缺陷A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。2、微缺陷 2.1产生原因如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位 错环、位错环团及层错等。Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。 2.2微缺陷观察方法1)择优化学腐蚀:择优化学腐蚀后在横断面上呈均匀分布或组成各种形态的宏观漩涡花纹(漩涡缺陷)。宏观上,为一系列同心环或螺旋状的腐蚀图形,在显微镜下微缺陷的微观腐蚀形态为浅底腐蚀坑或腐蚀小丘(蝶形蚀坑)。在硅单晶的纵剖面上,微缺陷通常呈层状分布。2)热氧化处理:由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰长大或转化为氧化层错或小位错环后,才可用择优腐蚀方法显示。3)扫

晶体硅的应用

晶体硅 硅根据结晶形态可以分为无定形硅、多晶硅和单晶硅等几大类。晶体硅具有明显的金属光泽,呈灰色,密度2.32~2.34g/cm3,熔点1410℃,沸点2355℃,具有金刚石的晶体结构,电离能8.151电子伏特。加热下能同单质的卤素、氮、碳等非金属作用,也能同某些金属如Mg、Ca、Fe、Pt等作用。生成硅化物。不溶于一般无机酸中,可溶于碱溶液中,并有氢气放出,形成相应的碱金属硅酸盐溶液,于赤热温度下,与水蒸气能发生作用。硅在自然界分布很广,在地壳中的原子百分含量为16.7%。是组成岩石矿物的一个基本元素,以石英砂和硅酸盐出现。 单晶硅具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上,高于多晶硅。 多晶硅材料是由许多具有不同晶向的小颗粒单晶硅组成。在小颗粒的单晶晶粒内部硅原子呈周期性有序排列。多晶硅与单晶硅的主要区别是不同晶间的单晶晶粒问存在晶粒间界,所谓的晶粒间界是指晶粒问的过渡区。结构复杂,硅原子呈无序排列,存在着能在禁带中引入深能级缺陷的杂质。一方面,作为界面态耗尽了晶界附近的载流子,形成具有一定宽度的耗尽层和势垒:另一方面,作为复合中心俘获电子和空穴。晶界势垒阻碍载流子的传输,又增大了串联电阻,对填充因子不利。晶界的复合损失减低了收集几率,对开路电压和短路电流不利,从而影响太阳电池的转换效率。 晶体硅的制备方法大致是先用碳还原SiO2成为Si,用HCl反应再提纯获得更高纯度多晶硅。制备单晶硅通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。再通过后续的开方、切片、腐蚀、抛光等一系列的加工,最终得到可用于制造各类硅晶制品的基础原材料。 晶体硅因其具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体,在超纯单晶硅中掺入微量的IIIA族元素,如硼可提高其导电的程度,而形成P型硅半导体;如掺入微量的V A族元素,如磷或砷也可提高导电程度,形成n型硅半导体硅是优良的半导体材料,因此被广泛地应用于制造半导体制品、电子芯片和太阳能电池板等领域。 1,半导体材料 由于硅半导体耐高电压、耐高温、晶带宽度大,比其它半导体材料有体积小、效率高、寿命长、可靠性强等优点,因此被广泛用于电子工业集成电路的生产中。高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成P型硅半导体另外广泛应用的二极管、三极管、晶闸管和各种集成电路(包括我们计算机内的芯片和CPU)都是用硅做的原材料。 2,太阳能光伏电池板 多晶硅可以直接用于制造太阳能光伏电池板,或加工成单晶硅后再用于制造光伏电池板。先将硅料铸锭、切片或直接用单晶硅棒切片,再通过在硅片上掺杂和扩散形成PN结,然后采用丝网印刷法,将银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面上涂减反射膜等一系列工艺加工成太阳能电池单体片,最后按需要组装成太阳能电池板。目前,硅光伏电池占世界光伏电池总产量的98%以上,其中多晶硅电池约占55%,单晶硅电池约占36%,其它硅材料电池约占70%。由于多晶硅光伏电池的制造成本较低,光电转换效率较高(接近20%),因而得到快速发展。

半导体晶体缺陷

半导体晶体缺陷 创建时间:2008-08-02 半导体晶体缺陷(crystal defect of semiconductor) 半导体晶体中偏离完整结构的区域称为晶体缺陷。按其延展的尺度可分为点缺陷、线缺陷、面缺陷和体缺陷,这4类缺陷都属于结构缺陷。根据缺陷产生的原因可分为原生缺陷和二次缺陷。从化学的观点看,晶体中的杂质也是缺陷,杂质还可与上述结构缺陷相互作用形成复杂的缺陷。一般情况下,晶体缺陷是指结构缺陷。 点缺陷(零维缺陷)主要是空位、间隙原子、反位缺陷和点缺陷复合缺陷。 空位格点上的原子离开平衡位置,在晶格中形成的空格点称为空位。离位原子如转移到晶体表面,在晶格内部所形成的空位,称肖特基空位;原子转移到晶格的间隙位置所形成的空位称弗兰克尔空位。 间隙原子位于格点之间间隙位置的原子。当其为晶体基质原子时称为自间隙原子,化合物半导体MX晶体中的白间隙原子有Mi、Xi两种。 反位缺陷化合物半导体晶体MX中,X占M位,或M占X位所形成的缺陷,记作M X ,X M 。 点缺陷的复合各种点缺陷常可形成更复杂的缺陷,空位或间隙原子常可聚集成团,这些团又可崩塌成位错环等。例如硅单晶中有:双空位、F中心(空位-束缚电子复合体),E中心(空位-P原子对),SiO 2团(空位-氧复合体),雾缺陷(点缺陷-金属杂质复合体)。 硅单晶中主要点缺陷有空位、自间隙原子、间隙氧、替位碳、替位硼、替位铜,间隙铜等。 化合物如GaAs单晶中点缺陷有镓空位(v Ga )、砷空位(V As )、间隙镓(G ai ),间隙砷(A Si )、镓占砷位(As Ga )、 砷占镓位(Ga As )等,这些缺陷与缺陷、缺陷与杂质之间发生相互作用可形成各种复合体。 GaAs中的深能级。砷占镓位一镓空位复合体(As Ga v Ga )、镓占砷位一镓空位复合体(Ga As v Ga )在GaAs中形 成所谓A能级(0.40eV)和B能级(0.71eV)分别称作HB 2、HB 5 ,它们与EL 2 是三个GaAs中较重要的深能级, 这些深能级与某类缺陷或缺陷之间反应产物有关,EL 2是反位缺陷AsGa或其复合体As Ga v Ga V As 所形成,为非 掺杂半绝缘GaAs单晶和GaAs VPE材料中的一个主要深能级,能级位置是导带下0.82eV(也可能由一族深能级所构成),其浓度为1016cm-3数量级,与材料的化学配比和掺杂浓度有关。 线缺陷(一维缺陷)半导体晶体中的线缺陷主要是位错。晶体生长过程中由于热应力(或其他外力)作用,使晶体中某一部分(沿滑移面)发生滑移,已滑移区与未滑移区的分界线叫位错线,简称为位错。以位错线与其柏格斯矢量的相对取向来区分位错的类型,两者相互垂直叫刃型位错,两者平行的叫螺型位错,否则叫混合位错。混合位错中较常见的有60℃位错,30℃位错。 滑移了一个原子间距所形成的位错又叫全位错,否则叫不全位错。 由于形成直线位错所需能量较高,因此晶体中的位错大都是位错环;位错环又分棱柱位错环和切变位错环两种。

二氧化硅晶体结构

(2)乙酸与醇反应生成乙酸酯,若产物为 (CH 3O O n R ,变式为(CH 2CO )n ·R (OH )n ,从式子 可看出,生成的酯比相应的醇的分子量增加42n ,若为一元醇则增加42。 五、从反应前后碳链结构看 在下列一系列变化中,分子中的碳链结构不变化:醇醛羧酸酯 所以酯中酯键两侧的碳骨架仍保持着醇的碳骨架 和酸的碳骨架。醇与它自身氧化成的羧酸酯化反应生 成的酯,酯键两侧碳数相同,碳骨架也相同。 六、从酯的特殊性看 甲酸酯中仍有醛基:H C O O R ,所以甲酸酯 能够发生银镜反应,等等,表现出醛的一些性质,同时它有酯的通性。另外,甲酸酯 水解生成甲酸或甲酸盐,所以其产物仍能发生银镜反应。 二氧化硅晶体结构 湖南衡阳县一中(421200) 陈吉秋 一、二氧化硅晶体平面 示意图 高级中学课本化学第二册P6有二氧化硅晶体平面示意图(见图1)。该图说明二氧化硅不是由单个“SiO 2”的 分子所组成的分子晶体,而是一种原子晶体。一个Si 原子跟4个O 原子形成4个共价 键。同时,一个氧原子又跟两个Si 原子形成两个共价键。但该图也有两处不足:①该图并没有反映出二氧化硅真实的三维空间结构。②该图中最小环上是4个Si 原子与4个O 原子交替连结,而实际上二氧化硅晶体中, 最小环上是6个Si 原子与6个O 原子交替连接。 二、二氧化硅晶体空间结构1.硅晶体结构 硅晶体结构与金刚石结构相似(见图2),在硅晶体中,每个硅原子都被相邻的4个硅原子包围,处于4个硅原子的中心,以共价键跟这4个硅原子结合,成为正四面体结构,这些正四面体结构向空间发展,构成一种坚实的,彼此联结的空间网状晶体。 2.二氧化硅晶体结构 如果在硅的晶体结构示意图中,将所有的Si -Si 键断裂,再在Si 原子与Si 原子之间连一个原子(每个O 原子形成的两个Si -O 键的键角不是180°)就可得到二氧化硅晶体结构示意图(见图3)。 因此,在二氧化硅晶体中,每个硅原子被相邻的4个氧原子包围,处于4个O 原子中心, 以共价键跟这4 个氧原子结合,成为正四面体结构(见图4)。 每个O 原子为两个四面体所共有(见图5)。 这样,许许多多四面体又通过顶点O 原子连成一个整体(见图6),在二氧化硅晶体中最小环上有6个O 原子和6个未画出的Si 原子以Si -O 键交替相连(见图6)。由图3与图7也可得出这个结论。 33 释疑解难★

第二章 硅和硅片制_

第二章硅和硅片制备 硅是用来制造芯片的主要半导体材料,也是半导体产业中最重要的材料。锗是第一个用做半导体的材料,它很快被硅取代了,这主要有四个原因:1)硅的丰裕度:硅是地球上第二丰富的元素,占到地壳成分的25%,经合理加工,硅能够提纯到半导体制造所需的足够高的纯度而消耗更低的成本。 2)更高的熔化温度允许更宽的工艺容限:硅1412℃的熔点远高于锗937℃的熔点,使得硅可以承受高温工艺。 3)更宽的工作温度范围:用硅制造的半导体元件可以用于比锗更宽的温度范围。 4)氧化硅的自然生成:硅表面有自然生长氧化硅(SiO2)的能力。SiO2是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污。 现在,全世界芯片的85%以上都是由硅来制造的。 2.1半导体级硅 用来做芯片的高纯硅被称为半导体级硅(semiconductor-grade silicon), 或者SGS,有时也被称做电子级硅。从天然硅中获得生产半导体器件所需纯度的SGS要分几步。现介绍一种得到SGS的主要方法: 第一步,在还原气体环境中,通过加热含碳的硅石(SiO2),一种纯沙,来生产冶金级硅。 SiC(固体)+SiO2(固体)→Si(液体)+SiO(气体)+CO(气体) 在反应式右边所得到的冶金级硅的纯度有98%。由于冶金级硅的沾污程度相当高,所以它对半导体制造没有任何用处。 第二步,将冶金级硅压碎并通过化学反应生成含硅的三氯硅烷气体。 Si(固体)+3HCl(气体)→SiHCl3(气体)+H2(气体)+加热 第三步,含硅的三氯硅烷气体经过再一次化学过程并用氢气还原制备出纯度为99.9999999%的半导体级硅。 2SiHCl3(气体)+2H2(气体)→2Si(固体)+6HCl(气体) 这种生产纯SGS的工艺称为西门子工艺。(图2.1)半导体级硅具有半导体制造要求的超高纯度,它包含少于百万分之(ppm)二的碳元素和少于十亿分之(ppb)一的Ⅲ、Ⅴ族元素(主要的掺杂元素)。然而用西门子工艺生产的硅没有按照希望的晶体顺序排列原子,所以也不能用在半导体制造中。

硅的晶体结构

自然界物质存在的形态有气态物质、液态物质和固态物质。固态物质可根据它们 的质点(原子、离子和分子)排列规则的不同,分为晶体和非晶体两大类。具有确定的熔点的固态物质称为晶体,如硅、砷化镓、冰及一般金属等;没有确定的熔点、加热时在某一温度范围内就逐渐软化的固态物质称为非晶体,如玻璃、松香等。 所有晶体都是由原子、分子、离子或这些粒子集团在空间按一定规则排列而成的。这种对称的、有规则的排列,叫晶体的点阵或晶体格子,简称为晶格。最小的晶格,称为晶胞。晶胞的各向长度,称为品格常数。将晶格周期地重复排列起来,就构成为整个晶体。晶体又分为单晶体和多晶体。整块材料从头到尾都按同一规则作周期性排列的晶体,称为单晶体。整个晶体由多个同样成分、同样晶体结构的小晶体(即晶粒)组成的晶体,称为多晶体。在多晶体中,每个小晶体中的原子排列顺序的位向是不同的。非晶体没有上述特征,组成它们的质点的排列是无规则的,而是“短程有序、长程无序’’的排列,所以又称为无定形态。一般的硅棒是单晶硅,粗制硅(冶金硅)和利用蒸发或气相沉积制成的硅薄膜为多晶硅,也可以为无定形硅。 硅(S1)的原子序数为14,即它的原子核周围有14个电子。这些电子围绕着原子核按一层层的轨道分布,第一层2个,第二层8个,剩下的4个排在第三层,如图所示。另图为硅的晶胞结构。它可以看作是两个面心立方晶胞沿对角线方向上位移1/4互相套构而成。这种结构被称为金刚石式结构。硅(Si)锗(Ge)等重要半导体均为金刚石式结构。1个硅原子和4个相邻的硅原子由共价键联结,这 4个硅原子恰好在正四面体的4个顶角上,而四面体的中心是另一硅原子。 硅单晶的制备方法:按拉制方法不同分为无坩埚区熔(FZ)法与有坩埚直拉(CZ)法。区熔拉制的单晶不受坩埚污染,纯度较高,适于生产电阻率高于20欧/厘米的N型硅单晶(包括中子嬗变掺杂单晶)和高阻 P型硅单晶。由于含氧量低,区熔单晶机械强度较差。大量区熔单晶用于制造高压整流器、晶体闸流管、高压晶体管等器件。直接法易于获得大直径单晶,但纯度低于区熔单晶,适于生产20欧/厘米以下的硅单晶。由于含氧量高,直拉单晶机械强度较好。大量直拉单晶用于制造MOS集成电路、大功率晶体管等器件。外延片衬底单晶也用直拉法生产。硅单晶商品多制成抛光片,但对FZ单晶片与CZ单晶片须加以区别。外延片是在硅单晶片衬底(或尖晶石、蓝宝石等绝缘衬底)上外延生长硅单晶薄层而制成,大量用于制造双极型集成电路、高频晶体管、小功率晶体管等器件。

-晶体硅太阳能电池的缺陷检测及分析

第12届中国光伏大会暨国际光伏展览会论文(晶体硅材料及电池) 晶体硅太阳能电池的缺陷检测及分析 李召彬李召彬 王祺王祺 丁娈丁娈 季亦菲 (中电电气(南京)光伏有限公司 211100) 摘要:针对晶体硅太阳电池缺陷的检测问题,利用多种测试设备(EL 、PL 、Corescan 等),在电池制作的主要工序段(扩散、镀膜、印刷、烧结)对硅片和电池片进行检测,归纳和总结了电池的各种典型缺陷的成因,利用这些检测手段和分析结果,能够及时有效地反馈生产过程中产生的缺陷类型,有利于生产工艺的改进和质量的控制。 关键词:晶体硅太阳电池 缺陷 检测 分析 1、引言 在大规模应用和工业生产中,晶硅太阳能电池占主导地位,其在制造过程中通常采用制绒、扩散、刻蚀、PECVD 、印刷、烧结几道工序,由于一些机械应力、热应力及人为等不稳定因素的存在,会不可避免的造成硅片的一些隐性缺陷如污染、裂纹、扩散不均匀等,这类缺陷的存在大大降低了电池片的光电转换效率,导致公司增加经济损失。利用多种测试设备如EL 、PL 、corescan 等检测硅片、半成品电池及成品电池存在的各种隐形缺陷,改善工艺参数,降低产品的不合格率,为公司提高成品率,大大的降低成本。 2、检测设备检测设备工作原理工作原理 2.1 光致发光光致发光((PL ) PL 是检测原材料的有效方法,如Fig.2-1所示,以大于半导体硅片禁带宽度的光作为激发手段,激发硅中的载流子,当撤去光源后,处于激发态的电子属于亚稳态,在短时间内会回到基态,这一过程中会释放波长为 1100nm 的光子,光子被灵敏的CCD 相机捕获,得到硅片的辐射复合图像[1]。 Fig.2-1 光致发光 2.2 电致发光电致发光((EL ) EL 与PL 工作原理相似,但不同之处在于激发非平衡载流子的方式不同,即在电池的正向偏压下,注入非平衡载流子(Fig.2-2)。 Fig.2-2 电致发光 2.3 微波光电导衰微波光电导衰减减法(u-PCD ) u-PCD 主要包括904nm 的激光注入产生电子-空穴对(Fig.2-3a ),导致样品的电导率

相关主题
文本预览
相关文档 最新文档