当前位置:文档之家› 应变疲劳

应变疲劳

应变疲劳
应变疲劳

应变疲劳性能

S-N 曲线通常用于描述长寿命疲劳性能,即应力循环水平低,循环周次高的情况。但许多工程构件在整个使用期间所经受的载荷循环数却并不多,而构件中的应力和应变水平却相对较高。如飞机在起飞和降落时,相对于它在高空稳定飞行时(承受比较均匀的载荷),其载荷幅度的变化是很大的;压力容器也是这样,也有周期的升压和降压,这种运行状态虽然相对于整个机件的工作寿命是较短的,但因承受的负荷较大,即使在设计时的名义应力规定得只允许发生弹性变形,但在缺口处甚至在有微裂纹处,会因局部的应力集中,使应力超过材料的屈服强度,最终导致疲劳破坏。这种在大应力低周次下的破坏,即谓之低周疲劳。

1.应变-疲劳寿命曲线和表达式

表征低周疲劳裂纹形成阶段的疲劳性能的有应变-疲劳寿命曲线(即ε—N 曲线)和循环应力-应变曲线,它们都是由恒应变幅试验测定的,所以低周疲劳也就叫做应变疲劳。应变-疲劳寿命曲线通常由一系列应变疲劳试验确定。在进行疲劳试验时,保持总应变幅值

2

ε?不变。对各个试件用不同的应变幅值进行试验,直到试件破坏,记录各次试验的疲劳寿命f N ,以应变幅2

εε?=a 为纵坐标,以f N 2为横坐标,在双对数坐标系中画出)2log()2log(f N -?ε曲线,即得到应变-疲劳寿命曲线,如图1所示。

图1 总应变幅值与疲劳寿命的关系示意图

f N 为恒应变幅作用下循环至破坏的循环次数,f N 2则为循环至破坏的应变反向次数,每循环有二次应变反向。在总应变幅2ε?中,包括弹性应变分量2e ε?和塑性应变分量2

p ε?。 Manson 和Coffin 分析总结了应变疲劳的实验结果,给出了下列应变-疲劳寿命公式: '

f εE f 'σ 222p e εεε?+?=? 2e

ε?

c

2

p ε?

b t N 2 )(2对数f N

c f f b f f p e N N E

)2()2(222'+'=?+?=?εσεεε 式中,'

f σ是疲劳强度系数,其值约等于静态拉伸断裂强度f σ;b 是疲劳强度指数;'

f ε是疲劳塑性系数;c 是疲劳塑性指数。式中的第一项对应于图1中的弹性线,其斜率为b ,截距为E f '

σ,式中的第二项对应于塑性线c f f p

N )2(2'=?εε,其斜率为c ,截距为'f ε。弹性线与塑性线交点称为

疲劳寿命转变点。从图中可以看出,在短寿命高应变区,疲劳寿命主要取决于'f ε,因而提高材料

的塑性有助于提高疲劳抗力;而在长寿命低应变区,疲劳寿命主要取决于弹性应变,提高强度'f σ(f f σσ≈'

),则在同样的应变幅下可延长寿命,或者,对于同样的疲劳寿命,材料可经受更大的应力幅值。

上述应变疲劳常数'

f σ,b ,'

f ε和c 要由实验来测定。求得了这4个常数,材料的应变-疲劳寿命曲线就可以确定。

2.循环应力-应变曲线 循环应力-应变曲线采用无缺口光滑小试件测定,测试时,保持拉应变和压应变绝对值相等且为一常量,由于材料处于塑性范围,所以在恒定应变幅2

εε?=a 的循环作用下,应力幅a σ将不断发生变化。图2表示在应变疲劳时的应力-时间曲线和应力-应变回线。有二中情况:其一,应力幅随

图2 在给定的应变控制下应力循环的变化 图3 循环应力-应变曲线

时间而增大,应力-应变回线越来越高,我们把恒应变下,应力幅值随循环次数增加而逐渐增大的现

象称为循环硬化;其二,应力幅值随时间增长而逐渐减小。应力-应变回线逐渐下降,这种现象称为循环软化现象。但是,经历足够多循环以后,无论是循环硬化还是循环软化都趋于稳定,最后得到一闭合的迟滞回线。

采用各种不同大小的应变幅值,分别测出不同恒应变幅作用下的稳态应力-应变回线,见图3。连接各个回线的顶点,所得的曲线称为循环εσ-曲线,以区别于单向加载的εσ-曲线。从第一象限看,如果循环εσ-曲线低于单向加载的εσ-曲线,则称为循环软化;反之,就是循环硬化。

对于图3中任何一个回线,都存在相应的真应力幅值a σ和真塑性应变幅值

2p ε?,它们之间的

关系可用幂指数经验关系表示为 n P a K '?'=)2

(

εσ 循环应力-应变关系可写为 n a a p e K E ''

+=?+?=?1)(222σσεεε 式中,

2

e ε?为弹性应变幅,E 为杨氏模量,K '为循环强度系数,n '为循环应变硬化指数。对于大多数金属材料,n '在0。1~0。2之间;ε?代表循环应变范围。 3.45碳钢低周疲劳与应力循环棘轮失效

45碳钢作为一种结构钢被广泛用作工程结构材料,调质处理是其常规的热处理方式。这种材料在工程中常常受到循环载荷的作用。研究表明在具有一定应力范围的循环应力控制下,即使循环初始材料表现为纯弹性循环加载,在循环若干圈后,材料很可能由于循环软化而产生越来越大的塑性应变,从而导致材料产生明显的棘轮应变与塑性应变幅值,并导致材料的应变疲劳失效与棘轮失效。

材料在非对称应力控制循环下,当平均应力与应力幅值较高时,材料将产生棘轮变形。总体来讲,棘轮变形到一定阶段时将出现如下情况:(1)弹性安定(即材料处于弹性循环变形阶段);(2)塑性安定(即材料处于封闭的稳定塑性滞后循环变形阶段);(3)稳定棘轮变形;(4)增长棘轮变形。显然,弹性安定循环会导致高周疲劳破坏,塑性安定循环将引起低周疲劳破坏。对于稳定棘轮变形,在棘轮循环寿命的后期,由于硬化的饱和以及损伤效应的日益明显,其棘轮变形率也将呈增长趋势。因此,此种棘轮的最终破坏行为仍为增长棘轮破坏行为,增长棘轮破坏主要归于材料过大的变形而导致材料破坏。

从图4中可以看出,在相同工程应力幅值下,平均应力越大,材料的棘轮变形越显著;在平均应

力恒定时,应力幅值越大,材料的棘轮变形越显著。总体来讲,应力幅值和平均应力越大,棘轮棘轮应变随N的演化率越大,且棘轮失效的循环次数越多。另一方面,由于45钢在0一0.02的轴向应变范围内塑性变形不稳定,尽管路径B与路径A的工程应力幅值相同,路径B的工程平均应力较大,但路径B由于在0一0.02应变的塑性变形不稳定区并没有出现显著的塑性变形,其循环的前600周基本上处于近似弹性循环阶段, 而路径A尽管所受平均应力较小,但由于在塑性不稳定区在前150周左右产生了明显的轴向拉伸应变,从而使试样在较小的循环周次下就进入了明显的塑性应变循环,这就导致了其最终棘轮失效循环次数小于路径B时的失效循环周次。若将路径A的近似弹性循环阶段考虑为600周次,则路径B的棘轮应变随N的变化率则明显大于路径A时情形。这就解释了路径A为何棘轮失效循环次数小于路径B时的原因。

图4 多种应力控制循环棘轮真应变的演化图5 循环真塑性应变幅值将路径B、C,分别对应地与路径E、F的实验结果进行比较,路径B和F,路径C和F所受到的工程循环应力峰值对应相等,路径B、C的平均应力分别较路径E、F的要大,亦即其应力幅值较路径E、F要小。从图4可以看出,虽然路径C在塑性应变不稳定区在初始若干周产生了明显的轴向拉应变,但应力幅值较大的试样其棘轮随循环周次N的演化率总体来讲亦较大,从而导致其棘轮失效的循环次数越小。对路径H和I的比较也可以得出同样的结论。

从图4与图5的对照可以看出, 试样在不同加载情形的棘轮演化与塑性应变幅值随N的演化有某

种对应关系,棘轮应变率越大,其对应的塑性应变幅值增长也越大,而应力控制循环中塑性应变幅值越大,表明材料已产生了越严重的循环软化;塑性应变幅值增大越其循环软化率也越大塑性应变幅值是产生低周疲劳损伤的关键因素。可认为,大的塑性应变幅值带来的低周疲劳损伤会对后继带平均应力控制循环的棘轮变形产生影响。

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

第二讲应力疲劳

第二讲应力疲劳 上节回顾 疲劳问题的特点 足够多次循环扰动荷载作用、疲劳是一个发展过程、疲劳破坏的三个阶段、断口特征、局部化 循环应力应变特性 循环硬化和循环软化 应力控制下的循环蠕变和应变控制下的循环松驰 Bauschinger效应 稳态循环应力应变曲线及数学描述 材料的记忆特性 疲劳问题分类 按循环应力作用的大小,疲劳可分为应力疲劳和应变疲劳 应力疲劳:最大循环应力S max小于屈服应力S y 寿命一般较高(>104),高周疲劳 应变疲劳:最大循环应力S max大于屈服应力S y(材料屈服后应变变化较大而应力变化较小,故一般以应变为 控制参量) 寿命一般较低(<104),低周疲劳材料应力疲劳特性

1. S -N 曲线 评价和估算疲劳寿命或强度需建立外荷载与寿命之间的关系。反映外加应力S 和疲劳寿命N 之间关系的曲线称为S -N 曲线。 基本S -N 曲线 在最简单的荷载谱-恒幅循环应力作用下,R = -1时(对称恒幅荷载)实验给出的应力-寿命关系曲线 2.S -N 曲线的一般形状 材料的S -N 曲线一般由实验得到 用一组标准试件在给定应力比和应力幅作用下,记录相应的寿命所得到的曲线。 典型S -N 曲线可分为 三段:低周疲劳区(LCF ), 高周疲劳区(HCF )和亚 疲劳区(SF )。 由S-N 曲线确定的对 应于寿命N 的应力称为寿 命为N 次循环的疲劳强度S N 。N = 1/4对应材料的静拉伸强度 S b ,N = 106~7对应的疲劳强度为疲劳极限S f 。特别地,R = -1的疲 劳极限记为S 1。 在HCF 区,S -N 曲线在对数坐标系上近似为直线。 1 04 106~7 S S L CF H CF S F S N S

断裂与疲劳(专升本) 地质大学期末开卷考试题库及答案

断裂与疲劳(专升本) 判断题 1. 力的大小可以用一个简单量表示。(3分) 参考答案:错误 2. “K I = K Ic ”表示K I 与 K Ic 是相同的。(3分) 参考答案:错误 (1). 萌生 (2). 参考答案: 扩展 (3). 参考答案: 断裂 (4). 参考答案: 损伤积累 4. ___(5)___ 有两种定义或表达式, 一是回路积分定义,另一种是___(6)___ ,在塑性力学全量理论的描述下这两种定义是___(7)___ ;其___(8)___ 指J 积分的数值与积分回路无关。(8分) (1). 参考答案: J 积分 (2). 参考答案: 形变功率定义 (3). 参考答案: 等效的 (4). 守恒性(1). 机械加工程度变形 (2). 参考答案: 预制裂纹长度 (3). 参考答案: 小范围屈服长度 (4). 读数显微镜(1). 理论断裂强度 (2). 参考答案: 实际断裂强度 (3). 参考答案: 应力集中系数 (4). 参考答案: 裂口断裂理论 问答题 7. 什么是低应力脆断?如何理解低应力脆断事故?(12分) 参考答案:答:在应力水平较低,甚至低于材料的屈服点应力情况下结构发生的突然断裂,称为低 应力脆性断裂,简称低应力脆断。低应力脆断多与结构件中存在宏观缺陷(主要是裂纹)有关, 同时也与材料的韧性有关。由于应力低,容易“失察”,由于脆性断裂,难于控制即“失控”, 低应力脆性断裂事故多为灾难性的。断裂力学是研究低应力 脆断的主要手段,其研究目的也 主要是预防低应力脆断。 8. 请解说应力场强度因子断裂理论?(12分) 参考答案:答:1)下标“I”表示I 型(张开型)裂纹 2)“K”表示应力强度因子,是外加应力和裂纹长度的函数 3)“K I ”表示I 型(张开型)裂纹的应力强度因子 4)“K Ic ”表示I 型(张开型)裂纹的断裂韧度,是材料抵抗断裂的一个性能指标 5)“K I = K Ic ”是断裂判据,表示I 型(张开型)裂纹的应力强度因子增加到一个临界 值即达到材料的断裂韧度时,就发生脆性断裂。 9. 请论述断裂力学的产生、发展、分类及主要理论?(12分) 参考答案: 严格按传统强度理论设计的工程结构却发生了低应力脆性断裂,这是传统强度理论无法自圆其说的。正是对这类问题的思考和探索,尤其1920格里菲斯裂口断裂理论的提出标志固体力学的一个新分支即将出现。 断裂力学诞生的标志是欧文的应力强度断裂理论的提出。这也是断裂力学的第一次飞跃发展,断裂力学的第二次飞跃发展体现在应力强度因子断裂理论应用在疲劳问题的分析。 根据材料断裂的载荷性质,可分为静态断裂力学和动态断裂力学,或称为断裂静力学和断裂动力学,显然断裂静力学是断裂动力学的基础,一般简称为断裂力学。由于研究的尺度、方法和观点不同,断裂力学可分为微观断裂力学和宏观断裂力学。根据所研究的裂纹尖端附近材料塑性区的大小,宏观断裂力学又可分为线弹性断裂力学和弹塑性断裂力学。 10. 材料有哪些性能?什么是材料的力学性能?金属材料有哪些力学性能指标?力学行为的内涵是什么?(12分) 参考答案: 材料的性能包括热学性能、力学性能(弹性模量、拉伸强度、抗冲强度、屈服强度、耐疲劳强度等)、电学性能、磁学性能、光学性能、化学性能。 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲

影响疲劳寿命的因素

影响橡胶疲劳寿命的因素 一环境条件 环境影响在疲劳过程中特别是在长寿命的橡胶材料中起着关键作用。橡胶应力-应变关系和疲劳老化性能发展的方式在很大程度上依赖于材料的温度以及橡胶成分周围化学反应物的存在和浓度 A温度 升高的温度对橡胶形核寿命和疲劳裂纹增长速率产生有害的影响,这种有害影响在无定形橡胶中表现的最为明显,对于纯的丁苯橡胶处于可控测试中,随着温度从0°到100°,疲劳寿命化降低10000倍,而对于纯的天然胶而言,在相同条件下,疲劳寿命降低4倍。填料的加入可能降低对温度的依赖性。在疲劳裂纹增长测试中类似的影响可能被观察到。 上述温度的影响与由于老化或进一步教交联所发生的化学变化无关。温度对这些化学过程的速率产生很大的影响这种影响能够在升温或长时间内导致附加分解。温度实际对长期行为地影响程度取决于配方设计;固化剂,抗氧化剂等这些因素以后讨论。 B臭氧 在一个长期的疲劳测试中,有臭氧存在很大程度上会增大裂纹的增长速率和缩短寿命。由于应力集中,弹性体网链在裂纹尖端很容易与臭氧反应,臭氧与主要聚合物分子链的碳-碳双键发生反应引起断链。 当瞬间的能量释放速率超过一个小的起点,就会发生由于臭氧袭击而引起的裂纹增长,这个起点由Gz表示,Gz通常比机械疲劳起点T更小,Gz的值恨得程度上取决于配方设计,特别是抗氧化剂和抗臭氧剂存在。对于没有加入任何这些物质的橡胶来说,Gz = 0.1J/m2,当有抗臭氧剂存在时,Gz会增大10倍或更多,相比较而言,机械疲劳起点大约为T = 50 J/m2,臭氧看起来不影响机械疲劳起点的值,其他化学物质能够以一种类似臭氧的方式侵袭橡胶。Gent和Mrath 研究了在一个很大的范围内温度对臭氧增长速的影响。两个物理量被发现可以控制列为裂纹增长率da/dt,在玻璃化转变温度附近裂纹增长速率是与v温度成比例的,而与臭氧无关。在足够高的温度下(Q-Tg >100°),裂纹增长速率完全依赖于臭氧浓度而与温度无关。总的裂纹增长速率由下列方程式近似的给出

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

疲劳寿命理论及应用

3.疲劳寿命理论及应用 (1)疲劳损伤发生在受交变应力(或应变)作用的零件和构件,如起重机的桥架和其他结构件、压力容器、机器的轴和齿轮等,它导致零件或构件的过大变形或断裂。零件和构件在低于材料屈服极限的交变应力(或应变)的反复作用下,经过一定的循环次数以后,在应力集中部位萌生裂纹。裂纹在一定条件下扩展,最终突然断裂,这一失效过程称为疲劳破坏。材料在疲劳破坏前所经历的应力循环数称为疲劳寿命。 (2)常规疲劳强度计算是以名义应力为基础的,可分为无限寿命计算和有限寿命计算。零件的疲劳寿命与零件的应力、应变水平有关,它们之间的关系可以用应力一寿命曲线(e-n曲线)和应变一寿命曲线(δ-n曲线)表示。应力一寿命曲线和应变一寿命曲线统称为s-n曲线。根据试验可得其数学表达式。在疲劳试验中,实际零件尺寸和表面状态与试样有差异,常存在由圆角、链槽等引起的应力集中,所以,在使用时必须引入应力集中系数k、尺寸系数ε和表面系数β。 (3)循环应力的特性用最小应力e min与最大应力e max的比值r=e min/e max表示,r称为循环特征。对应于不同循环特征,有不同的s-n曲线、疲劳极限和条件疲劳极限。对不同方向的应力,可用正负值加以区别,如拉应力为正值,压应力为负值。当r=-1,即e min=e max 时,称为对称循环应力;当r=0,即e min=0时,称为脉动循环应力;当r=+1,即e min=e max 时,应力不随时间变化,称为静应力;当+1>r>-1时,统称为不对称循环应力。对应于不同循环特征,有不同的s-n曲线、疲劳极限和有限寿命的条件疲劳极限。 材料疲劳极限可从有关设计手册、材料手册中查出。缺乏疲劳极限数据时,可用经验的方法根据材料的屈服极限es,和断裂极限eb计算。 零件的疲劳极限erk和τrk是根据所使用材料的疲劳极限,考虑零件的应力循环特性、尺寸效应、表面状态应力集中等因素确定。 (4)疲劳损伤积累理论认为:当零件所受应力高于疲劳极限时,每一次载荷循环都对零件造成一定量的损伤,并且这种损伤是可以积累的;当损伤积累到临界值时,零件将发生疲劳破坏。较重要的疲劳损伤积累理论有线性疲劳损伤积累理论和非线性疲劳损伤积累理论。线性疲劳损伤积累理论认为,每一次循环载荷所产生的疲劳损伤是相互独立的,总损伤是每一次疲劳损伤的线性累加,它最具代表性的理论是帕姆格伦一迈因纳定理。 (5)迈因纳(palmgren-miner)定理 设在载荷谱中,有应力幅为e1, e2…ei…,等各级应力,其循环数分别为n1、n2…ni…从材料的s-n曲线,可以查到对应于各级应力的达到疲劳破坏的循环数n1、n2…ni…根据疲劳损伤积累为线性关系的理论,比值ni/ni为材料受到应力ei的损伤率。发生疲劳破坏,即损伤率达到100%的条件为: P/g nJZ(~ .|&G€ E9 [ 本资料来源于贵州学习网财 https://www.doczj.com/doc/d38078340.html, ] P/g nJZ(~ .|&G€ E9 会考试注册资产评估师 4.损伤零件寿命估算 计算带缺陷零件的剩余自然寿命一般采用断裂力学理论,通过建立裂纹扩展速率与断裂力学参量之间的关系来进行计算。断裂力学理论认为:零件的缺陷在循环载荷作用下会逐步扩大,当缺陷扩大到临界尺寸后将发生断裂破坏。这个过程被称为疲劳断裂过程。 疲劳断裂过程大致可分为四个阶段,即成核、微观裂纹扩展、宏观裂纹扩展及断裂。 损伤零件疲劳寿命的估算主要应用帕利斯(paris)定理。 帕利斯(paris)定理主要内容是:对裂纹扩展规律的研究,断裂力学从研究裂纹尖端附近的应力场和应变场出发,导出裂纹体在受载条件下裂纹尖端附近应力场和应变场的特征量来进行。这个特征量用应力强度因子k表示。k值的变化幅度也是控制裂纹扩展速度da/dn的主要参量。在考虑材料性能参量对裂纹扩展速度的影响后,帕利斯提出了以下裂纹扩展速度的半经验公式:

疲劳和断裂读书报告

材料的疲劳和断裂读书报告 在这个报告里,首先阐述材料的疲劳和断裂机理、规律,其次阐述钛合金的疲劳和断裂,以及解决方法。在之前的本科课程里《工程材料力学性能》、《》、《失效分析》,对金属的疲劳、断裂、蠕变都进行了较为详细的阐述。同时,也进行了TC4合金的疲劳性能实验,因此对疲劳相关的知识有了一定的了解。 在大多数情况下,零件承受的并不是静载荷,而是交变载荷。在交变载荷作用下,材料往往在低于屈服强度的载荷下,发生疲劳断裂。例如,汽车的车轴断裂,桥梁,飞机等。因此对于疲劳断裂的研究是很有意义的。 一般来说,疲劳的定义是:金属材料或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。断裂的定义是:由弥散分布的微裂纹串接为宏观裂纹,再由宏观裂纹扩展为失稳裂纹,最终材料发生断裂。在此,需要明确疲劳和断裂的关系。疲劳和断裂在机理研究和工程分析时是紧密相连的,只是疲劳更侧重于研究裂纹的萌生,断裂力学则侧重于裂纹的扩展,即带裂纹体的强度问题。 对于疲劳,阐述的思路是疲劳分类及特点,疲劳机理与断口,疲劳性能表征,影响疲劳的因素。对于断裂,从宏观和微观的角度分别阐述。 疲劳 疲劳分类及特点 疲劳分类方法如下: 按应力状态不同,可以分为弯曲疲劳、扭转疲劳、拉压疲劳及复合疲劳; 按环境和接触情况不同,分为大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳; 按照断裂寿命和应力高低不同,分为高周疲劳和低周疲劳,其中高周疲劳也是低应力疲劳,低周疲劳即高应力疲劳。 疲劳特点如下: 材料在交变载荷峰值远低于材料强度极限时,就可能发生破坏,表现为低应力脆性断裂特征。这是因为,疲劳时应力较低(低于屈服强度),因此在宏观上看,材料没有塑性变形。在裂纹扩展到临界尺寸时,发生突然断裂。 材料疲劳是一个累积过程,尽管疲劳断裂表现为突然断裂,但是在断裂前经历了裂纹萌生,微裂纹连接长大,裂纹失稳扩展的过程。而形成裂纹后,可以通过无损检测的方法来判断裂纹是否达到临界尺寸,从而来判断零件的寿命。 疲劳寿命具有分散性。对于同一类材料来说,每次疲劳测试的结果都不会相同,有的时候相差很大。因此在测量疲劳寿命时,需要采用升降法和分组法来测得存活率为50%的疲劳强度。疲劳对于缺陷很敏感。这些缺陷包括材料表面微裂纹,材料应力集中部分,组织缺陷等。这些缺陷加速材料的疲劳破坏。 疲劳断口记录了疲劳断裂的重要信息,通过断口分析能了解到疲劳过程的机理。 疲劳裂纹形成和扩展机理及断口 一般把疲劳分成裂纹形成和裂纹扩展过程。而研究疲劳机理,都是借助于某一种模型来研究,这在断裂力学,蠕变过程的研究中经常看到。 裂纹形成: 资料表明,疲劳微观裂纹都是由不均匀的局部滑移和显微开裂引起的。主要包括表面滑移带开裂;第二相、夹杂物或其界面开裂;晶界或亚晶界开裂等。 裂纹形成的延性材料滑移开裂模型。 在静拉伸过程中,可以在光滑试样表面看到滑移带,这是由于位错的滑移形成的。在交变载

第四章应力应变关系

4 应力应变关系 4.1弹性变形时应力和应变的关系 当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即 1()1() 1() 111222x x y z y y x z z z x y xy xy yz yz zx zx E E E G G G εσνσνσεσνσνσεσνσνσετετετ?=--?? ?=--???=--???===? ,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足() 21E G ν=+关系。 由上式可得 11212()()33m x y z x y z m E E νν εεεεσσσσ--=++= ++= (4.2) 于是 11 ()'2x m x m x E G νεεσσσ+-= -= 或 1112''22x m x x m G G E ν εεσσσ-=+ =+ 类似地可以得到 1112''22y m y y m G G E ν εεσσσ-=+ =+ 1112''22z m z z m G G E ν εεσσσ-=+=+ 于是,方程(4.1)可写成如下形式 121 2'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-?????? ? ? ?=+ ? ? ? ? ? ????? ?? 即 '1122ij ij m ij ij m G E ν εεεσδσ-'=+= + (4.3)

显然,弹性变形包括体积改变的变形和形状改变的变形。前者与球应力分量成正比,即 12m m E νεσ-= (4.4) 后者与偏差应力分量成正比,即 ''12''12''1211 1222x x m x G y y m y G z z m z G xy xy yz yz zx zx G G G εεεσεεεσεεεσετετετ? =-=?=-=??=-=??=== ? ,, 或简写为 2ij ij G σε''= (4.5) 此即为广义Hooke 定律。 4.2塑性变形时应力和应变的关系 弹性力学是以应力与应变成线性关系的广义Hooke 定律为其基础的;而在塑性力学的范围内,一般来说,应力与应变间的关系是非线性的,同时这种非线性的特征,又与所研究的具体材料和塑性应变有关。 塑性变形过程中的应力应变关系十分复杂,相关的理论较多,但可将它们分为两大类,即增量理论和全量理论。 4.2.1增量理论 在弹性极限范围内,弹性全量应变与当时的应力状态有确定的一一对应关系,而与加载的历程无关。但由于塑性变形的不可恢复性,塑性全量应变与当时的应力状态不是单值关系,而与加载的历史有关。图4.1所示低碳钢拉伸实验的结果表明:在应力超过弹性极限条件下卸载时,其应力应变基本呈平行于弹性线的线性关系,直到材料反向时的屈服极限's σ,这就是材料的卸载规律(图4.1a )。因此,当材料发生塑性 图4.1 单向拉伸随加载历史变化的应力应变关系

疲劳与断裂综述

论文 题目:疲劳与断裂综述 院(系)材料与化工学院专业材料工程 姓名 学号

目录 1 绪论 (3) 1.1 疲劳及断裂力学发展 (3) 1.2 疲劳与断裂力学的关系 (3) 1.3 疲劳设计方法 (4) 2 疲劳现象及特点 (4) 2.1 变动载荷和循环应力 (4) 2.2疲劳现象及特点 (5) 2.3疲劳断口宏观特征 (5) 3 疲劳过程及机理 (6) 3.1 疲劳裂纹萌生过程及机理 (6) 3.2 疲劳裂纹扩展过程及机理 (7) 4 疲劳影响因素及应对措施 (8) 4.1 疲劳强度影响因素 (8) 4.2 提高疲劳强度的措施 (9) 5结束语 (10)

1 绪论 1.1 疲劳及断裂力学发展 日内瓦的国际标准化组织(ISO)在1964年发表的报告《金属疲劳试验的一般原理》中给疲劳下了一个描述性定义:“金属材料在应力或应变的反复作用下所发生的性能叫疲劳”。金属材料和构件的断裂,绝大部分属于疲劳断裂。材料的疲劳不仅是所有运动物体的一个共同性问题,对某些显然是静止的物体,只要它承受循环力或循环变形,就会因为疲劳而发生破坏。疲劳裂纹扩展是累计损伤的过程,包括金属在内的任何材料加工而成的机构或设备,在载荷反复作用下,机械结构的 50%~90%都会发生疲劳破坏。由于材料的破坏行为和静力相比有着本质的区别,使得材料的疲劳问题成为备受关注的问题之一。科学的研究方法对正确认识疲劳问题具有至关重要的意义。经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。 1.2 疲劳与断裂力学的关系 疲劳学研究重复载荷及材料及结构的疲劳强度及疲劳寿命问题。断裂力学研究带裂纹体的强度问题。 疲劳破坏过程是从原子尺寸,晶粒尺寸到大型结构尺寸,跨越十几个量级的十分复杂的过程,疲劳破坏过程按裂纹扩展过程可以大致分为几个阶段。 (1)亚结构和显微结构发生变化,从而形成永久损伤形核。 (2)产生微观裂纹。 (3)微观裂纹长大和合并,形成“主导”裂纹。一般认为,这一阶段的疲劳通常是裂纹萌生与扩展之间的分界线,即疲劳与断裂力学的分界岭。 (4)主导宏观裂纹的稳定扩展。 (5)结构失去稳定性或完全断裂。

疲劳寿命预测方法

疲劳形成寿命预测方法 10船 王茹娇 080412010035 疲劳裂纹形成寿命的概念 发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称 为该材料或构件的疲劳寿命。 疲劳寿命的种类很多。从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂 纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为 止的循环次数称为裂纹形成寿命。此后扩展到临界裂纹长度acr 为止的循环次数 称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采 用的寿命性能曲线有关。此外还有三阶段和多阶段,疲劳寿命模型等。 疲劳损伤累积理论 疲劳破坏是一个累积损伤的过程。对于等幅交变应力,可用材料的S —N 曲 线来表示在不同应力水平下达到破坏所需要的循环次数。于是,对于给定的应力 水平σ,就可以利用材或零部件的S —N 曲线,确定该零件至破坏时的循环数N , 亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以 直接利用S —N 曲线估算零件的寿命。如果在多个不同应力水平下循环加载就不 能直接利用S —N 曲线来估计寿命了。对于实际零部件,所承受的是一系列循环 载荷,因此还必须借助疲劳累积损伤理论。 损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化, 循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。疲劳累积损伤 理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严 重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生 失效的总循环数有关。而且每个应力幅下产生的损伤是永存的,并且在不同应力 幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。当累积总损伤 达到临界值就会产生疲劳失效。目前提出多种疲劳累积损伤理论,应用比较广泛 的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累 积理论。 线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个 应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发 生疲劳破坏,线性损伤累积理论中典型的是Miner 理论。 根据该理论,假设在应力i σ下材料达到破坏的循环次数为i N ,设D 为最终 断裂时的临界值。根据线性损伤理论,应力i σ每作用一次对材料的损伤为i N D /, 则经过i n 次后,对材料造成的总损伤为i i N D n /。

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

断裂力学与疲劳力学

断裂力学是研究材料已有裂纹后裂纹扩展抗力和断裂抗力。而疲劳力学的研究是从裂纹的萌生开始、然后扩展直至断裂。什么情况下用哪个理论取决于你的目的是什么。 断裂力学类型:线弹性断裂力学应用线弹性理论研究物体裂纹扩展规律和断裂准则。1921年格里菲斯通过分析材料的低应力脆断,提出裂纹失稳扩展准则格里菲斯准则。1957年G.R.欧文通过分析裂纹尖端附近的应力场,提出应力强度因子的概念,建立了以应力强度因子为参量的裂纹扩展准则。线弹性断裂力学可用来解决脆性材料的平面应变断裂问题,适用于大型构件(如发电机转子、较大的接头、车轴等)和脆性材料的断裂分析。实际上,裂纹尖端附近总是存在塑性区,若塑性区很小(如远小于裂纹长度),则可采用线弹性断裂力学方法进行分析。弹塑性断裂力学应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹体内裂纹尖端附近有较大范围塑性区的情况。由于直接求裂纹尖端附近塑性区断裂问题的解析解十分困难,因此多采用J积分法、COD(裂纹张开位移)法、R(阻力)曲线法等近似或实验方法进行分析。通常对薄板平面应力断裂问题的研究,也要采用弹塑性断裂力学。弹塑性断裂力学在焊接结构的缺陷评定、核电工程的安全性评定、压力容器和飞行器的断裂控制以及结构物的低周疲劳和蠕变断裂的研究等方面起重要作用。弹塑性断裂力学的理论迄今仍不成熟,弹塑性裂纹的扩展规律还有待进一步研究。断裂动力学采用连续介质力学方法,考虑物体惯性,研究固体在高速加载或裂纹高速扩展下的断裂规律。断裂动力学的主要研究内容为:①断裂准则,包括裂纹在高速加载下的响应及起始和失稳扩展准则、高速扩展裂纹的分叉判据。②高速扩展裂纹尖端附近的应力应变场。③裂纹高速扩展的极限速度。 ④裂纹高速扩展的停止(止裂)原理。⑤高应变率条件下的材料特性及其对高速扩展裂纹阻力的影响。⑥裂纹高速扩展中的能量转换。⑦高速碰撞下的侵彻和穿孔问题。断裂动力学研究方法分理论分析和动态实验两方面。断裂动力学已在冶金学、地震学、合成化学以及水坝工程、飞机和船舶设计、核动力装置和武器装备等方面得到一些实际应用,但理论尚不够成熟。 所说的裂纹是指宏观的、肉眼可见的裂纹。工程材料中的各种缺陷可近似地看作裂纹。断裂力学的基本研究内容包括:①裂纹的起裂条件;②裂纹在外部载荷和(或)其他因素作用下的扩展过程;③裂纹扩展到什么程度物体会发生断裂。另外,为了工程方面的需要,还研究含裂纹的结构在什么条件下破坏;在一定载荷下,可允许结构含有多大裂纹;在结构裂纹和结构工作条件一定的情况下,结构还有多长的寿命等。在断裂力学中,按照裂纹表面上质点的相对位移,可将裂纹分为三种基本类型(见图[三种基本类型的裂纹]),分别称为张开型裂纹、滑开型裂纹和撕开型裂纹,或分别称为Ⅰ型裂纹、Ⅱ型裂纹和Ⅲ型裂纹。物体中任一裂纹都可看作是这三种基本类型裂纹的组合,而断裂力学正是在研究这三种基本类型裂纹的基础上研究一般裂纹的。 疲劳裂纹扩展问题:疲劳是在交变载荷作用下材料中裂纹形成和扩展的过程,断裂力学主要用于研究疲劳裂纹的扩展问题在交变载荷的作用下,结构中裂纹的形成和扩展(稳定扩展和失稳扩展)过程。疲劳主要指裂纹形成的阶段,断裂主要指裂纹扩展的阶段,但是在机理研究和工程分析中两者是紧密联系的,不能截然分开,所以在飞行器结构设计中,疲劳与断裂往往是结合在一起研究的。 疲劳与断裂研究是结构强度学科中较重要的一个方面。它研究在交变载荷作用下结构中裂纹形成、稳定扩展和失稳扩展的规律,研究带裂纹结构的残余强度,估计结构寿命和研究延长寿命的方法。疲劳与断裂研究包括分析和试验两个方面。 疲劳力学:疲劳是结构或机器零件在外载反复作用之下产生的一种破坏现象,通常是在构件具有应力集中的部位形成微小的裂纹,然后逐渐扩展引起整个构件破坏.因此疲劳破坏是一个从裂纹形成到裂纹扩展的过程. 疲劳破坏是一个十分复杂的现象.疲劳破坏是从晶粒的滑移开始,直至造成整个结构破坏,是一个从原子尺度发展到宏观结构尺度的问题.涉及金属物理、冶金学、材料科学、力学、机械设计和制造等各门学科.长期以来科研人员从这些学科的不同角度对疲劳破坏进行了大量的研究.搞金相的人通常观察疲劳形核和裂纹扩展的过程,研究显微组织的影响,观察断口,分析断裂的原因.工程设计人员则着眼于具体问题的解决,依据的是通过试验得出的数据(如材料的应力疲劳特性、应变疲劳特性、裂纹扩展特性等)和经验得出的规律(如联系应力幅值和寿命的Basqin关系;联系塑性应变幅值和寿命的Mans

应变疲劳

应变疲劳性能 S-N 曲线通常用于描述长寿命疲劳性能,即应力循环水平低,循环周次高的情况。但许多工程构件在整个使用期间所经受的载荷循环数却并不多,而构件中的应力和应变水平却相对较高。如飞机在起飞和降落时,相对于它在高空稳定飞行时(承受比较均匀的载荷),其载荷幅度的变化是很大的;压力容器也是这样,也有周期的升压和降压,这种运行状态虽然相对于整个机件的工作寿命是较短的,但因承受的负荷较大,即使在设计时的名义应力规定得只允许发生弹性变形,但在缺口处甚至在有微裂纹处,会因局部的应力集中,使应力超过材料的屈服强度,最终导致疲劳破坏。这种在大应力低周次下的破坏,即谓之低周疲劳。 1.应变-疲劳寿命曲线和表达式 表征低周疲劳裂纹形成阶段的疲劳性能的有应变-疲劳寿命曲线(即ε—N 曲线)和循环应力-应变曲线,它们都是由恒应变幅试验测定的,所以低周疲劳也就叫做应变疲劳。应变-疲劳寿命曲线通常由一系列应变疲劳试验确定。在进行疲劳试验时,保持总应变幅值 2 ε?不变。对各个试件用不同的应变幅值进行试验,直到试件破坏,记录各次试验的疲劳寿命f N ,以应变幅2 εε?=a 为纵坐标,以f N 2为横坐标,在双对数坐标系中画出)2log()2log(f N -?ε曲线,即得到应变-疲劳寿命曲线,如图1所示。 图1 总应变幅值与疲劳寿命的关系示意图 f N 为恒应变幅作用下循环至破坏的循环次数,f N 2则为循环至破坏的应变反向次数,每循环有二次应变反向。在总应变幅2ε?中,包括弹性应变分量2e ε?和塑性应变分量2 p ε?。 Manson 和Coffin 分析总结了应变疲劳的实验结果,给出了下列应变-疲劳寿命公式: ' f εE f 'σ 222p e εεε?+?=? 2e ε? c 2 p ε? b t N 2 )(2对数f N

相关主题
文本预览
相关文档 最新文档