论文最终版-稀薄费米气体
- 格式:pdf
- 大小:268.27 KB
- 文档页数:14
量子力学论文集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#量子理论及技术的发展【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。
【关键词】量子力学激光半导体扫描隧道显微镜量子信息回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。
一、从“光量子假说”到激光技术1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。
随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。
1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。
激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。
其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到论的又一重大课题。
在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验偏离较大。
1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。
从1913年玻尔提出半经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。
物理学毕业论文选题决定论文质量的关键因素就是选题,一个好的选题对于撰写一篇高水平的学位论文尤为关键。
下文是店铺为大家整理的关于物理学毕业论文选题的内容,欢迎大家阅读参考!物理学毕业论文选题篇1物理教学研究方向1 新课标下基础物理课程改革与发展的趋势2 主观性试题与客观性试题的比较研究3 从批判性思维走向批判性教学4 试论科学探究中的“提出问题”5 激发物理学习动机的策略6 物理教学中体验性活动项目的建设与研究7 高中物理实验的改革研究8 物理教学中STS教育(科学技术和社会)教育9 物理教学中的情感教育10 论中学生物理知识结构的形成过程11 物理活动课的教学模式12 物理教学中的决策能力的培养13 谈微型物理实验14 物理教学与学生创造能力的培养15 21世纪的网络教育对物理教学的影响16 物理教学中多媒体课件的设计17 多媒体技术与物理教学18 物理教学中的科学价值观教育19 物理教学中的环境教育20 谈“从生活走向物理,从物理走向社会”21教育课程改革与教师职业专业化的思考22科学用脑和发展高效性学习23 物理教学模式与教学方法24 谈物理教师的素质结构25 论物理教育中辩证唯物主义观点教育26 谈物理教学中的审美教育27 物理课外活动的现状与对策28 论物理教学中思维能力的培养29 物理教学中科学方法的培养研究30 物理式样教学中的问题与对策31 物理实验教学与环境意识的培养32 物理实验教学中如何培养学生的观察能力33 物理实验教学与创造能力的培养34 物理教学中创造能力的培养35 物理课堂顺应教学方法研究36 定义不完善问题(ill-defined problem)教学研究37 李约瑟难题与中学物理教育38 从经营教育到大众教育~我国中学物理教材沿革回顾39 中学物理学习“差生”的归因分析40 不同类型高级中学学生学习物理动机的比较分析物理学毕业论文选题篇2普通物理方向1 氢气辉光放电的基本原理2 氢分子放电中电子的输运过程研究3 关于植物细胞内外水分的热力学关系4 单晶Ni2MnGa马氏体的微观机构分析5 热传递过程不可逆性的统计分析6 物理学家的成才与环境7 爱因斯坦的光子论及其意义8 关于半波损失问题的探讨9 关于№直流辉光放电光学发射谱研究10 离子(断,H’)碰撞截面综述11 在氢直流辉光中离子H+。
玻色———爱因斯坦凝聚的研究谢世标(广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱因斯坦凝聚研究的动态与进展及其前景展望。
关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-041 玻色—爱因斯坦凝聚的由来我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。
自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。
1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。
爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。
爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。
他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。
但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。
直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。
不过这两种现象都发生在强相互作用的体系中。
超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。
只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。
走进纳米时代论文纳米材料及其应用摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。
纳米技术是当今世界最有前途的决定性技术之一。
本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。
关键词:纳米材料;纳米技术;应用1.纳米材料的发展自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。
第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。
第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。
国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。
它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。
2.纳米材料的定义纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
3.纳米材料的结构纳米级的颗粒是由数目极少的原子或分子组成的原子群或分子群,是一种典型的介观系统。
因此,从结构上看,它是由两种组元构成的,即材料的体相组元晶体原子和界面组元晶界。
若是常规材料,截面应该是一个完整的晶体结构,但对于纳米晶来说,由于晶粒尺寸小,界面组元在整个材料中所占的比例极大,晶界缺陷所占的体积比也相当大,尽管每个单独的分界面可能具有一个二维局部或局域的有序结构,但从一个局部界面到另一个局部界面的周期不同,由所有这样的界面原子组成的界面,其原子排列方式均不同。
南京师范大学泰州学院毕业论文(设计)( 2014 届)题目:__玻色-爱因斯坦凝聚理论研究_院(系、部):信息工程学院____专业:物理学(师范)____姓名:严加林______学号: 12100134 _____指导教师:朱庆利____南京师范大学泰州学院教务处制摘要玻色-爱因斯坦凝聚(玻色—爱因斯坦凝聚)是科学巨匠爱因斯坦在80年前预言的一种新物态。
这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。
即处于不同状态的原子“凝聚”到了同一种状态。
形象地说,这就像让无数原子“齐声歌唱”,其行为就好像一个玻色子的放大,可以想象着给我们理解微观世界带来了什么。
本文针对玻色-爱因斯坦凝聚这一课题,综述了玻色-爱因斯坦凝聚理论的诞生和发展、概念及其形成条件。
在凝聚体实现发面,随着科学技术的发展,我们实现了玻色-爱因斯坦凝聚。
1995年,随着 JILA 小组、MIT小组、Rice大学的试验成功,玻色-爱因斯坦凝聚到热浪被推上了高潮。
本文中还将介绍一些玻色—爱因斯坦凝聚的实验和国内外的研究动态,最后展望了其发展前景。
关键词:玻色-爱因斯坦凝聚,激光冷却与囚禁,原子激光AbstractBose Einstein condensation (BEC) is a new material predicted by science master Einstein in 80 years ago. Here the "cohesion" is different from condensation in everyday life. It says that different states of atomic suddenly "condensed" to the same state (usually the ground state). In different states of atoms "condensed" to the same state. Figure ground says, this is like so many atomic "sing in union", amplifying its behavior as a boson, you can imagine what brings to our understanding of the microscopic world. According to Bose Einstein condensates of this topic, reviews the Bose Einstein condensates birth and development, theory and its formation conditions. In the realization of yeast aggregates, with the development of science and technology, we realize the Bose Einstein condensation. In 1995, with the test of JILA group, MIT group, Rice University's success, Bose Einstein condensates to heat was pushed to the climax. This paper will also introduce some of Bose Einstein condensation in the experiment and research dynamic status, and its development prospects.Keywords: Bose Einstein condensation, laser cooling and trapping, Atom laser目录摘要 (1)Abstract (II)第一章引言 (1)1.1 冷原子 (1)1.2 玻色-爱因斯坦凝聚 (1)第二章玻色-爱因斯坦凝聚的研究历史 (2)2.1 玻色-爱因斯坦凝聚的诞生 (2)2.2玻色-爱因斯坦凝聚的发展 (2)第三章玻色-爱因斯坦凝聚的概念及形成条件 (5)3.1 玻色-爱因斯坦凝聚的概念 (5)3.2 实现玻色-爱因斯坦凝聚的物理条件 (6)第四章玻色-爱因斯坦凝聚的实验简介 (8)4.1 实现玻色-爱因斯坦凝聚的探索 (8)4.2 Colorado大学的JILA小组的工作 (10)4.3 MIT小组的工作 (10)4.4 Rice大学的工作 (11)4.5 其他小组的工作 (12)第五章玻色-爱因斯坦凝聚的研究动态 (14)4.1 国外动态 (14)4.1 国内动态 (15)第六章玻色-爱因斯坦凝聚的前景展望 (17)结束语 (18)致谢 (19)参考文献 (20)第一章引言1.1冷原子近年来,超冷原子物理学蓬勃的发展起来。
基于量子理论,费米帮助建立了一个理解物质的新框架。
这个框架在两个关键方面完善和改进了传统的原子论。
首先,物质的基本组分可归属于很少的几类,且给定种类(如电子)中所有的成员都是严格全同的和确实不可分辨的。
这种深奥的全同性可通过量子统计现象用实验展示,并可用自由量子场论的原理来解释。
第二,一个种类中成员可以变异为其他种类的成员。
这种变异性可被理解为显现相互作用量子场论。
费米通过他在量子场论和量子统计方面的工作,为建立这种新观点的理论基础做出了贡献,并通过他关于β衰变、核嬗变以及早期的强相互作用理论的工作,促进了这种新观点富有成效的应用和实验验证。
费米及物质的解释维尔切克著丁亦兵乔从丰李学潜沈彭年任德龙译在恩里克·费米(Enrico Fermi)诞辰100周年之际,我有幸回到我的母校去表达一份敬意。
费米永远是我心目中的一位英雄,也是我的科学“曾祖父”(按照费米→邱(Chew)→格罗斯(Gross)→威尔切克排列)。
在演讲的准备过程中,浏览他的论文也是一种乐趣和启发。
我被要求就“费米对现代物理的贡献”演讲半个小时。
当然,演讲的内容需要严格的挑选。
在我后面的几位讲演者将会讨论费米作为教师和科学界知名人士的杰出成就,显然我的工作将集中于他对科学文献的直接贡献。
除非去分类编目,我的任何作法都将遗漏太多的材料。
但分类是可笑的,也是冗长乏味的,因为带有费米同事们重要评注的费米文集很容易得到。
我决定要做的是,找到并且遵循一个可以把费米最重要的工作联系在一起的统一的思路。
尽管费米的论文内容异常广泛,并且总是集中于一些具体问题,但这样的一个思路不难理出。
对那些我认为是20世纪物理学最重要的成就:即一个基于一些非常不直观的概念,但已整理到一些精确且可使用的方程中的、实际上精确的、十分完整的物质理论,费米是一位多产的撰稿人。
一、改变了的原子论从伽利略和牛顿时代,物理学的目标——很少被清楚地表述,但在实践中是默认的——是导出一些动力学方程,这样给定一个物质体系在某时刻的组态后,其他时刻的组态就能被预言。
纳米材料技术介绍专业:机械设计制造及其自动化学生姓名:***学号:**********班级:D机制131引言:纳米概念是1959年木,诺贝尔奖获得着理查德.费曼在一次讲演中提出的。
他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。
他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。
20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。
其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。
纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。
在这里就不一一介绍了。
1纳米材料的特性纳米是一种度量单位,1 nm为百万分之一毫米,即l毫微米,也就是十亿分之一米,一个原子约为0 1 nm。
纳米材料是一种全新的超微固体材料,它是由纳米微粒构成,其中纳米颗粒的尺寸为l~100 nm。
纳米技术就是在100 nm以下的微小结构上对物质和材料进行研究处理,即用单个原子、分子制造物质的科学技术…。
纳米微粒是由数目较少的原子和分子组成的原子群或分子群,其占很大比例的表面原于是既无长程序又无短程序的非晶层:而在粒子内部,存在结晶完好的周期性排布的原子,不过其结构与晶体样品的完全长程序结构不同。
热力学与统计物理课程教案第八表 玻色统计和费来统计 8.1 热力学量的统计表达式一、非简并气体和简并气体第七章根据玻耳兹曼分布讨论了定域系统和满足经典极限条件(非简并条件)的近独立粒子系统的平衡性质。
非简并条件可以表达为:12232>>⎪⎭⎫ ⎝⎛=h mkT πN V e α 或 122323<<⎪⎪⎭⎫ ⎝⎛=mkT πh V N λn 人们把满足上述条件的气体称为非简并气体,不论是玻色子还是费米子构成,都可以用玻耳兹曼处理;不满足上述条件的气体称为简并气体,需要分别用玻色分布或费米分布处理。
微观粒子全同性原理带来的量子统计关联对简并气体的宏观性质将产生决定性的影响,使玻色气体和费米气体的性质迥然不同。
二、热力学量的统计表达式(首先考虑玻色分布)本节推导玻色系统和费米系统热力学量的统计表达式。
1、玻色系统首先考虑玻色系统。
如果把βα,和y 看作已知的参量,系统的平均总粒子数可由下式给出:∑∑-==+lβεαl ll leωa N 1①引出一个函数,名为巨配分函数,其定义为:l l ωβεαll le ----∏=Ξ∏=Ξ]1[ ②取对数得:∑----=Ξlβεαl l e ω)1ln(ln ③系统的平均总粒子数N 可通过Ξln 表示:Ξ∂∂-=ln αN ④ 内能是系统中粒子无规则运动总能量的统计平均值:∑∑-==+lll l ll l e ωεa εU 1⑤类似地可将U 通过Ξln 表为:Ξ∂∂-=ln βU ⑥ 外界对系统的广义作用力Y 是y εl ∂∂的统计平均值:y εeωa y εY ll βεαl l l l l ∂∂-=∂∂=∑∑+1可将Y 通过Ξln 表为:Ξ∂∂-=ln 1yβY ⑦上式的有一个重要特例是:Ξ∂∂=ln 1VβP ⑧ 由式④-⑦得:)ln (ln )ln ()(αd αdy y βd βN d βαYdy dU β∂Ξ∂-∂Ξ∂+∂Ξ∂-=+- 注意上面引入Ξln 的是y βα、、函数,其全微分为:dy yβd βαd αd ∂Ξ∂+∂Ξ∂+∂Ξ∂=Ξln ln ln ln 故有:⎪⎪⎭⎫ ⎝⎛Ξ∂∂-Ξ∂∂-Ξ=+-ln ln ln )(ββααd N d βαYdy dU β 上式指出β是N d βαYdy dU +-的积分因子。