当前位置:文档之家› 反常积分--无穷积分教案

反常积分--无穷积分教案

反常积分--无穷积分教案
反常积分--无穷积分教案

定积分dx x f b

a )(?满足:

(1)[]b a ,是有限闭区间 (2))(x f 是[]b a ,上的有界函数

则称此积分为常积分.当这两个条件至少有一个不满足时称为反常积分.

其中无限区间上的反常积分称为无穷积分,无界函数的反常积分称为瑕积分。 新课讲授

1.无穷积分的定义:设函数)(x f 在区间[)+∞,a 上有定义,符号dx x f a

)(+∞?表示函数)(x f 的无穷积分.对R b ∈?,且a b >,函数)(x f 在[]b a ,上可积.若极限

dx x f b a b )(lim ?+∞

存在(不存在),则称无穷积分dx x f a )(+∞?收敛(发散),其极限称为无穷积分dx x f a

)(+∞?(的值),即 =?+∞dx x f a

)(dx x f b a b )(lim ?+∞

→ 同理可定义 =?∞-dx x f b

)(dx x f b

a a )(lim ?-∞

=?+∞∞-dx x f )(+?∞-dx x f c

)(dx x f c

)(+∞?(c 为任意取定的常数) 并且只有当无穷积分dx x f c )(∞-?和dx x f c )(+∞

?都收敛时,才称无穷积分dx x f )(+∞∞-?

收敛,否则称为发散。

2.无穷积分的计算:(以无穷积分dx x f a

)(+∞

?的计算为例)

(1)定义法:先计算定积分dx x f b

a )(?,再令+∞→

b ,求出dx x f a

)(+∞

?

(2)推广的牛顿-莱布尼兹公式:

)()(lim )()(a F x F x F dx x f x a a -=?=?+∞

→+∞+∞

=?∞-dx x f b )()(lim )()(x F b F x F x b -∞

→∞--=?

=?+∞∞

-dx x f )()(lim )(lim )(x F x F x F x x -∞

→+∞

→+∞

∞--=? 例题剖析

例1、 计算下列无穷积分 (1)dx x 20

11+?∞- (2)dx x x 1sin 12

2∞+?π

例2、证明无穷积分)0(1

>?∞

+a dx x

p a 当1>p 时收敛,当1≤p 时发散.

巩固练习

判断下列无穷积分是否收敛,若收敛算出它的值. (1) dx e x

-+∞

?0 (2) dx xe x

-+∞

?0 (3) dx x x ln e 1

∞+? (4) dx x

x 401+?∞

+

课堂小结

同学们需要理解无穷积分的概念,并能够运用定义或推广的牛顿-莱布尼兹公式计算无穷积分。

试讲教案

试讲题目:反常积分

应聘岗位:公共基础学院-数学教师应聘者:郑艳影

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

第二十二章 曲面积分

第二十二章 曲面积分 §1 第一型曲面积分 教学目的 掌握第一型曲面积分的定义和计算公式. 教学内容 第一型曲面积分的定义和计算公式. (1) 基本要求:掌握第一型曲面积分的定义和用显式方程表示的曲面的第一型曲面积分计算公式. (2) 较高要求:掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学建议 (1) 要求学生必须熟练掌握用显式方程表示的曲面的第一型曲面积分的定义和计算公式. (2) 对较好学生要求他们掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学程序 背景:求具有某种非均匀密度物质的曲面块的质量时,利用求均匀密度的平面块的质量的方法,通过“分割、近似、求和、取极限”的步骤来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 一、第一型曲面积分的概念与性质 定义 设S 为空间上可求面积的曲面块,()z y x f ,,为定义在S 上的函数.对曲面S 作分割T ,它把S 分成n 个可求面积的小曲面i S (n i ,,2,1Λ=),i S 的面积记为i S ?,分割T 的细度为 {} 的直径i n i S T ≤≤=1max ,在i S 上任取一点()i i i ζηξ,,(n i ,,2,1Λ=).若有极限 ()∑=→?n i i i i i T S f 1 ,,lim ζηξ=J , 且J 的值与分割T 与点()i i i ζηξ,,的取法无关,则称此极限为()z y x f ,,在S 上的第一型曲面积分,记作 ()dS z y x f S ??,, . (1) 第一型曲面积分的性质 (1)线性性:设c fds ??,c gds ??存在,R ∈βα., 则ds f f c )(?? +βα存在,且 ()c c c f f ds fds gds αβαβ+=+???? ??.

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

对面积的曲面积分教案设计

对面积的曲面积分教案 设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对面积的曲面积分教案设计 课 题 对面积的曲面积分 课 时 1课时 教 学 目 的 和 要 求 教学目的: 使学生理解对面积的曲面积分的定义,了解积分中“分割”,“近似”,“求和”和“取极限”的思想。基于第一类曲线积分的性质,理解对面积的曲面积分的性质。将对面积的曲面积分的计算概括为“一投二代三换”,使学生掌握对面积的曲面积分的计算方法。 教学要求: 1.了解对面积的曲面积分的概念; 2.理解对面积的曲面积分的性质; 3.掌握对面积的曲面积分的计算方法; 重 点 难 点 对面积的曲面积分的计算 教 学 方 法 讲授(板书) 教 学 内 容 一、概念的引入 前面介绍了第一类曲线积分() , L x y ds ρ ?,物理背景是曲线型构件的质量,在此问题中若把曲线改为曲面,线密度改为面密度,若求曲面的质量,该怎么做? 例 1 若曲面∑是光滑的,它的面密度为连续函数() ,, x y z ρ,求它的质量。 解:“分割”:用网格线分割曲面∑为 12 ,,, n S S S ???, “近似”:(),,i i i i S ρξηζ∈?; “求和”:(), 1 , n i i i i i S ρξηζ = ? ∑;

对面积的曲面积分与对弧长的曲线积分有类似的性质 可分为分片光滑的曲面 () =?? f x y z dS ,,

2 21y z x x dydz ++=0,0,0,x z x ≥≥221y y dxdz ++1x z z =++003dx xy =?? 例3 求2z dS ∑??

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

定积分的概念教案知识讲解

定积分的概念教案

人教A版必修一教材 教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 学生情况分析 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 教学目标 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取 极限) 教学难点对“以直代曲”、“逼近” 思想的形成过程的理解. 教学方式教师适时引导和学生自主探究发现相结合. 辅助工具投影展台,几何画板. 教学过程 引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为 S vt =.如果汽车作变速直线运动,在时刻t的速度为()2 v t t=(单 位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S (单位:km)是多少? 创设情境,引入 这节课所要研究的 问题. 类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一 段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围 成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边 图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么 要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题 转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 学生需要用原有的 知识与经验去同化 或顺应当前要学习 的新知识,所以问 题1引导学生回忆 割圆术的作法,通 过问题2引导学生 思考割圆术中的思 想方法----“以直代 曲”,和“无限逼 近”。 通过问题3激 发学生探索的愿 望,明确解决问题 的方向。

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

北师大版数学高二定积分的简单应用教案 选修2-2

高中数学 定积分的简单应用教案 选修2-2 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 0xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

定积分教案教学提纲

《数学分析》 之九 第九章定积分(14+4学时) 教学大纲 教学要求: 1.理解Riemann定积分的定义及其几何意义 2.了解上和与下和及其有关性质 3.理解函数可积的充要条件,了解Riemann可积函数类 4.熟练掌握定积分的主要运算性质以及相关的不等式 5.了解积分第一中值定理 6.掌握变上限积分及其性质 7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法 教学内容: 问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。 第页

此表2学时填写一份,“教学过程”不足时可续页 第页

=i 1 。 则称函数)(x f 在[b a .]上可积或黎曼可积。数J 称为函数)(x f 在[b a .]上 的定积分或黎曼积分,记作: ?=b a dx x f J )( 其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dx x f )(称为被积式,b a ,分别称为积分的下限和上限。 定积分的几何意义; 连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数 在区间 上可积 .用定义求积分 . 解 取 等分区间 作为分法 n b x T i = ?, 取 .= . 由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 . 例2 已知函数2 11 )(x x f += 在区间]1,0[上可积 ,用定义求积分 . 解 分法与介点集选法如例1 , 有 . 上式最后的极限求不出来 , 但却表明该极限值就是积分

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

定积分,不定积分…微积分的区别

定积分,不定积分…微积分的区别 不定积分 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。 记作∫f(x)dx。 其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 由定义可知: 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。 也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数. 定积分 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C 代替,这就称为不定积分。 而相对于不定积分,就是定积分。

所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢? 定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 若F'(x)=f(x) 那么∫f(x) dx (上限a下限b)=F(a)-F(b) 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了: Φ(x)= x(上限)∫a(下限)f(t)dt 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。

第八章 曲线积分与曲面积分部分考研真题及解答

第八章 曲线积分与曲面积分 8.1对弧长的曲线积分 8.2对坐标的曲线积分 07.1) 设曲线:(,)1((,)L f x y f x y =具有一阶连续偏导数),过第II 象限内的点M 和第IV 象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 ( B ) (A ) (,)T f x y dx ? . (B) (,)T f x y dy ? . (C) (,)T f x y ds ? . (D) (,)(,)x y T f x y dx f x y dy ''+? . 04.1) 设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分 ? -L ydx xdy 2的值为 π2 3 .(利用极坐标将曲线用参数方程表示) 09.1) 已知曲线2:(0L y x x =≤≤,则 L xds ? = 136 10.1)已知曲线L 的方程为1||,y x =-([1,1]),x ∈-起点为(1,0),-终点为(1,0),则曲线积分 2L xydx x dy +=? 0 (直接算或格林) 01.1)计算2 22222()(2)(3)L I y z dx z x dy x y dz = -+-+-? ,其中L 是平面2x y z ++=与 柱面|x |+|y |=1的交线,从z 轴正向看去,L 为逆时针方向。 解:记S 为平面2x y z ++=上L 所围部分的上侧,D 为S 在xOy 坐标面上的投影。由斯托克斯公式得 (24)(26)(26)S I y z dydz z x dzdx x y dxdy =--+--+-- ??(423)S x y z dS =++??2(6)D x y dxdy =--+??12D dxdy =-??=-24 08.1)计算曲线积分 2sin 22(1)L xdx x ydy +-? ,其中L 是曲线sin y x =上从点(0,0)到点 (,0)π的一段.(路径表达式直接代入) 8.3格林公式 02.1)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2 2211()()1L x I y f xy dx y f xy dy y y ????= ++-?????

定积分的概念(教案)

1.5.3.定积分的概念 一、复习回顾: 1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤: 2.上述两个问题的共性是什么? 二、新知探究 1.定积分的概念 注: 说明:(1)定积分()b a f x dx ?是一个 ,即n S 无限趋近的常数S (n →+∞时)记为 ()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是: (3)曲边图形面积: 变速运动路程: 变力做功: 例1:利用定积分的定义,计算 dx x ?102 、 dx x ?1 03 的值.

2.定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1 ?b a dx x kf )(= ; 性质2 dx x g x f b a ?±)]()([= 性质3 ??=c a b a dx x f dx x f )()( + 3.定积分的几何意义 从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥, 那么定积分()b a f x dx ?表示由直线 和曲线 所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分 ()b a f x dx ?的 几何意义。 思考: (1)在[,]a b 上0)(≥x f ,()b a f x dx ?= (2)在[,]a b 上0)(≤x f ,()b a f x dx ?= (3)在[,]a b 上)(x f 变号,()b a f x dx ?=

⑤ 练习: 1、利用定积分的几何意义,判断下列定积分值的正、负号。 (1) dx x ?20sin π (2)dx x ?-212 (3)dx x ?-1 23 2、利用定积分的几何意义,说明下列各式成立 (1) 0sin 22=?-dx x π π , 0sin 20=?dx x π (2)dx x dx x ??=200sin 2sin π π 3、计算下列定积分 (1)dx b a ?1 (2)11x dx -?. (3) 5 0(24)x dx -? (4) dx x ?-1021 (5)120(2)x x dx -? 三、课堂小结: ①定积分的概念及性质②用定义法求简单的定积分③定积分的几何意义

定积分的应用教学设计比赛一等奖

3.1定积分的应用:平面图形的面积 教材分析: 《定积分的简单应用》是人教版选修2-2第1章第7节的内容,从题目中可以看出这节教学的要求,就是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 教学构思:应用型的课题是培养学生观察分析、发现、概括、推理和探索能力的极好素材,本节课通过创设情景、问题探究、抽象归纳、巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。 学情分析:知识层面,学生已经学习了定积分的定义,由来及微积分基本定理。在定积分与曲边梯形面积关系中,许多学生默认相等,这就与定积分本质相违背。能力层面,学生有一定的推理和探索能力,面对知识点,学生还需有归纳概括的能力。还需体会数学学科研究的基本过程与方法。情感层面,学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡,有待加强。 教学理念:以学生发展为主线。新型的教学方式,新型的呈现方式。 教学目标: 知识与技能: 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积. 2.掌握利用定积分求曲边梯形面积的几种常见题型及方法. 过程与方法:通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 情感态度与价值观:通过教学过程中的观察思考总结,养成自主学习的良好学习习惯,培养数学知识应用于生活的意识。

定积分的概念教案

定积分的概念 教学目标: 知识目标:掌握定积分的含义,理解定积分的几何意义。 能力目标: 1、理解定积分概念中归纳思维的运用; 2、掌握例题求解过程中对比思维的运用。 素质目标:提升分析与解决问题的能力 教学重点和难点: 教学重点 :定积分的概念和思想 教学难点:理解定积分的概念,领会定积分的思想 教学方法: 1、直观法:让抽象的数学与具体的生活结合。 2、归纳法:让严整的数学定义与休闲的娱乐生活结合。 3、类比法:让例题求解过程与社会事例结合。 4、总结法:数学学习中培养的能力贯穿生活、社会、科学等各方面。 教学过程: 一、引入新课 我们已经学过规则平面图形的面积:三角形 四边形 梯形 圆等,那么不规则平面图形的面积该怎么求呢? 二、讲解新课 实例1曲边梯形的面积 曲边梯形:若图形的三条边是直线段,其中有两条垂直 于第三条底边,而其第四条边是曲线,这样的图形称为曲边梯形,如左下图所示. 曲边梯形面积的确定步骤: 推 广 为 y O M P Q N B x C A A 曲边梯形面积的确定方法:把该曲边梯形沿着 y 轴方向切割成许多窄窄的长条,把每个长条近似看作一个矩形,用长乘宽求得小矩形面积,加起来就是曲边梯形面积的近似值,分割越细,误差越小,于是当所有的长条宽度趋于零时,这个阶梯形面积的极限就成为曲边梯形面积的精确值了.如下图所示: O x y y = f (x )

(1)分割 任取分点b x x x x x a n n =<<<<<=-1210 ,把底边[a ,b ]分成n 个小区间 []21,x x ,(),,2,1n i =.小区间长度记为 ); ,,2,1(1n i x x x i i i =-=?- (2) 取近似 在每个小区间[i i x x ,1-]上任取一点i ξ竖起高线)(i f ξ,则得小长条面积 i A ?的近似值为 i i i x f A ?≈?)(ξ (n i ,,2,1 =); (3) 求和 把n 个小矩形面积相加(即阶梯形面积)就得到曲边梯形面积A 的近似值 i n i i n n x f x f x f x f ?=?++?+?∑=)()()()(1 2211ξξξξ ; (4) 取极限 令小区间长度的最大值{}i n i x ?=≤≤1max λ 趋于零,则和式 i n i i x f ?∑=)(1ξ的 极限就是曲边梯形面积A 的精确值,即 i n i i x f A ?=∑=→1 )(lim ξλ 实例2 路程问题 解决变速运动的路程的基本思路: 把整段时间分割成若干小时间段,每小段上速度看作不变,求出各小段的路程的近似值,再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值. (1)分割 (2)近似 (3)求和 (4)取极限 路程的精确值 2、归纳总结曲边梯形的面积和变速运动的路程得出定积分的概念。 3、定积分的概念 定义 3.1 设函数)(x f y =在[b a ,]上有定义,任取分点 <<<=321x x x a n n x x <<-1b =,分],[b a 为n 个小区间],[1i i x x -),,2,1(n i =. 记 {}i n i i i i x n i x x x ?==-=?≤≤-11max ),,,2,1(λ , 212101T t t t t t T n n =<<<<<=- 1--=?i i i t t t i i i t v s ?≈?)(τi i n i t v s ?≈∑ =)(1τ0},,,m ax {21→???=n t t t λi n i i t v s ?=∑=→)(lim 1 0τλ

相关主题
文本预览
相关文档 最新文档