数学分析:第22章 曲面积分与曲线积分习题课
- 格式:ppt
- 大小:2.24 MB
- 文档页数:63
第二十二章 曲面积分一、 单选题1.设21,S S 分别为球面2222a z y x =++的上半部分和下半部分,指向外侧,0,:2222==++z a z y x L ,取逆时针方向为正方向,若⎰⎰⎰⎰++=++=1222222221,S S dxdy z dzdx y dydz x I dxdy z dzdx y dydz x I ,则( D )A 、21I I =B 、21I I <C 、21I I >D 、21I I -= 2.下列等式中成立的是 ( B )A 、⎰⎰⎰≤++=++2222522234)(R z y x R dxdydz z y x π B 、⎰⎰=++=++42224)(Rz y x R dS z y x πC 、⎰⎰≤+=+222422)(R y x R dxdy y x π D 、dxdy y x R zdxdy R z y x R y x ⎰⎰⎰⎰=++≤+--=22222222223.用第二型曲面积分表示由封闭曲面S 所包围的立体积公式 ①⎰⎰=sxdydz V ②⎰⎰=sydzdx V ③⎰⎰=szdxdy V ④⎰⎰+=szdxdy xdydz V 21其中正确的是 ( D )A 、①B 、①②C 、①②③D 、①②③④4.设S 是球面2222R z y x =++,则曲面积分()d S z y x S⎰⎰++222=( )A. 4R πB.42R πC. 44R πD. 46R π5.设S 为a z y x =++在第一卦限的部分并取左侧,则=⎰⎰Sdydz ( )A. 2a -B. 2aC. 221a D. 221a -6.由光滑闭曲面S 围成的空间区域的体积是 ( ) (A) ⎰⎰++Szdzdx ydydz xdxdy ; (B)⎰⎰++Szdzdx ydydz xdxdy 31; (C) ⎰⎰-+Szdxdy ydzdx xdydz ; (D)⎰⎰-+Szdxdy ydzdx xdydz 31.二、填空题1.某流体以流速)),,(),,,(),,,((z y x R z y x Q z y x P V =在单位时间内从曲面S 的负侧流向正侧的总流量为E =⎰⎰++sRdxdy Qdzdx pdydz2.设S 为柱面222x y R +=被平面0,z z H ==所截的部分,则⎰⎰+syx ds22= R H π2 三 计算题1.用两种方法计算⎰⎰sxdzdy ,S 为球面0,01222≥≥=++z y z y x 在的部分,取球面外侧[答案]解一,化为重积分的方法{}{}dydzz y dydz z y dydz z y xdzdy z y z y D z y z y x S z y z y D z y z y x S xdydzxdydz xdzdy DDSDs s s⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--=------=≤+≤=∈---=≤+≤=∈--=+=2222222222222221121110),(),(,1:10),(),(,1:1261)1(31211)10,20(,sin ,cos 23221222ππθπθθθπ=--⋅=-=--≤≤≤≤==⎰⎰⎰⎰r drr r d dydz z y r r z r y D令⎰⎰=∴sxdydz 3π解二,利用高斯公式算添加坐标面上两个半圆⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=∴=⋅===≥=+≥=+=++sS VS sS VS xdydz dxdydz xdydz xdydz y y x S z z x S dxdydzxdydz xdydz xdydz 3334410,00,1:0,1:1212222221πππ2.计算()()⎰⎰-+-Sxdydz z y dxdy y x 其中S 为柱面122=+y x 及平面0=z 和3=z 所围成的空间闭区域V 的整个边界曲面的外侧.解 ()x z y P -=,0=Q ,y x R -=,z y x P -=∂∂,0=∂∂y Q 0=∂∂zR 由Gauss 公式()()⎰⎰∑-+-xdydz z y dxdy y x =()⎰⎰⎰Ω-dV z y()=-=⎰⎰⎰Ωdz d d z θρρθρsin ()⎰⎰⎰-πθρρρθ201030sin dz z d d π29-= 3.计算333Sx dydz y dzdx z dxdy ++⎰⎰,S 为球面2222x y z a ++=的外侧.解 33222222222()()SS S x dydz a y z dydz a y z =------⎰⎰⎰⎰⎰⎰后前3322222252242()2()5yzaS dydz a y z dydz d a r rdr a ππθ=--=-=⎰⎰⎰⎰ 同理 332225242()5SS S Szxy dzdx a y z dxdz a π=+=--=⎰⎰⎰⎰⎰⎰⎰⎰左右则 原式=55412355a a ππ⋅= 另解 (2)原式=2223()Vx y z dxdydz ++⎰⎰⎰5420512sin 3a dr r d d aπϕϕθππ==⎰⎰⎰4.222,Sx dydz y dxdz z dxdy S ++⎰⎰:立方体0,,x y z a ≤≤的外表面;解 (1)原式=(222)Vx y z dxdydz ++⎰⎰⎰402()3a a adx dy x y z dz a =++=⎰⎰⎰5.计算()⎰⎰--+SdS x x z xy 222, S 是平面622=++z y x 在第一卦限中的部分.解: S 在xOy 面上的投影为D {}x y x y x -≤≤≤≤=30,30),(, 由622=++z y x 得y x z 226--=,所以2-=x z ,2-=y z (2分) 因此()⎰⎰--+SdS x x z xy 222()⎰⎰---+=Dd x y x xy σ2223623()⎰⎰--+--=30302222363xdy y xy xx dx (4分)()()()()dx x x x x x x ]333236[323022---+---=⎰ ()dx x x ⎰+-=303231093427-=(6分) 6.计算⎰⎰⎪⎭⎫ ⎝⎛++S dS y z x 342, S 是平面1432=++z y x 在第一卦限中的部分.解: S 在xOy 面上的投影为D ⎭⎬⎫⎩⎨⎧-≤≤≤≤=2330,20),(x y x y x ,(2分)由1432=++z y x 得3424y x z --=,所以2-=x z ,34-=y z 因此⎰⎰⎪⎭⎫ ⎝⎛++S dS y z x 342⎰⎰⎪⎭⎫ ⎝⎛+--+=D d y y x x σ3434242361(4分) 61436143614202330===⎰⎰⎰⎰-x Ddy dx d σ(6分)7. 计算第一型曲面积分ds y x S)(22+⎰⎰,其中S 是锥面22y x z +=与平面1=z 所围成的区域的整个边界曲面. 解:设1S :22y x z +=,2S :1=z1S 和2S 在xy 平面上的区域均为{}1:),(22≤+=y x y x Dds y x S)(22+⎰⎰ ++=⎰⎰ds y x S )(221ds y x S )(222+⎰⎰ dxdy y x dxdy y x y y x x y x DD )(1)(2222222222+++++++=⎰⎰⎰⎰2)12()12()()12(2010322+=+=++=⎰⎰⎰⎰πθπd dr r dxdyy x D8.⎰⎰+Sds y x )(22 其中S 为立体h z y x ≤≤+22的边界曲面。
第二十二章曲面积分§1 第一型曲面积分1. 计算下列第一型曲面积分:(1)()⎰⎰++SdS z y x ,其中S 是上半球面0,2222≥=++z a z y x;解 由对称性得0==⎰⎰⎰⎰SSydSxdS ,只要计算⎰⎰SzdS 即可.因为222222222,,yx a y z yx a x z y x a z y x ---=---=--=,所以3222222a dxdy azdS dxdy y x a adS a y x Sπ==⇒--=⎰⎰⎰⎰≤+, 则()3a dS z y x Sπ=++⎰⎰. (2)()⎰⎰+SdS y x22,其中S 为立体122≤≤+z y x ;的边界曲面;解 因为曲面S 是由1,1:,:222221≤+=+=y x z S y x z S 组成,它们在xOy 平面上的投影区域是122≤+y x .故()()()()()()122220132010312222222222222221+=+=+++=+++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰≤+≤+πθθππdr r d dr r d dxdy y xdxdy y xdSy x dS y x dS y xy x zy x S S S(3)⎰⎰+S y x dS 22,其中S 是柱面222R y x =+被平面H z z ==,0所截取的部分; 解R HRH R dS R y x dS SSππ22112222===+⎰⎰⎰⎰.(4)⎰⎰SxyzdS ,其中S 是平面1=++z y x 在第一卦限中的部分.解()()1203163111031010=-=+--=⎰⎰⎰⎰⎰-dx x x dy y y x y xdx dS xyz xS. 2. 求均匀曲面0,0,0,2222≥≥≥=++z y x a z y x 的重心. 解 设重心坐标为()z y x ,,,由对称性得:z y x ==,SzdSdSzdS z SSS⎰⎰⎰⎰⎰⎰==,其中221a S π=.而dxdy yx a a z z dS y x 222221--=++=.则341a adxdy zdS DS π==⎰⎰⎰⎰(D 为S 在xOy 平面上的投影),2a z =.因而重心坐标为⎪⎭⎫⎝⎛2,2,2a a a . 3. 求密度为ρ的均匀球面0,2222≥=++z a z y x 对于z 轴的转动惯量.解()()420223222222222223412222222222a dr r a r d a dxdy yx a y x adxdyz z y xadS y xJ aa y x ay x y x az y x z πρθρρρρπ=-=--+=+++=+=⎰⎰⎰⎰⎰⎰⎰⎰≤+≤+=++4. 计算⎰⎰SdS z 2,其中S 为圆锥表面的一部分: ⎩⎨⎧≤≤≤≤⎪⎩⎪⎨⎧===,20,0:.cos ,sin sin ,sin cos :πϕθθϕθϕa r D r z r y r x S这里θ为常数⎪⎭⎫⎝⎛<<20πθ. 解 这里S 的参量方程以ϕ,r 为参量.因为.sin sin cos sin sin ,0sin cos sin sin cos sin ,1cos sin sin sin cos 222222222222222222222θθϕθϕθϕϕθϕϕθθϕθϕϕϕϕϕϕϕr r r z y x G r r z z y y x x F z y x E r r r r r r =+=++==+-=++==++=++=所以,根据公式(1.2)得θθπθθϕϕθπ24022202222cos sin 21sin cos cos a dr r r d drd F EG r dS z aSS =⋅=-=⎰⎰⎰⎰⎰⎰. §2 第二型曲面积分1. 计算下列第二型曲面积分:(1)()()⎰⎰+++-Sdxdy xz y dzdx xdydz z x y 22,其中S 为由,0===z y x z y x ===a 六个平面所围成的立方体表面并取外侧为正向;解 ()()2224020220000a dy y a dy y a y a yzdz dy dz z a y dy dydz z x y a aaaaaS=+⎪⎪⎭⎫ ⎝⎛-=+-=-⎰⎰⎰⎰⎰⎰⎰⎰. 002022=-=⎰⎰⎰⎰⎰⎰a aa aSdx x dz dx x dz dzdx x;()()240222a dy y dx dy ax y dx dxdy xz yaaa aS=-+=+⎰⎰⎰⎰⎰⎰.所以 ()()422a dxdy xz y dzdx x dydz z x y S=+++-⎰⎰. (2)()()()⎰⎰+++++Sdxdy x z dzdx z y dydz y x ,其中S 是以原点为中心,边长为2的立方体表面并取外侧为正向;解 由被积表达式的结构和积分曲面的对称性知,z y x ,,两两对称.由对称性知,只需计算其中之一即可.又()()()⎰⎰⎰⎰⎰⎰----=+--+=+11111111811dz y dy dz y dy dydz y x S,故()()()2483=⨯=+++++⎰⎰Sdxdy x z dzdx z y dydz y x .(3)⎰⎰++Sxzdxdy yzdzdx xydydz,其中S 为由平面0===z y x 和1=++z y x 所围成的四面体表面并取外侧为正向;解 由对称性知,只需计算⎰⎰Sxzdxdy 即可.而()()()()24112111102210102=⎥⎦⎤⎢⎣⎡---=--=--=⎰⎰⎰⎰⎰⎰⎰-dx x x x x dy xy xx dx dxdy y x x xzdxdy xD Sxy故812413=⨯=++⎰⎰Sxzdxdy yzdzdx xydydz . (4)⎰⎰Syzdzdx ,其中S 是球面1222=++z y x的上半部分并取外侧为正向;解 由于曲面S 是上半球面,积分运算应作球坐标变换,令ϕϕθϕθcos ,sin sin ,sin cos ===z y x ,其中πθπϕ20,20≤≤≤≤.故4cos sin sin 202022πθϕϕθϕππ==⎰⎰⎰⎰d d yzdzdx S.(5)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 是球面()()()2222R c z b y a x =-+-+-并取外侧为正向. 解 对于⎰⎰Sdydz x 2,S 可表示为()()()yz D z y c z b y R a x ∈-+--±=,,222.于是 ()()()()()()⎰⎰⎰⎰⎰⎰⎰⎰----=⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛----+=yzyzyzDD DS dydzc z b y R a dydz c z b y R a dydz c z b y R a dydz x 2222222222224作变量替换:θθsin ,cos r c z r b y +=+=,得a R dr r R r d a dydz x R S3200222384πθπ=-=⎰⎰⎰⎰. 同理可得.38,383232c R dxdy z b R dzdx y SSππ==⎰⎰⎰⎰ 所以()c b a R dxdy z dzdx y dydz x S++=++⎰⎰322238π. 2. 设某流体的流速为()0,,y k v =,求单位时间内从球面4222=++z y x 的内部流过球面的流量.解 设流量为E ,则ππ33223403=⋅+=+⎪⎪⎭⎫⎝⎛+=+=⎰⎰⎰⎰⎰⎰⎰⎰SS ydzdx k ydzdx kdydz E 球前球后. 3. 计算第二型曲面积分()()()⎰⎰++=Sdxdy z h dzdx y g dydz x f I 其中S 是平行六面体()c z b y a x ≤≤≤≤≤≤0,0,0的表面并取外侧为正向,()()()z h y g x f ,,为S 上的连续函数.解 设平行六面体在xOy zOx yoz ,,面上的投影区域分别为xy zx yz D D D ,,,则有()()[]()()[]()()[]()()[]()()[]abh c h ca g b g bc f a f dxdyh c h dydz f a f I xyyzD D 00000-+-+-=-+-=⎰⎰∑⎰⎰4. 设磁场强度为()z y x E ,, ,球从球内发出通过上半球面0,2222≥=++z a z y x 的磁通量.解 所求磁通量⎰⎰++=ΦSzdxdy ydzdx xdydz .其中S 为题目所给的上半球面并取上侧为正向.首先().322230022222222222a dr r a r d dydzz y a dydz z y a dydz z y a xdydz a D D D Syzyzyzπθπ=-=--=------=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰类似地,有332a ydzdx Sπ=⎰⎰.又 .32320022222a dr r a r d dxdy y x a zdxdy a D S xyπθπ=-=---=⎰⎰⎰⎰⎰⎰ 故 33332323232a a a a ππππ=++=Φ. §3 高斯公式和斯托克斯公式1. 应用高斯公式计算下列曲面积分:(1)⎰⎰++Sxydxdy zxdzdx yzdydz ,其中S 是单位球面1222=++z y x的外侧;解 00==++⎰⎰⎰⎰⎰VSdxdydzxydxdy zxdzdx yzdydz .(2)⎰⎰++Sdxdy z dzdx y dydz x222,其中S 是立方体a z y x ≤≤,,0表面的外侧;解()()()()4032002000222322222a dx a x a dy a a y x dx dzz y x dy dx dxdydz z y x dxdy z dzdx y dydz x a aaaaaVS =+=⎥⎦⎤⎢⎣⎡++=++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)⎰⎰++Sdxdy z dzdx y dydz x222,其中S 是锥面222z y x =+与平面h z =所围空间区域()h z ≤≤0的表面,方向取外侧;解()⎰⎰⎰⎰⎰++=++VSdxdydz z y x dxdy z dzdx y dydz x 2222, 由柱面坐标变换z z r y r x ===,sin ,cos θθ,其中h z r h r ≤≤≤≤≤≤,0,20πθ得 原式()4202sin cos 2h dz z r r dr d h hrπθθθπ=++=⎰⎰⎰.(4)⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 是单位球面1222=++z y x 的外侧; 解 原式()πϕθϕππ512sin 302014222==++=⎰⎰⎰⎰⎰⎰dr r d d dxdydz z y xV. (5)⎰⎰++Szdxdy ydzdx xdydz ,其中S 是上半球面222y x a z --=的外侧;解 因为S 不是封闭曲面,故需补一个曲面2221,0:a y x z S ≤+=.则⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=++-++=+++vS S S Sa dv zdxdy ydzdx xdydz zdxdy ydzdx xdydz zdxdy ydzdx xdydz 320311π. 2. 应用高斯公式计算三重积分()⎰⎰⎰++Vdxdydz zx yz xy ,其中V 是有10,0,0≤≤≥≥z y x 与122≤+y x 所确定的空间区域.解(方法1) 记.0,10,10:;0,10,10:;0,1,10,0,0:32221=≤≤≤≤=≤≤≤≤=≤+≤≤≥≥y z x D x z y D z y x z y x D根据高斯公式,得()⎰⎰⎰⎰⎰++=++SVxyzdxdy xyzdzdx xyzdydzdxdydz zx yz xy ,其中S 为V 的边界曲面,并取外侧.因为81cos sin 201031===⎰⎰⎰⎰⎰⎰πθθθdr r d xydxdy dxdy xyz D S, 6111101222=-=-=⎰⎰⎰⎰⎰⎰dz y yz dy dydz y yz dydz xyz D S, 6111101223=-=-=⎰⎰⎰⎰⎰⎰dz x xz dx dzdx x xz dzdx xyz D S, 所以()2411616181=++=++⎰⎰⎰Vdxdydz zx yz xy . 方法2()()()()()()().24111121121112111212110210210210101010210102222222=⎥⎦⎤⎢⎣⎡-+-+-=⎥⎦⎤⎢⎣⎡+-+-=⎥⎥⎦⎤⎢⎢⎣⎡+-++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-dx x x dx x ydy y dy xdx zdz x dx ydz y dy xdxdy zdzdx x ydydz y xdxdyz zdzdx y ydydz x dxdydz zx yz xy x D D D SVxyzx yz3. 应用斯托克斯公式计算下列曲线积分:(1)()()()⎰+++++Ldz y x dy z x dx z y222222,其中L 为1=++z y x 与三坐标面的交线,它的走向使所围平面区域上侧在曲线的侧;解 L 可看成为曲面()1,0,01:≤+≥≥--=y x y x y x z S 的边界,所以由斯托克斯公式()()()()()()⎰⎰⎰-+-+-=+++++SLdxdy y x dzdx x z dydz z y dz y x dy z x dx z y2222222.因()()()()012111021010=⎥⎦⎤⎢⎣⎡---=-=-⎰⎰⎰⎰⎰-dy y y y dz z y dy dydz z y yS,同理()()0⎰⎰⎰⎰=-=-SSdxdy y x dzdx x z ,所以原式0=.(2)⎰++Lzdz dy dx y x 32,其中L 为y x z y ==+,122所交的椭圆正向;解 设S 为由122=+z y 与y x =所交椭圆面,L 为其边界.S 在xOy 平面上的投影区域11,0,:≤≤-==x z x y D xy ,则原式()033300222222=-=-=-++=⎰⎰⎰⎰⎰⎰xyD SSdxdy y x dxdy y x dxdy y xdzdx dydz .(3)()()()⎰-+-+-Ldz x y dy z x dx y z ,其中L 为以()()()a C a B a A ,0,0,0,,0,0,0,为顶点的三角形沿ABCA 的方向;解()()()2222321212122111111a a a a dxdydzdx dydz dxdy dzdx dydz SS=⎪⎭⎫ ⎝⎛++=++=+++++=⎰⎰⎰⎰原式4. 求下列全微分的原函数:(1) xydz xzdy yzdx ++; (2) ()()()dz xy z dy xz y dx yz x 222222-+-+-.解 (1) 因为()()C xyz z y x u xydz zxdy yzdx xyz d +=⇒++=,,. (2) 因为()()()()dz xy z xz y dx yz x xyz z y x d 222231222333-+-+-=⎥⎦⎤⎢⎣⎡-++, 所以原函数()()C xyz z y x z y x u +-++=231,,333. 5. 验证下列曲线积分与路线无关,并计算其值: (1) ()()⎰--+4,3,21,1,132dz z dy y xdx ;(2)()()⎰++++222111,,,,222z y x z y x z y x zdzydy xdx ,其中()()222111,,,,,z y x z y x 在球面2222a z y x =++上.解 (1) 在3R 内有dz z dy y xdx z y x d 32432413121-+=⎪⎭⎫⎝⎛-+.所以所给曲线积分与路线无关,且可得原积分1275341331221-=++=⎰⎰⎰-dz z dy y xdx . (2) 在(){}0,0,0\3R =Ω内有()222222zy x zdz ydy xdx z y xd ++++=++,所以所给曲线积分与路线无关,且可得212121212121222222122221212222222122221212=++++++++=++++++++=⎰⎰⎰z z y y x x z z y y x x z y x z y x z y x z y x zdzz y x ydydx z y x x 原积分.6. 证明:由曲面S 所包围的立体V 的体积V ∆为()⎰⎰++=∆SdS z y x V γβαcos cos cos 31,其中γβαcos ,cos ,cos 为曲面S 的外法线方向余弦.证()()V dxdydzzdxdy ydzdx xdydz dS z y x VSS∆=++=++=++⎰⎰⎰⎰⎰⎰⎰3111cos cos cos γβα.7. 证明:若S 为封闭曲面,l 为任何固定方向,则()0,cos =⎰⎰SdS l n ,其中n为曲面S 的外法线方向.证 设n 和l的方向余弦是γβαγβα'''cos ,cos ,cos ,cos ,cos ,cos ,则()γγββαα'+'+'=cos cos cos cos cos cos ,cos l n.所以()()⎰⎰⎰⎰⎰⎰'+'+'='+'+'=外S SS dxdydzdx dydz dSdS l n γβαγγββααcos cos cos cos cos cos cos cos cos ,cos又因l的方向固定()()()γβα'='='=cos ,,,cos ,,,cos ,,z y x R z y x Q z y x P 都是常数,故0=++z y x R Q P ,由高斯公式原式()0=++=++=⎰⎰⎰⎰⎰Vz y xSdxdydz R Q PRdxdy Qdzdx Pdydz .8. 证明公式()dS n r r dxdydz SV ⎰⎰⎰⎰⎰= ,cos 21,其中S 是包围V 的曲面,n是S 的外法线方向. 证 ()()()()()()()z n z r y n y r x n x r n r ,cos ,cos ,cos ,cos ,cos ,cos ,cos++=,而()()()rzz r r y y r r x x r ===,cos ,,cos ,,cos ,所以()()()()[].12,cos ,cos ,cos 1,cos ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=++=++=VV S SS dxdydz r dxdydz r z z r y y r x x dxdy r zdzdx r y dydz r x dS z n z y n y x n x r dS n r 外9. 若L 是平面0cos cos cos =-++p z y x γβα上的闭曲线,它所包围区域的面积为S ,求⎰Lzyxdzdy dxγβαcos cos cos ,其中L 依正向进行. 解(方法1) 因为()()()βααγγβcos cos ,,,cos 2cos ,,,cos cos 2,,x y z y x R x z y x Q y z y x P -=-=-=,由斯托克斯公式及第一、二型曲面积分的关系,得().2cos cos cos 2cos cos cos 2cos cos cos 2cos cos cos 2cos cos cos 222S dS dxdy dzdx dydz x y x y z yx dxdy dzdxdydz z yx dzdy dx SSSL =++=++=---∂∂∂∂∂∂=⎰⎰⎰⎰⎰⎰⎰γβαγβαβααγγβγβα方法2().2cos cos cos 2cos cos cos 2)cos cos ()cos cos ()cos cos (cos cos cos 222S dS dxdy dzdx dydz dzx y dy z x dx y z zy x dz dydx S S L L =++=++=-+-+-=⎰⎰⎰⎰⎰⎰γβαγβαβααγγβγβα。
第二十二章 曲面积分总练习题1、设P=x 2+5λy+3yz, Q=5x+3λxz-2, R=(λ+2)xy-4z.(1)计算⎰++L Rdz Qdy Pdx , L 为螺旋线x=acost, y=asint, z=ct(0≤t ≤2π); (2)设A=(P ,Q,R), 求rotA;(3)问在什么条件下A 为有势场?并求势函数.解:(1)⎰++L Rdz Qdy Pdx =⎰-++πλ2022)sin )(sin 3sin 5cos (dt t a t act t a t a +⎰-+πλ20)cos )(2cos 3cos 5(dt t a t act t a +⎰-+πλ202]4cos sin )2[(cdt ct t t a =⎰++-πλ20222223)sin 3sin 5sin cos (dt t ct a t a t t a +⎰-+πλ202222)cos 2cos 3cos 5(dt t a t ct a t a +⎰-+πλ2022]4cos sin )2[(dt t c t t c a =-5πλa 2-3π2a 2c+5πa 2+3π2λa 2c-8π2c 2=πa 2(-5λ-3πc+5+3πλc)-8π2c 2 =πa 2[5(1-λ)-3πc(1+λ)]-8π2c 2=πa 2(1-λ)(5-3πc)-8π2c 2. (2)rotA=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,=((λ+2)x-3λx,3y-(λ+2)y,5+3λz-5λ-3z) =(2(1-λ)x,(1-λ)y,(1-λ)(5-3z)).(3)当(2)知,当λ=1时,rotA=0,此时A 为有势场,其势函数为: u(x,y,z)=⎰-+-++++),,()0,0,0(2)43()235()35(z y x dz z xy dy xz x dx yz y x +C=⎰⎰⎰-+++z y x dz z xy dy x dx x 0002)43()25(+C=31x 3+5xy-2y+3xyz-2z 2+C.2、证明:若△u=22x u ∂∂+22yu ∂∂+22z u∂∂, S 为包围区域V 的曲面外侧, 则:(1)⎰⎰⎰∆Vudxdydz =⎰⎰∂∂SdS nu;(2)⎰⎰∂∂SdS n uu=⎰⎰⎰∇∙∇V udxdydz u +⎰⎰⎰∆∙Vudxdydz u , 其中u 在区域V 及界面S 上有二阶连续偏导数, nu∂∂为沿曲面S 外法线方向的方向导数. 证:(1)⎰⎰∂∂SdS n u =⎰⎰⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂S dS z n z uy n y u x n x u ),cos(),cos(),cos( =⎰⎰∂∂+∂∂+∂∂外S dxdy z udzdx y u dydz x u =⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V dxdydz z u y u x u 222222=⎰⎰⎰∆V udxdydz . (2)⎰⎰∂∂SdS n u u=⎰⎰∂∂+∂∂+∂∂外Sdxdy z uu dzdx y u u dydz x u u =⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz z u u z u y u u y u x u u x u 222222222=⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz z u y u x u 222+⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V dxdydz z u y u x u u 222222 =⎰⎰⎰∇∙∇Vudxdydz u +⎰⎰⎰∆∙Vudxdydz u .3、设S 为光滑闭曲面,V 为S 所围的区域. 函数u(x,y,z)在V 与S 上具有二阶连续偏导数, 函数ω(x,y,z)偏导连续. 证明: (1)⎰⎰⎰∂∂Vdxdydz x u ω=⎰⎰Sdydz u ω-⎰⎰⎰∂∂V dxdydz x u ω; (2)⎰⎰⎰∆Vudxdydz ω=⎰⎰∂∂SdS n uω+⎰⎰⎰∇∙∇Vdxdydz u ω. 证:(1)由高斯公式:⎰⎰⎰∂∂Vdxdydz x P=⎰⎰SPdydz , 令P=u ω, 有 ⎰⎰⎰⎪⎭⎫ ⎝⎛∂∂+∂∂V dxdydz x w u x uω=⎰⎰S dydz u ω, 即 ⎰⎰⎰∂∂Vdxdydz x u ω=⎰⎰Sdydz u ω-⎰⎰⎰∂∂V dxdydz x u ω.(2)由(1)式用x u ∂∂代替u 有:⎰⎰⎰∂∂V dxdydz x u22ω=⎰⎰∂∂S dydz x u ω-⎰⎰⎰∂∂∂∂V dxdydz x x u ω. 同理可得:⎰⎰⎰∂∂Vdxdydz y u22ω=⎰⎰∂∂S dzdx y u ω-⎰⎰⎰∂∂∂∂V dxdydz y y u ω; ⎰⎰⎰∂∂Vdxdydz z u22ω=⎰⎰∂∂S dxdy z u ω-⎰⎰⎰∂∂∂∂V dxdydz z z u ω; 三式相加可得: ⎰⎰⎰∆Vudxdydz ω=⎰⎰∂∂SdS n uω+⎰⎰⎰∇∙∇Vdxdydz u ω. 4、设A=3||r r, S 为一封闭曲面, r=(x,y,z). 证明当原点在曲面S 的外、上、内时,分别有⎰⎰∙SdS A =0、2π、4π.证:设n 0=(cos α,cos β,cos γ)为曲面S 的单位法向量, 则ds=n 0ds, 当原点在S 的外面时,由奥高公式可得:⎰⎰∙SdS A =⎰⎰SdS An 0=⎰⎰++SdS r z y x 3||cos cos cos γβα=⎰⎰⎰⎪⎪⎭⎫⎝⎛-+-+-V dxdydzr z r r y r r x r 523523523||3||1||3||1||3||1=⎰⎰⎰⎪⎪⎭⎫⎝⎛-Vdxdydz r r 33||3||3=0. 当原点在S 上时,则所给曲面积分变为广义的. 如果曲面S 在原点处有一确定的切面,则⎰⎰∙SdS A =2π.当原点在S 内时,作一个以原点为中心,以r 为半径的小球面σ, 在S 和σ之间的区域V 1上应用奥高公式,则有⎰⎰⎰⎰∙-外外S AdS σ=⎰⎰⎰⎰-外外S dS An σ0=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-133||3||3V dxdydz r r =0,∴⎰⎰∙外S AdS =⎰⎰∙外σdS A =⎰⎰外σdS An 0=⎰⎰⋅外σdS r r r r ||||3=⎰⎰外σdS r 21=4πr 2·21r =4π.5、计算I=⎰⎰++Szydxdy yxdzdx xzdydz , 其中S 是柱面x 2+y 2=1在-1≤z ≤1和x ≥0的部分. 曲面侧的法向与x 轴正向成锐角. 解:∵曲面S 在xOy 平面上的投影曲线为x 2+y 2=1, ∴⎰⎰Szydxdy =⎰⎰≤+122y x zydxdy =0;∵曲面S 在yOz 平面上的投影区域D 为-1≤y,z ≤1, 曲面的则的法向与x 轴正向成锐角, 是正侧,x=21y -, ∴⎰⎰Sxzdydz =⎰⎰Dxzdydz =⎰⎰---112111dy y zdz =0;∵曲面在zOx 平面上的投影区域Ω为0≤x, -1≤z ≤1,记S 1: y=21x -, 它与y 轴正向夹角为锐角,是曲面的侧的正侧; S 2: y=-21x -, 它与y 轴正向夹角为钝角,是曲面的侧的负侧; 根据对称性,有⎰⎰Syxdzdx =2⎰⎰Ω-dzdx x x 21=2⎰⎰--102111dx x x dz =⎰⎰--1023210)1()1(32x d x dz =34. ∴I=⎰⎰++Szydxdy yxdzdx xzdydz =0+0+34=34.6、证明公式:⎰⎰++Dd d p n m f ϕθϕϕθϕθϕsin )cos sin sin cos sin (=2πdu p n m u f ⎰-++11222)(,其中D={(θ,φ)|0≤θ≤2π, 0≤φ≤π}, m 2+n 2+p 2>0, f(t)在|t|<222p n m ++时为连续函数.证:设S 为球面x 2+y 2+z 2=1, 则有.P=⎰⎰++Dd d p n m f ϕθϕϕθϕθϕsin )cos sin sin cos sin (=⎰⎰++Sds pz ny mx f )(.建立新坐标系O-uv ω, 与原坐标系O-xyz 共原点,且 O-v ω平面为O-xyz 坐标系的平面.mx+ny+pz=0, ou 轴过原点且垂直于O-v ω, 于是有u=222pn m pz ny mx ++++.在新坐标系O-uv ω中,P=ds p n m u f S⎰⎰++)(222. 球面S 可表示为:u=u, v=21u -cos ω, ω=21u -sin ω, (-1≤u ≤1, 0≤ω≤2π), 则ds=dud ω. ∴P=⎰⎰-++1122220)(du p n m u f d πω=2πdu p n m u f ⎰-++11222)(, 得证!。
第二十二章 曲面积分 1 第一型曲面积分一、第一型曲面积分的概念定义1:设S 是空间中可求面积的曲面,f(x,y,z)为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块S i (i=1,2,…,n), 以△S i 记小曲面块S i 的面积,分割T 的细度T =ni ≤≤1max {S i 的直径},在S i 上任取一点(ξi ,ηi ,ζi ) (i=1,2,…,n),若极限i ni i i i T S f ∆∑=→1),,(lim ζηξ存在, 且与分割T 及(ξi ,ηi ,ζi ) (i=1,2,…,n)的取法无关,则称此极限为f(x,y,z)在S 上的第一型曲面积分,记作⎰⎰SdS z y x f ),,(.性质:1、存在性:若f(x,y,z)在光滑曲面S 上连续,则第一型曲面积分存在.2、可加性:若曲面S 由互不相交的曲面S 1,S 2,…,S k 组成,且⎰⎰iS dS z y x f ),,((i=1,2,…,k)都存在,则⎰⎰SdS z y x f ),,(也存在,且⎰⎰SdS z y x f ),,(=∑⎰⎰=ki S idS z y x f 1),,(.3、线性:若⎰⎰Si dS z y x f ),,( (i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则⎰⎰∑=S k i ii dS z y x f c 1),,(=∑⎰⎰=ki SiidS z y x f c 1),,(.4、若⎰⎰SdS z y x f ),,(与⎰⎰SdS z y x g ),,(都存在,且f(x,y,z)≤g(x,y,z),则⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x g ),,(.5、若⎰⎰SdS z y x f ),,(存在,则⎰⎰SdS z y x f |),,(|也存在,且⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x f |),,(|.6、若⎰⎰SdS z y x f ),,(存在,S 的表面积为s ,则存在常数c ,使得⎰⎰SdS z y x f ),,(=cs, 这里),,(infz y x f S≤c ≤),,(sup z y x f S.注:当f(x,y,z)=1时, 曲面积分⎰⎰SdS 就是曲面块S 的面积.二、第一型曲面积分的计算定理22.1:设光滑曲面S :z=z(x,y), (x,y)∈D ,函数f(x,y,z)在S 上连续,则⎰⎰SdS z y x f ),,(=⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(. 证:由定义知⎰⎰SdS z y x f ),,(=i ni i i i T S f ∆∑=→1),,(lim ζηξ, 其中 △S i =⎰⎰∆++iD y x dxdy z z 221=i i i y i i xD z z ∆++),(),(122ηξηξ. ∴⎰⎰SdS z y x f ),,(=i i i y i i x ni i i i i T D z z z f ∆++∑=→),(),(1)),(,,(lim 221ηξηξηξηξ =⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(.例1:计算⎰⎰SzdS,其中S 是球面x 2+y 2+z 2=a 2被平面z=h(0<h<a)所截的顶部.解:曲面S 的方程为z=222y x a --, 定义域为圆域x 2+y 2≤a 2-h 2.∵221yxz z ++=222222221y x a y y x a x --+--+=222yx a a--,∴⎰⎰Sz dS =⎰⎰--⋅--D dxdy y x a ay x a 2222221=⎰⎰--D dxdy y x a a 222=⎰⎰--2202220h a rdr ra a d πθ=2a πln h a.例2:计算⎰⎰++SdS z y x )(222, 其中(1)S :x 2+y 2+z 2=a 2;(2)S :x 2+y 2+z 2=2az.解:(1)⎰⎰++SdS z y x )(222=⎰⎰SdS a 2= a 2·4πa 2=4πa 4.(2)⎰⎰++SdS z y x )(222=⎰⎰SazdS 2=⎰⎰12S azdS +⎰⎰22S azdS ,其中S 1=z 1=a+)222y x a --, (x,y)∈D; S 2=z 2=a-222y x a --, (x,y)∈D.∵21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =22221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =222yx a a --, ∴⎰⎰12S azdS =⎰⎰----+Ddxdy y x a a y x a a a 222222)(2,⎰⎰22S azdS =⎰⎰-----Ddxdy yx a ay x a a a 222222)(2,∴⎰⎰++SdS z y x )(222=4⎰⎰--Ddxdy y x a a 2223=4a3⎰⎰-ar a rdr d 02220πθ=8πa 4.注:在由参量形式表示的光滑曲面S :⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D上的第一型曲面积分的计算公式为:⎰⎰SdS z y x f ),,(=⎰⎰-Ddudv F EG v u z v u y v u x f 2)),,(),,(),,((, 其中E=x u 2+y u 2+z u 2, F=x u x v +y u y v +z u z v , G=x v 2+y v 2+z v 2, 且雅可比行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂中至少有一个不等于0.例3:计算⎰⎰SzdS ,其中S 为螺旋面的一部分.⎪⎩⎪⎨⎧===vz v u y vu x sin cos , (u,v)∈D :⎩⎨⎧≤≤≤≤π200v a u . 解:E=x u 2+y u 2+z u 2=cos 2v+sin 2v=1; G=x v 2+y v 2+z v 2=u 2sin 2v+u 2cos 2v+1=u 2+1; F=x u x v +y u y v +z u z v =-usinvcosv+ucosvsinv=0;∴⎰⎰SzdS =⎰⎰+Ddudv u v 12=dv v du u a⎰⎰+π20021=2π2[])1ln(122++++a a a a .习题1、计算下列第一型曲面积分:(1)⎰⎰++SdS z y x )(,其中S 为上半球面x 2+y 2+z 2=a 2, z ≥0;(2)⎰⎰+SdS y x )(22,其中S 为立体22y x +≤z ≤1的边界曲面;(3)⎰⎰+Syx dS 22,其中S 为柱面x 2+y 2=R 2被平面z=0, z=H 所截取的部分; (4)⎰⎰SxyzdS ,其中S 为平面x+y+z=1在第一卦限中的部分.解:(1)∵z=222yx a --, z x 2=22z x , z y 2=22z y , ∴221y x z z ++=222zx a a --. 又D={(x,y)|x 2+y 2≤a 2}. ∴⎰⎰++SdS z y x )(=()⎰⎰----++Ddxdyz x a y x a y x a 222222 =a ⎰⎰+-+πθθθ20220)1sin cos (rd r a r r dr a=2πa ⎰ardr 0=πa 3.(2)S=S 1+S 2, 其中S 1:z 1=22y x +, S 2:z 2=1.∵21⎪⎭⎫⎝⎛∂∂x z =222y x x +; 21⎪⎪⎭⎫ ⎝⎛∂∂y z =222y x y +; ∴21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =2. 又22221⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =1, D={(x,y)|x 2+y 2≤1}; ∴⎰⎰+1)(22S dS y x =⎰⎰+Ddxdy y x )(222=⎰⎰103202dr r d πθ=22π; ⎰⎰+2)(22S dS y x =⎰⎰+Ddxdy y x )(22=⎰⎰1320dr r d πθ=2π; ∴⎰⎰+SdS y x )(22=⎰⎰+1)(22S dS y x +⎰⎰+2)(22S dS y x =)12(2+π.(3)⎰⎰+Sy x dS 22=⎰⎰SdS R 21=21R ·2πRH=RH π2. (4)z=1-x-y, z x =-1, z y =-1, ∴221y x z z ++=3.又D={(x,y)|x+y ≤1,0≤x ≤1}, ∴⎰⎰SxyzdS =⎰⎰--Ddxdy y x xy )1(3=⎰⎰---xdyy x xy dx 1010)1(3=⎰⎥⎦⎤⎢⎣⎡-+-10432612121613dx x x x x =1203.2、求均匀曲面:x 2+y 2+z 2=a 2, x ≥0,y ≥0,z ≥0的质心. 解:∵z=222yx a --, z x 2=2222y x a x --, z x 2=2222yx a y --,∴221y x z z ++=222y x a a--, 又曲面面积为21πa 2,D 为四分之一圆域x 2+y 2≤a 2在第一象限部分.∴x =⎰⎰SxdS a22π=dr r a ar d a a⎰⎰-022222cos 2θθππ=⎰20cos 2πθθd a =2a ;y =⎰⎰SydS a 22π=dr r a ar d a a⎰⎰-022222sin 2θθππ=⎰20sin 2πθθd a =2a;z =⎰⎰SzdS a22π=dr ar d a a⎰⎰222πθπ=2a . ∴曲面的质心为(2a ,2a ,2a ).3、求密度为ρ的均匀球面x 2+y 2+z 2=a 2 (z ≥0)对于z 轴的转动惯量. 解:J z =⎰⎰SdS z ρ2=ρdr r a ar d a⎰⎰-02220πθ=34πa 4ρ.4、计算.⎰⎰SdS z2, 其中S 为圆锥表面的一部分S :⎪⎩⎪⎨⎧===θθϕθϕcos sin sin sin cos r z r y r x , (r,φ)∈D :⎩⎨⎧≤≤≤≤πϕ200a r ,θ为常数(0<θ<2π). 解:E=x r 2+y r 2+z r 2=cos 2φsin 2θ+sin 2φsin 2θ+cos 2θ=1; G=x φ2+y φ2+z φ2=r 2sin 2φsin 2θ+r 2cos 2φsin 2θ=r 2sin 2θ; F=x r x φ+y r y φ +z r z φ=-rsin φcos φsin θ+rsin φcos φsin θ=0; ∴⎰⎰S dS z 2=⎰⎰⋅Ddrd r r ϕθθsin cos 22=sin θcos 2θdr r d a⎰⎰0320πϕ=24a πsin θcos 2θ.。
《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。
第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。
第二十二章曲面积分2 第二型曲面积分一、曲面的侧概念:设连通曲面S上到处都有连续变动的切平面(或法线),M为曲面S上的一点,曲面在M处的法线有两个方向:当取定其中一个指向为正方向时,则另一个指向是负方向。
设M0为S上任一点,L为S上任一经过点M0,且不超出S边界的闭曲线。
动点M在M0处与M0有相同的法线方向,且有:当M从M0出发沿L连续移动时,它的法线方向连续地变动,最后当M沿L回到M0时,若这时M的法线方向仍与M0的法线方向相一致,则称曲面S是双侧曲面;若与M0的法线方向相反,则称S是单侧曲面.默比乌斯带:这是一个典型的单侧曲面例子。
取一矩形长纸带ABCD,将其一端扭转180°后与另一端黏合在一起(即让A与C重合,B与D 重合(如图).注:通常由z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与z轴的正向的夹角成锐角的一侧为正侧(也称为上侧)时,另一侧为负侧(也称为下侧). 当S为封闭曲面时,通常规定曲面的外侧为正侧,内侧为负侧.二、第二型曲面积分的概念引例:设流体以一定的流速v=(P(x,y,z),Q(x,y,z),R(x,y,z))从给定的曲面S 的负侧流向正侧,其中P ,Q,R 为所讨论范围上的连续函数,求单位时间内流经曲面S 的总流量E.分析:设在曲面S 的正侧上任一点(x,y,z)处的单位法向量为 n=(cos α,cos β,cos γ). 这里α,β,γ是x,y,z 的函数,则 单位时间内流经小曲面S i 的流量近似地等于v(ξi ,ηi ,ζi )·n(ξi ,ηi ,ζi )△S i =[P(ξi ,ηi ,ζi )cos αi ,Q(ξi ,ηi ,ζi )cos βi ,R(ξi ,ηi ,ζi )cos γi ]△S i , 其中(ξi ,ηi ,ζi )是S i 上任意取定的一点,cos αi ,cos βi ,cos γi 分别是S i 正侧上法线的方向余弦, 又△S i cos αi ,△S i cos βi ,△S i cos γi 分别是S i 正侧在坐标面yz, zx 和xy 上 投影区域的面积的近似值, 并分别记作△S iyz ,△S izx ,△S ixy , 于是 单位时间内由小曲面S i 的负侧流向正侧的流量也近似地等于 P(ξi ,ηi ,ζi )△S iyz +Q(ξi ,ηi ,ζi )△S izx +R(ξi ,ηi ,ζi )△S ixy ,∴单位时间内由曲面S 的负侧流向正侧的总流量为: E=}),,(),,(),,({lim 10ixy i i i ni izx i i i iyz i i i T S R S Q S P ∆+∆+∆∑=→ζηξζηξζηξ.定义1:设P , Q, R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面S 1,S 2,…,S n 组,分割T 的细度T =ni ≤≤1max {S i 的直径}, 以△S iyz ,△S izx ,△S ixy 分别表示S i 在三个坐标面上的投影区域的面积, 它们的符号由S i 的方向来确定.若S i 的法线正向与z 轴正向成锐角时, S i 在xy 平面的投影区域的面积 △S ixy 为正. 反之,若S i 的法线正向与z 轴正向成钝角时, △S ixy 为负. 在各小曲面S i 上任取一点(ξi ,ηi ,ζi ). 若存在以下极限∑∑∑=→=→=→∆+∆+∆ni ixy iiiT ni izx iiiT ni iyz iiiT S R S Q S P 111),,(lim),,(lim),,(limζηξζηξζηξ,且与曲面S 的分割T 和(ξi ,ηi ,ζi )在S i 上的取法无关,则称此极限为 函数P , Q, R 在曲面S 所指定的一侧上的第二型曲面积分,记作:⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(, 或⎰⎰⎰⎰⎰⎰++SSSdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.注:1、流体以v=(P ,Q,R)在单位时间内从曲面S 的负侧流向正侧的总流量E=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.2、若空间磁场强度为(P(x,y,z),Q(x,y,z),R(x,y,z),), 则通过曲面S 的磁通量(磁力线总数) H=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.性质:1、若⎰⎰++S i i i dxdy R dzdx Q dydz P(i=1,2,…,k)存在,则有dxdy R c dzdx Q c dydz P c k i i i k i i i S k i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=dxdy R dzdx Q dydz P c i i S i ki i ++⎰⎰∑=1,其中c i(i=1,2,…,k)是常数.2、若曲面S 是由两两无公共内点的曲面块S 1,S 2,…,S k 所组成,且⎰⎰++iS RdxdyQdzdx Pdydz(i=1,2,…,k)存在,则有⎰⎰++SRdxdy Qdzdx Pdydz =∑⎰⎰=++ki S Rdxdy Qdzdx Pdydz i1.三、第二型曲面积分的计算定理22.2:设连续函数R 定义在光滑曲面S :z=z(x,y), (x,y)∈D xy 上, 以S 的上侧为正侧(即S 的法线方向与z 轴正向成锐角),则有⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.证:由第二型曲面积分定义得⎰⎰Sdxdy z y x R ),,(=ixy ni iiiT S R ∆∑=→1),,(lim ζηξ=ixy ni i i i i d S z R ∆∑=→1)),(,,(lim ηξηξ,其中d=max{S ixy 的直径}. ∴由T =ni ≤≤1max {S i 的直径}→0, 可推得d →0, 又R 在S 上连续,z 在D xy 上连续(即曲面光滑),根据复合函数的连续性, R(x,y,z(x,y))在D xy 上也连续. 由二重积分的定义,有⎰⎰xyD dxdy y x z y x R )),(,,(=ixyni iiiid Sz R ∆∑=→1)),(,,(lim ηξηξ,∴⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.注:同理可得,当P 在光滑曲面S :x=x(y,z), (y,z)∈D yz 上连续时, 有 则有⎰⎰Sdydz z y x P ),,(=⎰⎰yzD dydz z y z y x P ),),,((.这里S 是以S 的法线方向与x 轴正向成锐角的那一侧为正侧. 当Q 在光滑曲面S :y=y(z,x), (z,x)∈D zx 上连续时, 有 则有⎰⎰Sdzdx z y x Q ),,(=⎰⎰zxD dzdx z x z y x Q )),,(,(.这里S 是以S 的法线方向与y 轴正向成锐角的那一侧为正侧.例1:计算⎰⎰Sxyzdxdy ,其中S 是球面x 2+y 2+z 2=1在x ≥0, y ≥0部分并取球面外侧.解:S 在第一、五卦限部分分别为:S 1:z 1=221y x --; S 2:z 2=-221y x --; D xy ={(x,y)|x 2+y 2≤1, x ≥0, y ≥0}, 依题意积分沿S 1上侧和S 2下侧进行, ∴⎰⎰Sxyzdxdy =⎰⎰1S xyzdxdy +⎰⎰2S xyzdxdy=⎰⎰--xyD dxdy y x xy 221-⎰⎰---xyD dxdy y x xy 221=2⎰⎰-201023cos sin 1πθθθdr r r d =⎰2022sin 151πθθd =152.注:如果光滑曲面S 由参量方程给出:S: ⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D.若在D 上各点的函数行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂不同时为0,则有 ⎰⎰SPdydz =⎰⎰∂∂±Ddudv v u z y v u z v u y v u x P ),(),()),(),,(),,((, ⎰⎰SQdzdx =⎰⎰∂∂±Ddudv v u x z v u z v u y v u x Q ),(),()),(),,(),,((, ⎰⎰SRdxdy =⎰⎰∂∂±Ddudv v u y x v u z v u y v u x R ),(),()),(),,(),,((, 其中正负号分别对应S 的两个侧,特别当uv 平面的正方向对应于曲面S 的所选定的正向一侧时,取正号,否则取负号.例2:计算⎰⎰Sdydz x 3,其中S 为椭球面222222cz b y a x ++=1的上半部并选取外侧.解:把曲面表示为参数方程:x=asin φcos θ, y=bsin φsin θ, z=ccos φ, 0≤φ≤2π, 0≤θ≤2π. 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕc b b -=bcsin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 3=⎰⎰⋅20202333cos sin cos sin ππθθϕθϕϕd bc a d=⎰⎰2020453cos sin ππθθϕϕd d bc a =52πa 3bc.四、两类曲面积分的联系定理22.3:设S 为光滑曲面,正侧法向量为(cos α,cos β,cos γ), P(x,y,z), Q(x,y,z), R(x,y,z)在S 上连续,则⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.证:⎰⎰Sdxdy z y x R ),,(=ixy ni i i i T S R ∆∑=→1),,(lim ζηξ, 又△S i =dxdy ixyS ⎰⎰γcos 1. 由S 光滑知cos γ在区域S ixy 上连续. 应用中值定理,在S ixy 内必存在一点,使这点的法线方向与z 轴正向的夹角γi °满足 △S i =ixy i S ∆°cos 1γ,即△S ixy =cos γi °△S i .∴R(ξi ,ηi ,ζi )△S ixy =R(ξi ,ηi ,ζi )cos γi °△S i . 于是ixy ni i i i S R ∆∑=1),,(ζηξ=i ni i i i i S R ∆∑=1°cos ),,(γζηξ. 以cos γi 表示曲面S i 在点(x i ,y i ,z i )的法线方向与z 轴正向夹角的余弦,由cos γ的连续性,知当T →0时,i ni i i i i S R ∆∑=1°cos ),,(γζηξ的极限存在, ∴⎰⎰Sdxdy z y x R ),,(=⎰⎰SdS z y x R γcos ),,(. 同理可证:⎰⎰Sdydz z y x P ),,(=⎰⎰SdS z y x P αcos ),,(; ⎰⎰S dzdx z y x Q ),,(=⎰⎰SdS z y x Q βcos ),,(.∴⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.注:当改变曲面的侧时,左边积分改变符号,右边积分中的角要加减π以改变余弦的符号.定理22.4:设P , Q, R 是定义在光滑曲面S: z=z(x,y), (x,y)∈D 上的连续函数,以S 的上侧为正侧,则⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.证:cos α=221yx x z z z ++-, cos β=221yx y z z z ++-, cos γ=1, dS=221y x z z ++dxdy.∴⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰++SdS z y x R z y x Q z y x P )cos ),,(cos ),,(cos ),,((γβα=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.例3:计算⎰⎰++Szdxdy dydz z x )2(,其中S={(x,y,z)|z=x 2+y 2, z ∈[0,1]},取上侧.解:∵z x =2x, z y =2y,∴⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y x x x )]()2(2[2222=⎰⎰++-+-Ddxdy y x x x )])(12(4[222=⎰⎰+-+-πθθθ2010323])1cos 2(cos 4[drr r r d=⎰+--πθθθ202)41cos 52cos (d =2π-.注:由于x(x 2+y 2)是奇函数,∴⎰⎰+Ddxdy y x x )(22=0,又由对称性有⎰⎰Ddxdy x 2=⎰⎰Ddxdy y 2,∴例3中也可化简⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y xx x )]()2(2[2222=⎰⎰-Ddxdy x y )3(22=-⎰⎰Ddxdy x 22=-⎰⎰πθθ20123cos 2dr r d =-⎰πθθ202cos 21d =2π-. 习题1、计算下列第二型曲面积分:(1)⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 为由x=y=z=0, x=y=z=a 六个平面围成的立方体表面并取外侧为正向; (2)⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(,其中S 为以原点为中心,边长为2的立方体表面并取外侧为正向; (3)⎰⎰++Szxdxdy yzdzdx xydydz ,其中S 为由x=y=z=0, x+y+z=1所围的四面体表面并取外侧为正向; (4)⎰⎰Syzdzdx ,其中S 为球面x 2+y 2+z 2=1的上半部分并取外侧为正向;(5)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 为球面(x-a)2+(y-b)2+(z-c)2=R 2并取外侧为正向. 解:(1)∵⎰⎰-Sdydz z x y )(=⎰⎰⎰⎰+-aaaazdz ydy dz z a ydy 0000)(=24a ;⎰⎰Sdzdx x 2=⎰⎰⎰⎰-a aa a dx x dz dx x dz 002002=0;⎰⎰+Sdxdy xz y)(2=⎰⎰⎰⎰-+a aa a dy y dx dy ax y dx 022)(=24a .∴⎰⎰+++-S dxdy xz y dzdx x dydz z x y )()(22=24a +24a =a 4.(2)∵⎰⎰+Sdydz y x )(=⎰⎰⎰⎰----+--+11111111)1()1(dz dy y dz dy y =8,⎰⎰+Sdzdx z y )(=⎰⎰+Sdxdy x z )(=8,∴⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(=24.(3)∵⎰⎰Sxydydz =⎰⎰---yydz z y dy 1010)1(=241,⎰⎰S yzdzdx =⎰⎰Szxdxdy =241. ∴⎰⎰++Szxdxdy yzdzdx xydydz =81.(4)令x=sin φcos θ, y=sin φsin θ, z=cos φ, 0≤φ≤2π, 0≤θ≤2π, 则),(),(θϕ∂∂x z =θϕθϕϕsin sin cos cos 0sin -=sin 2φsin θ, 又积分在S 的正侧,∴⎰⎰Syzdzdx =⎰⎰ππθθϕϕϕ202320sin sin cos d d =4π.(5)令x=Rsin φcos θ+a, y=Rsin φsin θ+b, z=Rcos φ+c, 0≤φ≤π, 0≤θ≤2π, 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕR R R -=R 2sin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 2=⎰⎰+ππθθϕθϕϕ202220cos sin )cos sin (d R a R d=⎰⎰++ππθθϕθϕθϕϕ202222333440)cos sin cos sin 2cos sin (d R a aR R d=⎰πϕϕπ033sin 2d aR=338aR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π. 解法二:令x=rcos θ+a, y=rsin θ+b, 则⎰⎰Sdxdy z 2=rdr r R c d R ⎰⎰-+022220)(πθ-rdr r R c d R⎰⎰--022220)(πθ=4c dr r R r d R⎰⎰-02220πθ=338cR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π.2、设某流体的流速为v=(k,y,0), 求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量.解:E=⎰⎰+Sydzdx kdydz , 又⎰⎰S kdydz =⎰⎰S dydz k -⎰⎰Sdydz k =0(注:球前+球后).∴E=⎰⎰Sydzdx =⎰⎰ππθθϕϕ20230sin sin 8d d =π332.3、计算第二型曲面积分I=⎰⎰++Sdxdy z h dzdx y g dydz x f )()()(, 其中S 是平行六面体0≤x ≤a, 0≤y ≤b, 0≤z ≤c 的表面并取外侧为正向, f(x),g(y),h(z)为S 上的连续函数.解:⎰⎰Sdydz x f )(=⎰⎰-cbdz f a f dy 00)]0()([=bc[f(a)-f(0)],同理有:⎰⎰Sdzdx y g )(=ac[g(b)-g(0)],⎰⎰Sdxdy z h )(=ab[h(c)-h(0)],∴I=bc[f(a)-f(0)]+ac[g(b)-g(0)]+ab[h(c)-h(0)].4、设磁场强度为E(x,y,z)=(x 2,y 2,z 2), 求从球内出发通过上半球面x 2+y 2+z 2=a 2, z ≥0的磁通量.解:设磁通量为φ, 则φ=⎰⎰++Szdxdy ydzdx xdydz .利用球坐标变换有⎰⎰Szdxdy =⎰⎰ππθϕϕϕ202320sin cos d a d =323a π.又由变换后的对称性,有φ=3zdxdy=2πa3.S。
曲线积分曲面积分习题课1.计算 ⎰=Lydx I ,其中L 为椭圆12522=++y xy x 的正向。
2. 计算 r d F L⎰⋅,其中{}y x x z z y F ---=,, ,L 为圆周:⎩⎨⎧==++βtan 2222x y a z y x ,20πβ<<,从x 轴正向看为逆时针方向。
3.质点M 沿着以AB 为直径的半圆, 从A (1,2) 运动到点B (3, 4),在此过程中受力F作用,F的大小等于点M 到原点的距离,其方向垂直于OM ,且与 y 轴正向夹角为锐角,求变力F对质点M 所作的功。
4. 设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4242)(ϕ的值恒为同一常数。
(1)证明:对右半平面0>x 内的任意分段光滑简单闭曲线C ,有042)(42=++⎰Cyx xydydx y ϕ。
(2)求函数)(y ϕ的表达式。
5.设在上半平面}0|),{(>=y y x D 内,函数),(y x f 具有连续偏导数,且对任意0>t ,都有),(),(2y x f tty tx f -=,证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰Ldy y x xf dx y x yf 。
6. 设),(y x Q 在xoy 平面上具一阶连续偏导数,曲线积分⎰+Ldy y x Q xydx ),(2与路径无关,并且对任意的t ,有:⎰+)1,()0,0(),(2t dy y x Q xydx =⎰+),1()0,0(),(2t dy y x Q xydx ,求),(y x Q 。
7.计算dS z x S⎰⎰2,其中S 是柱面az z x 222=+被22y x z +=所截部分。
8.设P 是椭球面 1:222=-++yz z y x S 上的动点,若S 在点P 处的切平面与xoy 面垂直,求点P 的轨迹C ,并计算曲面积分 ⎰⎰∑-++-+=dS yzz y z y x I 44|2|)3(22,其中∑是椭球面S 上位于曲线C 上方的部分。