有理数----找规律专题练习题
- 格式:pdf
- 大小:198.56 KB
- 文档页数:10
第一章有理数1.1 正数和负数1.2 数轴专题一探究数字的规律1.观察下面各数列,研究它们各自的变化规律,并接着填出后面的两个数.(1)1,-1,1,-1,1,-1,1,-1,_______,______,…(2)2,-4,6,-8,10,-12,14,-16,_____,______,…(3)1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,______,______,…2.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…按此规律,那么请你推测第n组应该有种子是_____粒.3.根据下表的规律,空格中应依次填写的数字是()A.100,001 B.011,001 C.100,011 D.011,100 4.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…观察下面的一列数:-1,2,-3,4,-5,6,…将这些数排成如下形式,根据规律猜想:第20行第4个数是()A.-363 B.-365 C.-367 D.-369专题二与数轴有关的规律题5.电子跳蚤落在数轴上的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3跳4个单位到K4,…按以上规律跳了100步时,电子跳蚤落在数轴上的点K100所表示的数恰是30,则电子跳蚤的初始位置K0点所表示的数为()A.-26 B.-20C.-30 D.306.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a与数轴上的数5对应,则a= _____;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).【知识要点】1.具有相反意义的量相反意义的量,它们不但意义相反,面且还表示一定的数量.2.正数和负数正数:像+1.8,+1200,+30,+28,+2.5,+8844.43,+34200等这样的数,都是已学过的数(0除外)的前面添上“+”得到的,这样的数叫做正数.像-3,-800,-50,-24,-2,-155,-27450等这样形式的数,都是在已学过的数(0除外)的前面添上“-”得到的,这样的数叫做负数.0既不是正数,也不是负数.3.有理数的分类整数和分数统称为有理数.(1)按正数、负数与0的关系分类:(2)按整数、分数的关系分类:4.数轴:规定了原点、正方向和单位长度的直线叫做数轴.【温馨提示】1.具有相反意义的量必须是成对出现的两个量.2.正数和负数,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数.3.0虽然不是正数也不是负数,但它是整数.4.在对有理数进行分类时,分类标准不同,分类的形式也不同,要弄清每一个括号所对应的分类标准,做到不重、不漏、不混淆.5.数轴有三要素:原点、正方向和单位长度,三者缺一不可.【方法技巧】1.生活中有许多相反意义的量,引入负数后可以用正、负数表示一对具有相反意义的量. 2.领会分类思想,有理数的分类有多种方式,无论采用哪种方式都要做到不重、不漏. 3.在学习数轴时,要充分注意数形结合思想,理解有理数可以直观地在数轴上表示出来.参考答案:1.(1)1 -1 (2)18 -20 (3) -1 02.2n+13.D4.B5.B6.2 3n+1解析:(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2.(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字0,1,2与正半轴上的整数每3个一组0,1,2;3,4,5;6,7,8;…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.1.3 绝对值与相反数专题一绝对值与数轴相结合的综合题1.有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c -b|的结果是()A .2b -2cB .2c -2bC .2bD .-2c2.已知|a -1|=3,|b |=3,a ,b 在数轴上对应的点分别为A ,B ,则A ,B 两点间距离的最大值等于________.专题二 绝对值的非负性及意义的运用3.已知056=-+-b a ,试求30)(332--b a 的值.4.一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm )依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1 cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【知识要点】1.绝对值的意义在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.2.相反数只有符号不同,绝对值相等的两个数,我们称其中一个数是另一个数的相反数.3.去绝对值的法则一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【温馨提示】1.在讨论数轴上的点与原点的距离时,只需要观察这个点与原点之间相隔多少个单位长度,而与它位于原点的左侧还是是右侧无关.2.0的相反数是0.3.定义中强调了“符号不同”和“绝对值相等”,二者缺一不可,不能理解为只要符号不同的两个数就互为相反数.4.相反数是成对出现的,不能单独存在.5.任何一个有理数的绝对值是非负数.【方法技巧】1.根据a,b互为相反数有a+b=0这一重要性质,建立相等关系,求出未知数的值.2.求一个数的绝对值时,必须先弄清这个数是正数还是负数或0,根据绝对值的意义去掉绝对值符号,得出结果,因此,求一个数的绝对值可概括为“一判二求”.参考答案:1.A 解析:由图可知:.330563330)(3322=--⨯=--)(b a c <b <0<a ,-c >a ,-b <a ,∴a +b >0,a +c <0,c -b <0∴|b +a |+|a+c |+|c -b |=a +b -a -c +b -c =2b -2c .故选A .2.7 解析:∵|a -1|=3,∴a -1=3或a -1=-3,a =4或a =-2.∵|b |=3,∴b =±3.分为四种情况:①当a =4,b =3时,A ,B 两点间的距离是4-3=1;②当a =4,b =-3时,A ,B 两点间的距离是4-(-3)=7;③当a =-2,b =3时,A ,B 两点间的距离是3-(-2)=5;④当a =-2,b =-3时,A ,B 两点间的距离是(-2)-(-3)=1,即A ,B 两点间距离的最大值等于7,故答案为7.3.解:因为6-a ≥0,5-b ≥0,056=-+-b a ,所以a =6,b =5.所以 4.解:小虫爬行的总路程为:541012681035=-+++-+-+++-++. 54×2=108(粒).1.4 有理数的大小 专题 利用比较大小的方法进行各种形式的有理数的比较 1.比较下列各数的大小:(1)74与85;(2)95-与116-.2.有一位同学在做作业,要比较两个数的大小,但不慎把右边的一个有理数小数点后面的一位小数弄上了墨水:2532-<-( ),请写出“( )”这个数字的取值范围,并帮这位同学填上一个合适的数.3.有理数a ,b 在数轴上如图,(1)在数轴上表示-a ,-b ;(2)试把a ,b ,0,-a ,-b 这五个数用“<”连接起来;(3)用“>”“=”或“<”填空:|a | ___a ,|b | ___b .【知识要点】1.利用数轴比较有理数的大小在数轴上表示的两个数,右边的数总比左边的的大.2.正数、0、负数比较大小正数大于0,0大于负数,正数大于负数.3.两个负数比较大小两个负数,绝对值大的反而小.【温馨提示】1.在数轴的负半轴,绝对值越大的负数离原点越远,即越靠左,就越小;而在正半轴上,绝对值越大的正数离原点越远,即越靠右,就越大.2.两个负数比较大小时,分三步来进行:一是先求两负数的绝对值;二是比较绝对值的大小;三是根据“两个负数,绝对值大的反而小”来确定这两个负数的大小.【方法技巧】有理数大小的比较方法有多种,利用数轴和两个负数“绝对值大的反而小”是比较有理数大小的重要方法.参考答案:1.解:(1)因为563274=,563585=,而<56325635,所以74<85. (2) 99559595==-,9954116116==-,而9955>9954,所以95-<116-. 2.解:因为532大于2.5,小数点后面只有一位小数,所以532-小于-2.0大于-2.5.小数点后面只有一位小数,所以括号内的数是0到5之间的整数,可任选一个,如1,3等.3.解:(1)在数轴上表示为:(2)a <-b <0<b <-a .(3)> =1.5 有理数加法1.6 有理数的减法1.7 有理数的加减混合运算专题一 有理数加减法的新定义型题1. 符号“f ”表示一种运算,它对一些数的运算结果如下:(1) f (1)=0,f (2)=1,f (3)=2,f (4)=3…(2) f (21)=2,f (31)=3,f (41)=4,f (51)=5… 利用以上规律计算:f (20131)-f (2013)=______. 2. 定义运算:=a -b +c ,求-的值.专题二 有理数加减法的创新题3. 根据如图所示的程序计算,若输入的值为1,则输出的值为______.4.计算:.256112816413211618141212--------【知识要点】1.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.2.有理数减法法则减去一个数,等于加上这个数的相反数.【温馨提示】1.对有理数的加法理解抓住三条:其一是同号两数相加;其二是异号两数相加;其三是一个数同0相加.2.在应用有理数加法计算时,切记“先定和的符号,后算绝对值”,否则,很容易出错.【方法技巧】1.用有理数加法法则进行计算时,首先根据两个加数的符号,确定用哪一条法则.2.在用减法法则进行减法运算时,要同时注意两个“变”,即运算符号“-”与减数的符号都要改变.参考答案:1.解:观察(1)中的各数,我们可以得出f (2013)=2012,观察(2)中的各数,我们可以得出f (20131)=2013, 则f (20131)-f (2013)=2013-2012=1. 2.解:原式=3.-54.解析:(1)先把2后面的负数相加,然后再加上2即可得结果;(2)用图形来分析。
一、数字找规律 1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1 ---(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 . 9.观察下列各式:1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3, … …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式: 猜想:第n 个等式(n 为正整数)应为__ _________________。
它们的和的情况如下表:加数的个数(n )和s11、从2开始,连续偶数相加,212⨯= 1 2 32642⨯==+ 3 4312642⨯==++ 4 54208642⨯==+++ 5 6530108642⨯==++++ ......................................................当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
一、数字找规律 1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .5. 已知221 ,422 ,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321 …推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 .9.观察下列各式:1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3,… …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式:猜想:第n 个等式(n 为正整数)应为__ _________________。
11、从2开始,连续偶数相加,它们的和的情况如下表:加数的个数(n )和s 1 212 2 32642 3 4312642 4 54208642 5 6530108642 ......................................................当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?1008016(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?{ (2n+1)/2)* { (2n+1)/2)2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 _23_3、请填出下面横线上的数字。
1 123 5 8 _13___ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?34 位置除以3,整除加2,另就是余数余多少加多少5、有一串数字3 6 10 15 21 _28__ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(A ).A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 __33___个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球602 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是三角形(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是13+23+33+43+53=152.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_10000___.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ()1)n (2122+++n n n 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221Λ 10100⑵()()=+++⋯⋯⋯⋯+⨯⨯+⨯⨯21432321n n n ()()()()()()[]4/121321++-+++n n n n n n n n ⑶4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+09110102=+⨯=+b a aba b K沪科版七年级数学试卷一、填空题:1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为___+4400_______米.2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.3、比较大小:23-__<__-78. 4﹑若关于x 的方程a-x=3的解是4,则a=75、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每 个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、6、9,请你列算式:__(_9-3)*(6-2)6 已知︱a-2︱+(b+3)2=0,则ab 的值等于7、一粒废旧电池大约会污染60万升的水。
精选七年级数学上册有理数找规律解答题难题专题训练一、解答题1.我们知道,,,13=1=14×12×2213+23=9=14×22×3213+23+33=36=14×32×4213+23+33+43……=100=14×42×52(1)猜想:13+23+33+…+(n -1) 3+n 3=×() 2×( ) 2.14(2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.2.有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n 是正整数)来表示;则有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是,是第几个数?3.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.11x x 当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±111x x 11x x 11x x 11x x (1)若y 2=+,求y 2的值11x x 22x x (2)若y 3=++,则y 3的值为 ;11x x 22x x 33x x (3)由以上探究猜想,y 2016=+++…+共有 个不同的值,在y 2016这些不同的值中,最大11x x 22x x 33x x 20162016x x的值和最小的值的差等于 .4.(1)填空:______ ;(a ‒b)(a +b )= ______ ;(a ‒b)(a 2+ab +b 2)= ______ ;(a ‒b)(a 3+a 2b +ab 2+b 3)=(2)猜想:(a-b )(a n-1+a n-2b+a n-3b 2+…+ab n-2+b n-1)= ______ (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.5.仔细阅读下面的例题,找出其中规律,并解决问题:例:求的值.2342017122222++++++ 解:令S = ,2342017122222++++++ 则2S = ,23452018222222++++++ 所以2S﹣S = ,即S=,201821-201821-所以=2342017122222++++++ 201821-仿照以上推理过程,计算下列式子的值:① ② 234100155555++++++ 234520161333333 -+-+-++6.你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情(a ‒1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)况,通过计算,探索规律:(a ‒1)(a +1)=a 2‒1(a ‒1)(a 2+a +1)=a 3‒1(a ‒1)(a 3+a 2+a +1)=a 4‒1(1)由上面的规律我们可以大胆猜想,得到=________(a ‒1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)利用上面的结论,求(2)的值;22018+22017+22016+⋅⋅⋅+22+2+1(3)求的值.52018+52017+52016+⋅⋅⋅+52+47.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:⑴第4个图中共有_________根火柴,第6个图中共有_________根火柴;⑵第n 个图形中共有_________根火柴(用含n 的式子表示)⑶若f(n)=2n−1(如f(−2)=2×(−2)−1,f(3)=2×3−1),求的值.f(1)+f(2)++f(2017)2017⑷请判断上组图形中前2017个图形火柴总数是2017的倍数吗,并说明理由?8.观察下列算式:……111111111111;;;2121262323123434==-==-==-⨯⨯⨯(1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++--------9.观察以下等式:第1个等式:,101011212++⨯=第2个等式:,111112323++⨯=第3个等式:,121213434++⨯=第4个等式:,131314545++⨯=第5个等式:,141415656++⨯=……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明.10.先观察:1﹣=×,1﹣=×,1﹣=×,…122123213223431423454(1)探究规律填空:1﹣= × ;1n 2(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)12213214212015211.如图所示,用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子.(2)第n 个“上”字需用 枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?12.观察下列三行数:0,3, 8,15,24, …①2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和13.观察下列各式:(x ‒1)(x +1)=x 2‒1(x ‒1)(x 2+x +1)=x 3‒1(x ‒1)(x 3+x 2+x +1)=x 4‒1……由上面的规律:(1)求的值;25+24+23+22+2+1(2)求…+2+1的个位数字.22011+22010+22009+22008+(3)你能用其它方法求出的值吗?12+122+123+⋯+122010+12201114.有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.15.观察下列等式:第1个等式:1111(1) 1323a==-⨯第2个等式:21111( 35235a==-⨯第3等式:31111() 57257a==-⨯第4个等式:41111( 79279a==-⨯请解答下列问题:(1)按以上规律写出第5个等式:a5= = .(2)用含n的式子表示第n个等式:a n= = (n为正整数).(3)求a1+a2+a3+a4+…+a2018的值.16.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按这个方法放满整个棋盘就行。