有理数找规律
- 格式:pptx
- 大小:145.93 MB
- 文档页数:11
有理数找规律一、数字型规律1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律:.,61,51,41,31,21,1 --- (1)写出这列数的第九个数;(2)第2018个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是 .4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .第n 个数为 .5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20182的末位数是 .6、已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 .9.观察下列各式: 1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3, … …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式:猜想:第n 个等式(n 为正整数)应为__ _________________。
11、从2开始,连续偶数相加,它们的和的情况如下表:加数的个数(n )和s 1 212⨯= 2 32642⨯==+ 3 4312642⨯==++ 4 54208642⨯==+++ 5 6530108642⨯==++++ ......................................................,……,41549,31439,21329,11219,1109=+⨯=+⨯=+⨯=+⨯=+⨯当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
一、数字找规律 1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1 ---(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 . 9.观察下列各式:1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3, … …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式: 猜想:第n 个等式(n 为正整数)应为__ _________________。
它们的和的情况如下表:加数的个数(n )和s11、从2开始,连续偶数相加,212⨯= 1 2 32642⨯==+ 3 4312642⨯==++ 4 54208642⨯==+++ 5 6530108642⨯==++++ ......................................................当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
七年级数学有理数找规律题型一、数字规律。
题1。
观察下列数:1, -2, 3, -4, 5, -6,…,按照这样的规律,第100个数是多少?解析。
可以发现这些数的绝对值是连续的自然数,且奇数项为正,偶数项为负。
第100个数是偶数项,所以为 - 100。
题2。
给出一组数: - 1,2, - 4,8, - 16,32,…,则第7个数是多少?解析。
先看绝对值,后一个数是前一个数绝对值的2倍,再看符号,奇数项为负,偶数项为正。
第7个数是奇数项,绝对值为2^6=64,所以第7个数是 - 64。
题3。
有一列数:(1)/(2),(2)/(3),(3)/(4),(4)/(5),…,那么第n个数是多少?解析。
分子依次是1,2,3,4,…,n;分母依次是2,3,4,5,…,n + 1。
所以第n 个数是(n)/(n + 1)。
题4。
观察数:1,4,9,16,25,…,第10个数是多少?解析。
这组数是1^2,2^2,3^2,4^2,5^2,…,第n个数是n^2,所以第10个数是10^2=100。
题5。
数列:0,3,8,15,24,…,第n个数是多少?解析。
这组数可以写成1^2-1,2^2-1,3^2-1,4^2-1,5^2-1,…,第n个数是n^2-1。
二、算式规律。
题6。
观察下列算式:1 = 1^2;1+3 = 2^2;1 + 3+5=3^2;1+3 + 5+7 = 4^2;…,求1+3+5+·s+99的值。
解析。
从算式可以看出,从1开始连续奇数的和等于数的个数的平方。
1到99的奇数有50个,所以1+3+5+·s+99 = 50^2=2500。
题7。
观察算式:2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,…,求2^20的个位数字是多少?解析。
通过观察2^n的个位数字依次是2、4、8、6循环。
20÷4 = 5,刚好整除,所以2^20的个位数字是6。
题8。
有这样一组算式:(1-(1)/(2))(1+(1)/(2))=(1)/(2)×(3)/(2)=(3)/(4);(1 -(1)/(3))(1+(1)/(3))=(2)/(3)×(4)/(3)=(8)/(9);(1-(1)/(4))(1+(1)/(4))=(3)/(4)×(5)/(4)=(15)/(16);…,求(1-(1)/(10))(1+(1)/(10))的值。
初一数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为.5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为.二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为.3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个 位数字是 ;3. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律1. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52…………,(1)请用含n的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型1.观察下列三行数:(课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2.观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第n 个“广”字中的棋子个数是________6.同样大小的黑色棋子按如图所示的规律摆放:(1) 第5个图形有多少颗黑色棋子? 图案1 图案2 图案3 ……… … 第1幅 第2幅 第3幅 第n 幅 第1个 第2个 第3个 第4个(2)第几个图形有2013颗棋子?说明理由。
七年级上册有理数规律题
七年级上册有理数规律题指的是在七年级上学期数学课程中,涉及到有理数及其运算的规律性的题目。
这类题目通常会考察学生的观察、推理和归纳能力,以发现和掌握有理数运算中的规律。
以下是七年级上册有理数规律题示例:
1. 找规律填数:1,-2,3,-4,5,-6,…第100个数是多少?
2. 计算下列算式:1+2+3=多少,1+2+3+4+5=多少,1+2+3+4+5+6=多少,…根据你发现的规律,1+2+3+…+100=多少。
3. 观察下列各数列的规律,并填上适当的数:
-1,1/2,-1/3,1/4,-1/5,1/6,…第10个数是多少?
2,4,8,16,32,64,…第n个数是多少?
4. 观察下列运算:8^2=64,9^2=81,10^2=100,11^2=121,…请你猜想:第n(n是正整数)个算式的结果是多少?
5. 下列算式中,结果的符号与加数中负数的个数有关吗?如果有关,请你找出规律并加以证明。
如:(+) + (+) + (-) + (-) = 0
又如:(-) + (-) + (-) + (+) = (-)
概括:七年级上册有理数规律题主要考察学生对于有理数及其运算规律的掌握程度,通过观察、推理和归纳等思维方式来找出数列、算式等中的规律。
这类题目旨在培养学生的逻辑思维和数学推理能力。
七年级数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为 .3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:,,,,…… ,它们是按一定规律排列的. 那么这一组21436587数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;3. 若,,,… ;则的值为 .1113a =-2111a a =-3211a a =-2014a 六、算式型规律1. 已知22223322333388+=⨯+=⨯,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,...这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1)请用含n 的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算的值11111(1)(1)(1)132********+++++⨯⨯⨯⨯⨯ 七、数列阵型1.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?第1个图形第2个图形第3个图形第4个图形(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2. 观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第个n 图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.图案1图案2图案3…………第1幅第2幅第3幅第n 幅5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第个“广”字中的棋子个数是________n 6.同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由。
找规律的详细方法及题型一.有理数找规律的方法1.画桥法:画小桥、画大桥2.从前往后,从上往下3.从最前面两个开始突破二.找规律的几大常见题型1.前一个数比后一个数多几或前一个比后一个数少几.2.前一个数是后一个数的几倍或后一个数是前一个数的几倍.3.前一个是后一个的几倍多几,后一个是前一个的几倍多几.4.前两个的和等于第三个数.5.分数的找规律方法:先看分子,再看分母,最后调系数或调正负三.几种常见的数列1.奇数数列:1、3、5、7、9……2n-13、5、7、9、11……2n+12.偶数数列:2、4、6、8、10……2n0、2、4、6、10……2n-24、6、8、10 、12……2n+23.乘方数列:2 、4、8、16……2n1、2、4、8、16……2n-1-2 、4、-8、16、-32……(-1)n·2n1、-2、4、-8、16、-32…(-1)n+1·2n-1小学找规律专题二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。
(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。
12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。
(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,( ),( ) 3.找规律填数。
人教版初一数学有理数8类找规律题型精讲1.数字找规律(1)等差型数列①一级等差数列例1.观察数列,在括号内填上适当的数。
-22,-20,-18,-16,(),()...()(第n个数)。
解:不难发现,后一个数比前一个数大2,所以括号内一次填上-14,-12.设a1=-22,a2=-20,a3=-18,a4=-16.......则a2-a1=2a3-a2=2a4-a3=2...an-an-1=2(第n-1个式子)将这n-1个式子相加,得an-a1=2(n-1)所以an=2(n-1)+a1=2(n-1)-22=2n-24,即第n项为2n-24②二级等差数列例2.观察数列,1,2,5,10,17,26,.....,请观察这组数的构成规律,根据规律确定第8个数为()。
解:用上面数列中后一项减前一项得到新数列为:1,3,5,7,9,11,13,15,.....,这个数列是个一级等差数列,所以原数列1+1=2,2+3=5,5+5=10,10+7=17,17+9=26,26+11=37,37+13=50,50+15=65......第8个数为50.(2)等比型数列例3.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为______,第n个数为______.解:观察数列,可知后一项除以前一项始终等于2,设a1=1,a2=2,a3=4,a4=8.......则a2/a1=2,a3/a2=2,a4/a3=2,....an/an-1=2(第n-1个式子)将这n-1个式子相乘,得an/a1=2^(n-1),所以an=2^(n-1)第8项a8=2^7=128(3)含n^2型数列规律例4.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为______,第n个数为______.解:设a1=1=1^2,a2=4=2^2,a3=9=3^2;a4=16=4^2;a5=25=5^2....an=n^2所以第8个数a8=8^2=64;第n个数为an=n^2(4)循环型数列例5.已知2^1=2,2^2=4,2^3=8,2^4=16,2^5=32...观察上面规律,试猜想2^2008的个位数是______.解:个位数4次幂循环一次,所以2008÷4=502,所以2^2008的个位数是6. (5)算式型数列例6.已知:2+2/3=2^2x2/3,3+3/8=3^2x3/8,4+4/15=4^2x4/15,若8+a/b=8^2xa/b(a、b为正整数),则a+b=______.解:观察算式可发现:a=8,b=8^2-1=63,所以a+b=8+63=71.(6)数列阵型例7.观察下列三行数:第一行:-1,2,-3,4,-5第二行:1,4,9,16,25第三行:0,3,8,15,24(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第一行的规律:(-1)^nxn;(2)第二行的规律:n^2; 第三行的规律:n^2-1(3)第一行的第10个数为:(-1)^10x10=10;第二行的第10个数为10^2=100;第三行的第10个数为10^2-1=100-1=99,这三个数的和为:10+100+99=209.(7)其他规律题型例8.计算:1+2+3+…+99+100解:1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)= 101×50=50502.图形找规律例9.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有______(五角星)。
有理数找规律专题一、等差型数列 律1. 有一 数: 1,2,3,4,5,⋯⋯, 察 数的组成 律,用你 的 律确立第8 个数 , 第 n 个数 .2. 有一 数: 2,5,8,11,14,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 .3.有一 数: 7, 12,17,22,27,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 4.有一 数: 4, 7, 10,13,⋯ 察 数的组成 律,用你 的 律确立第 n 个数 .5.有一 数: 11,20,29, 38,⋯ 察 数的组成 律,用你 的 律确立第 n 个数 . 二、等比型数列 律1.有一 数: 1, 2, 4, 8, 16,⋯⋯, 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 2. 有一 数: 1,4,16,64, ⋯⋯, 察 数的组成 律,用你 的 律确立 第 n 个数 .3. 有一 数: 1,-1,1, -1,⋯⋯, 察 数的组成 律,用你 的 律确立 第 8 个数 , 第 n 个数 .4. 有一 数: 27,9,3,1,⋯⋯, 察 数的组成 律,用你 的 律确立第8个数 , 第 n 个数 . 三、含 n 2 型数列 律1.有一 数: 1, 4, 9, 16,25,⋯⋯, 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 2.有一 数: 2, 6, 12,20,30,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 3.有一 数: 1, 3, 6, 10,15,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 4.有一 数: 0, 2, 6, 12,20,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 四、其余数列 律列1.有一 数: 1, 2, 3, 5, 8,⋯ 察 数的组成 律,用你 的 律确立第 7 个数 ,2.有一 数: -2,3,1,4,5,⋯ 察 数的组成 律,用你 的 律确立第 7 个数 , 3. 察以下边一列数: 1, -2, 3, -4,5, -6, ⋯依据你 的 律,第 2013 个数是 ___________ 4. 察以下一 数: 1 , 3 , 5, 7,⋯⋯ ,它 是按必定 律摆列的 . 那么 一 数2 46 8的第 k 个数是.5. 察以下一 数: 1, 1 , 1,1,1, 1,. 它 是按必定 律摆列的 .2 34 5 6那么 一 数的第2014 个数是6. 察以下一 数:2,4,6 , 8 , 10,⋯⋯ ,它 是按必定 律摆列的,那么 一 数的357911第 k 个数是五、循 型数列 .1. 已知 21 2 , 224 , 23 =8, 24=16,2 5 =32 ,⋯⋯ 察上边 律, 猜想22008的末位数是.2.已知 31 3,329,33 27,3 481,35 243,36729,372187 ⋯推 到320的个位数字是;3. 若 a 1 1 1 , a 21 1 , a 31 1 ,⋯ ; a 2014 的.3a 1a 2六、算式型 律1. 已知 22 2 22 ,323,4 424 ,8a 2 a3383415⋯⋯,若8( a 、 b 正整数)a b3815bb.2. 某数学活 小 的 20 位同学站成一列做 数游 , 是:以前方第一位同学开始,每位同学挨次 自己 序的倒数加1,第 1 位同学1 1 ,第2 位同学1 1,⋯ 获得的20 个数12的 _________________.232013的 ,可令2 3201323 420133. 求 1+2+2 +2 +⋯ +2S=1+2+2 +2+⋯ +2, 2S=2+2 +2 +2+⋯+2 ,20131.模仿以上推理, 算出232013的 :所以 2S S=21+5+5 +5 +⋯ +54. 研究以下算式,你会 什么 律1× 3+1=22; 2× 4+1=32;3× 5+1=42; 4× 6+1=52⋯⋯⋯⋯,( 1) 用含 n 的式子表示你 的 律: ____________ _______.( 2) 你用 的 律解决下边算 (11 )(111 1 1 1 3)(13)(14 6)K (1) 的2 459 11七、数列 型1. 察以下三行数: ( 本 P43 例 4 式 )第一行: -1,2 , -3,4 , -5 ⋯⋯ 第二行: 1,4,9 , 16,25 ,⋯⋯ 第三行:0,3,8,15,24 ,⋯⋯(1) 第一行数按什么 律摆列(2) 第二行、第三行分 与第一行数有什么关系(3) 取每行的第 10个数, 算 三个数的和.2.察下边一列数: 1, 2,3, 4, 5, 6,7,...将列数排成以下形式:依据上述律排下去,那么第10 行从左第 4 个数是:八、几何形型1.察以下形:它是按必定律摆列的,依据此律,第16 个形共有2.如所示,把同大小的黑色棋子放在正多形的上,按形需要黑色棋子的个数是.个★.照的律下去,第n 个第 1个形第 2个形第 3个形第 4个形3.如,用同大小的黑色棋子按所示的方式案,依据的律下去,第棋子枚.100 个案需⋯⋯案 1案 2案34.如,每一幅中有若干个大小不一样的菱形,第 1 幅中有 1 个,第 2 幅中有 3 个,第 3 幅中有 5 个,第 4 幅中有个,第n 幅中共有个.⋯⋯第 1 幅第 2 幅第 3 幅第 n 幅5.如 7-①, 7-②, 7-③, 7-④,⋯,是用棋棋子依据某种律成的一行“广”字,按照种律,第 5 个“广”字中的棋子个数是______,第n个“广”字中的棋子个数是________ 6.同大小的黑色棋子按如所示的律放:第1个第2个第3个第4个(1)第 5 个形有多少黑色棋子(2)第几个形有 2013 棋子明原因。