数字电路 第一章数制和码制
- 格式:ppt
- 大小:623.00 KB
- 文档页数:45
一、数电知识要点第一章 数制与编码1、码制:各种码制之间的转换(整数,小数)2、带符号数的原码、反码和反码3、二进制编码:自然二进制码、格雷码4、BCD 码:8421BCD 码、余三码等第二章 逻辑函数及其化简1、逻辑代数的基本运算及复合运算:与、或、非、与非、或非、异或、同或与运算: 全1得1,有0得0;或运算:有1得1,全0得0; 非运算:10 01==异或:相同得0,相异得1同或:相同得1,相异得02、逻辑运算基本公式及常用规则:1) 十个基本公式2) 逻辑运算常用规则:代入规则;反演规则;对偶规则3、逻辑函数表示方法1)真值表2)逻辑函数表达式:与或表达式;或与表达式;与非-与非表达式;或非-或非表达式;最小项表达式;最大项表达式(概念、性质、两者之间的关系)3)逻辑电路图(与电路分析设计结合):由逻辑表达式到电路图;由电路图写逻辑表达式;4)卡诺图(化简:最多四变量)求逻辑函数的最简与或表达式和或与表达式第三章组合逻辑电路1、集成电路主要电气指标:输入/输出电压;输入/输出电流;噪声容限;扇出系数;输出结构:推拉式输出;开路输出;三态输出2、常用组合逻辑模块3-8译码器、数据选择器、加法器、数值比较器3、组合逻辑电路分析分析步骤:1)由给定的逻辑图逐级写出逻辑函数表达式;2)由逻辑表达式列出真值表;3)分析、归纳电路的逻辑功能。
4、组合电路的设计设计步骤:列真值表—写出适当的逻辑表达式—画电路图。
其中第二步写逻辑表达式时根据设计要求有所不同:1)用门电路设计:与或电路/与非-与非电路:卡诺图化简求最简与或表达式或与电路/或非-或非电路:卡诺图化简求最简或与表达式2)用3-8译码器+与非门设计:写最小项表达式3)用3-8译码器+与门设计:写最大项表达式4)用数据选择器设计:通过卡诺图降维得出数据选择器的各位地址信号Ai和各路数据Di的表达式5、逻辑险象的判别和消除第四章时序电路分析1、各类触发器的特性方程、约束方程、状态表、状态图(RS,JK,D)2、集成计数器74163工作原理、功能及应用(如何构成任意模的计数器、序列信号发生器)3、时序电路的分析1)由触发器构成的米里型/莫尔型同步时序电路的分析步骤:分析电路类型—写激励方程和输出方程—求次态方程—状态表、状态图—功能。
数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。
数电习题答案(1)第⼀章数制和码制1.数字信号和模拟信号各有什么特点?答:模拟信号——量值的⼤⼩随时间变化是连续的。
数字信号——量值的⼤⼩随时间变化是离散的、突变的(存在⼀个最⼩数量单位△)。
2.在数字系统中为什么要采⽤⼆进制?它有何优点?答:简单、状态数少,可以⽤⼆极管、三极管的开关状态来对应⼆进制的两个数。
3.⼆进制:0、1;四进制:0、1、2、3;⼋进制:0、1、2、3、4、5、6、7;⼗六进制:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。
4.(30.25)10=( 11110.01)2=( 1E.4)16。
(3AB6)16=( 0011101010110110)2=(35266)8。
(136.27)10=( 10001000.0100)2=( 88.4)16。
5. B E6.ABCD7.(432.B7)16=( 010*********. 10110111)2=(2062. 556)8。
8.⼆进制数的1和0代表⼀个事物的两种不同逻辑状态。
9.在⼆进制数的前⾯增加⼀位符号位。
符号位为0表⽰正数;符号位为1表⽰负数。
这种表⽰法称为原码。
10.正数的反码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。
11.正数的补码与原码相同,负数的补码即为它的反码在最低位加1形成。
12.在⼆进制数的前⾯增加⼀位符号位。
符号位为0表⽰正数;符号位为1表⽰负数。
正数的反码、补码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。
负数的补码即为它的反码在最低位加1形成。
补码再补是原码。
13.A:(+1011)2的反码、补码与原码均相同:01011;B: (-1101)2的原码为11101,反码为10010,补码为10011.14.A: (111011)2 的符号位为1,该数为负数,反码为100100,补码为100101. B: (001010)2的符号位为0,该数为正,故反码、补码与原码均相同:001010.15.两个⽤补码表⽰的⼆进制数相加时,和的符号位是将两个加数的符号位和来⾃最⾼有效数字位的进位相加,舍弃产⽣的进位得到的结果就是和的符号。