《数字电子技术基础》第一章 数制和码制
- 格式:ppt
- 大小:2.13 MB
- 文档页数:53
数电考研阎石《数字电子技术基础》考研真题与复习笔记第一部分考研真题精选第1章数制和码制一、选择题在以下代码中,是无权码的有()。
[北京邮电大学2015研]A.8421BCD码B.5421BCD码C.余三码D.格雷码【答案】CD查看答案【解析】编码可分为有权码和无权码,两者的区别在于每一位是否有权值。
有权码的每一位都有具体的权值,常见的有8421BCD码、5421BCD码等;无权码的每一位不具有权值,整个代码仅代表一个数值。
二、填空题1(10100011.11)2=()10=()8421BCD。
[电子科技大学2009研] 【答案】163.75;000101100011.01110101查看答案【解析】二进制转换为十进制时,按公式D=∑k i×2i求和即可,再由十进制数的每位数对应写出8421BCD码。
2数(39.875)10的二进制数为(),十六进制数为()。
[重庆大学2014研]【答案】100111.111;27.E查看答案【解析】将十进制数转化为二进制数时,整数部分除以2取余,小数部分乘以2取整,得到(39.875)10=(100111.111)2。
4位二进制数有16个状态,不够4位的,若为整数位则前补零,若为小数位则后补零,即(100111.111)2=(0010 0111.1110)2=(27.E)16。
3(10000111)8421BCD=()2=()8=()10=()16。
[山东大学2014研]【答案】1010111;127;87;57查看答案【解析】8421BCD码就是利用四个位元来储存一个十进制的数码。
所以可先将8421BCD码转换成10进制再进行二进制,八进制和十六进制的转换。
(1000 0111)8421BCD=(87)10=(1010111)22进制转8进制,三位为一组,整数向前补0,因此(001 010 111)2=(127)8。
同理,2进制转16进制每4位为一组,(0101 0111)2=(57)16。
《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
前言第一章数制与码制: “数”在计算机中怎样表示。
第二章逻辑代数基础: 逻辑代数的基本概念、逻辑函数及其标准形式、逻辑函数的化简。
第三章组合逻辑电路: 组合电路的分析与设计。
第四章同步时序逻辑电路:触发器、同步时序电路的分析与设计。
第五章异步时序逻辑电路:脉冲异步电路的分析与设计。
第六章采用中,大规模集成电路的逻辑设计。
绪论一、数字系统1.模拟量:连续变化的物理量2.数字量:模拟→数字量(A/D)3.数字系统:使用数字量来传递、加工、处理信息的实际工程系统4.数字系统的任务:1) 将现实世界的信息转换成数字网络可以理解的二进制语言2)仅用0、1完成所要求的计算和操作3)将结果以我们可以理解的方式返回现实世界5.数字系统设计概况1 ) 层次:从小到大,原语单元、较复杂单元、复杂单元、更复杂单元2)逻辑网络:以二进制为基础描述逻辑功能的网络3)电子线路:物理构成4)形式描述:用硬件描述语言(HDL)描述数字系统的行为6.为什么采用数字系统1)安全可靠性高2)现代电子技术的发展为其提供了可能7.数字系统的特点1)二值逻辑(“0”低电平、“1”高电平)2)基本门电路及其扩展逻辑电路(组成)3)信号间符合算术运算或逻辑运算功能4)其主要方法为逻辑分析与逻辑设计(工具为布尔代数、卡诺图和状态化简)第一章数制与码制学习要求:•掌握二、十、八、十六进位计数制及相互换;•掌握二进制数的原码、反码和补码表示及其加减运算;•了解定点数与浮点数的基本概念;掌握常用的几种编码。
1.1 进位计数制1.1.1 十进制数的表示1、进位计数制数制:用一组统一的符号和规则表示数的方法2、记数法•位置计数法例:123.45 读作一百二十三点四五•按权展形式例:123.45=1×102+2×101+3×100+4×10-1+5×10-23、基与基数用来表示数的数码的集合称为基(0—9), 集合的大小称为基数(十进制10)。
第1章数制与码制1.1 概述电子信号可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归为两类:模拟信号和数字信号。
模拟信号的特点是时间和幅度上都连续变化(连续的含义是在某一取值范围内可以取无限多个数值)。
交流放大电路的电信号就是模拟信号,如图1-1所示。
我们把工作在模拟信号下的电子电路称为模拟电路。
数字信号是时间和幅度上都不连续变化的离散的脉冲信号,例如图1-2所示。
用数字信号对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称为数字逻辑电路。
图1-1 图1-2数字电路通常是根据脉冲信号的有无来进行工作的,而与脉冲幅度无关,所以抗干扰能力强、准确度高。
虽然数字信号的处理电路比较复杂,但因信号本身的波形十分简单,只有两种状态—有或无,在电路中具体表现为高电位和低电位(通常用1和0表示),所以用于数字电路的半导体管不是工作在放大状态而是工作在开关状态,要么饱和导通,要么截止,因此制作时工艺要求相对低,易于集成化。
随着数字集成电路制作技术的发展,数字电路在通信、计算机、自动控制、航天等各个领域获得了广泛的应用。
数字信号通常都是用数码表示的。
数码不仅可以用来表示数量的大小,还可以用来表示事物或事物的不同状态。
用数码表示数量大小时,需要用多位数码表示。
通常把多位数码中每一位的构成方法及从低位到高位的进位规则称为数制。
在用于表示不同事物时,这些数码已经不再具有表示数量大小的含义,它们只是不同事物的代号。
比如,我们每个人的身份证号码,这些号码仅仅表示不同对象,没有数量大小的含义。
为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则就称为码制。
考虑到信息交换的需要,通常会制定一些大家共同使用的通用代码。
例如:目前国际上通用的美国信息交换标准代码(ASCII码,见本章第1.5节)就属于这一种。
数字电子技术1.2 几种常用的数制任何一个数都可以用不同的进位体制来表示,但不同进位计数体制的运算方法和难易程度各不相同,这对数字系统的性能有很大影响。
数字电子技术考研《数字电子技术基础》考研复习笔记第1章数制和码制1.1 复习笔记本章作为《数字电子技术基础》的开篇章节,是数字电路学习的基础。
本章介绍了与数制和码制相关的基本概念和术语,包括常用的数制和码制,最后给出了不同数制之间的转换方法和二进制算术运算的原理和步骤。
本章重点内容为:不同数制之间的转换,原码、反码、补码的定义及相互转换,以及二进制的补码运算。
一、概述1数码的概念及其两种意义(见表1-1-1)表1-1-1 数码的概念及其两种意义2数制和码制基本概念(见表1-1-2)表1-1-2 数制和码制基本概念二、几种常用的数制常用的数制有十进制、二进制、八进制和十六进制几种。
任意N进制的展开形式为:D=∑k i×N i式中,k i是第i位的系数,N为计数的基数,N i为第i位的权。
关于各种数制特征、展开形式、示例总结见表1-1-3。
表1-1-3 各种数制特征、展开式、示例总结三、不同数制间的转换1二进制转换为十进制转换时将二进制数的各项按展开成十进制数,然后相加,即可得到等值的十进制数。
例如:(1011.01)2=1×23+0×22+1×21+1×20+0×2-1+1×2-2=(11.25)10。
2十进制转换为二进制(1)整数部分的转换:将十进制数除以2,取余数为k0;将其商再除以2,取其余数为k1,……以此类推,直到所得商等于0为止,余数k n…k1k0(从下往上排)即为二进制数。
以273.69为例,如图1-1-1所示。
(2)小数部分的转换:将十进制数乘以2,取乘积的整数部分为k-1;将乘积的小数部分再乘以2,取乘积的整数部分为k-2,……以此类推,直到求出要求的位数为止,k-1k-2k-3…(从上往下排)即为二进制数。
以273.69为例,如图1-1-2所示。
图1-1-1 十-二进制整数部分的转换图1-1-2 十-二进制小数部分的转换所以(273.69)10=(100010001.1011)2。
数电第一章笔记同学们!今天来给大家分享一下数电第一章的笔记哈。
这一章可是咱数电学习的基础呢,得好好掌握呀!一、数电基础概念。
咱先得搞清楚啥是数字电路。
简单来说呀,数字电路就是处理数字信号的电路。
那啥又是数字信号呢?数字信号就是在时间和数值上都是离散的信号哟。
比如说,咱们常见的计算机里处理的那些0和1,就是典型的数字信号啦。
就像开关一样,要么开(1),要么关(0),多干脆呀!二、数制和码制。
1. 数制。
这里面有好多不同的数制呢。
最常见的就是十进制啦,咱们平常数数、算账用的就是十进制,逢十进一嘛。
还有二进制,这个在数字电路里可是超级重要的哟!它只有0和1两个数码,逢二进一。
比如说,十进制的2用二进制表示就是10。
除了这俩,还有八进制和十六进制呢。
八进制就是逢八进一,用0 7这八个数码;十六进制呢,逢十六进一,除了0 9,还用A F来表示10 15。
这几种数制之间还能相互转换哟,得好好记记转换的方法。
2. 码制。
码制就是用来表示数字、字符等信息的编码方式啦。
像BCD码,就是用四位二进制数来表示一位十进制数。
比如说,十进制的8用BCD码表示就是1000。
还有格雷码,它的特点就是相邻的两个码组之间只有一位不同,这样在数字系统中转换的时候就不容易出错啦。
三、逻辑代数基础。
1. 逻辑变量和逻辑函数。
逻辑变量只有两种取值,0和1,这里的0和1可不是表示数量,而是表示两种不同的逻辑状态哟,比如真和假、高电平和低电平啥的。
逻辑函数呢,就是描述逻辑变量之间逻辑关系的表达式啦。
比如说,有个逻辑函数F = A + B,这里的A和B就是逻辑变量,“+”表示的是“或”的逻辑关系。
2. 基本逻辑运算。
有三种基本的逻辑运算,分别是“与”“或”“非”。
“与”运算就是只有当所有的输入都为1的时候,输出才为1,就像咱们串联的开关,只有所有开关都闭合,灯才会亮;“或”运算呢,只要有一个输入为1,输出就为1,好比并联的开关,只要有一个开关闭合,灯就会亮;“非”运算就是取反啦,输入为1,输出就为0,输入为0,输出就为1。