永磁同步电机的原理和结构
- 格式:doc
- 大小:588.00 KB
- 文档页数:33
永磁同步伺服电机(PMSM)的基本结构和控制单元驱动器原理导语:永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。
全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。
随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。
永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。
永磁交流伺服系统具有以下等优点:电动机无电刷和换向器,工作可靠,维护和保养简单;定子绕组散热快;惯量小,易提高系统的快速性;适应于高速大力矩工作状态;相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。
永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。
全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。
现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。
伺服驱动器有两部分组成:驱动器硬件和控制算法。
控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。
交流永磁伺服系统的基本结构交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。
其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。
单相交流永磁同步电机工作原理及结构
单相交流永磁同步电机是一种利用单相交流电源驱动,通过永磁体和交流电源的磁场作用实现转子转动的电机。
工作原理:
1. 永磁体磁场产生:单相交流永磁同步电机的永磁体通常采用稀土永磁材料,如钕铁硼磁铁。
永磁体通过磁化工艺形成一个稳定的磁场,产生的磁场不受外部电源的影响。
2. 驱动电源提供旋转磁场:单相交流电源通过特殊的电路将输入电压分成两个90度相位差的信号,一个信号用于驱动电机的发动机(即线圈),另一个信号与永磁体磁场产生的磁场之间产生相对转位的磁场。
这样就形成了一个旋转磁场,作用于电机的转子。
3. 磁场作用于转子:由于电机的转子上装有永磁体,当旋转磁场作用于转子时,转子受到电磁力的作用,开始旋转。
结构:
单相交流永磁同步电机由永磁体、转子、定子、定子线圈和电机外壳组成。
1. 永磁体:永磁体通常采用钕铁硼等稀土磁材料,产生一个稳定的磁场。
2. 转子:转子是电机的旋转部分,通常由永磁体和轴承组成。
当旋转磁场作用于转子时,转子会受到电磁力的作用,开始转动。
3. 定子:定子是电机的静止部分,通常由定子铁心和定子线圈组成。
定子线圈根据特定的绕组方式连接到电源,产生的磁场与转子磁场相互作用,实现转矩的传递。
4. 电机外壳:电机外壳是保护电机内部部件的外部结构,同时也可以起到散热和隔离的作用。
以上就是单相交流永磁同步电机的工作原理及结构。
它具有结构简单、体积小、效率高、输出功率稳定等特点,在家电、办公设备、工业自动化等领域得到广泛应用。
永磁同步电机和交流异步电机的工作原理永磁同步电机和交流异步电机是两种广泛应用于工业和家庭领域的电机。
它们的工作原理有所不同,各有优缺点。
本文将详细介绍这两种电机的工作原理,以便读者更好地了解它们的特性和应用场景。
一、永磁同步电机工作原理永磁同步电机是一种基于永磁体励磁的同步电机。
它主要由定子、转子和轴承等部分组成。
定子通常由硅钢片叠成,用来产生交流电场;转子则由永磁体构成,可在定子电场的作用下产生旋转力矩。
工作时,永磁同步电机首先通过电源将交流电输入定子,以产生旋转的磁场。
这个旋转磁场会与转子中的永磁体相互作用,产生旋转力矩。
这个力矩会使转子跟随定子磁场旋转,实现电机的转动。
二、交流异步电机工作原理交流异步电机是一种感应电机,其工作原理基于电磁感应定律。
它主要由定子、转子和气隙等部分组成。
定子由硅钢片叠成,用来产生旋转磁场;转子则由导条和端环组成,可在定子磁场的作用下产生感应电流。
工作时,交流异步电机首先通过电源将交流电输入定子,以产生旋转的磁场。
这个旋转磁场会与转子中的导条相互作用,产生感应电流。
这个电流会产生一个相反的磁场,与定子磁场相互作用,产生旋转力矩。
这个力矩会使转子跟随定子磁场旋转,实现电机的转动。
三、对比分析1.特点对比永磁同步电机具有效率高、体积小、重量轻、损耗小等优点,因此在节能方面具有显著优势。
同时,由于采用了永磁体励磁,它还具有宽广的调速范围和优异的动态性能。
然而,永磁同步电机的制造成本较高,且在高温、高湿等恶劣环境下容易出现退磁现象。
交流异步电机结构简单、坚固耐用、成本较低,因此在一些特定应用场景中具有不可替代的优势。
此外,交流异步电机还具有较好的耐高温、高湿等环境的能力。
然而,由于采用了感应原理,它的效率相对较低,体积和重量也较大。
2.应用场景对比永磁同步电机适用于需要高效率、小体积、轻重量和优动态性能的应用场景,如电动汽车、电梯、压缩机等。
此外,在风力发电、太阳能发电等新能源领域,永磁同步电机也有着广泛的应用。
简述永磁同步电机工作的组成永磁同步电机是一种工作原理基于磁场相互作用的电动机,它由多个组成部分构成。
本文将从永磁体、定子、转子、控制器等方面来简述永磁同步电机的工作组成。
一、永磁体永磁体是永磁同步电机中最关键的组成部分,它负责产生永磁场。
永磁体通常由稀土磁铁制成,具有高磁导率和高矫顽力,能够产生强大的磁场。
这种永磁体的磁场稳定性高,不易丧失磁性,因此能够提供稳定的磁场供给电机工作。
二、定子定子是永磁同步电机的固定部分,它由定子铁芯和定子绕组构成。
定子铁芯是由硅钢片叠压而成,具有较低的磁导率,能够减小铁芯对磁场的干扰。
定子绕组则是由若干匝的线圈组成,通过电流激励产生磁场,与转子磁场相互作用产生转矩。
定子绕组的设计和布置方式会影响电机的性能和效率。
三、转子转子是永磁同步电机的旋转部分,它由转子铁芯和永磁体构成。
转子铁芯同样由硅钢片叠压而成,用于减小铁芯对磁场的干扰,提高电机的效率。
而永磁体则负责产生转子磁场。
转子磁场与定子磁场相互作用,产生转矩,驱动电机旋转。
四、控制器控制器是永磁同步电机的核心部件,它负责控制电机的运行。
控制器通常由电路板、微处理器和传感器组成。
电路板用于连接各个部件,实现信号的传输和处理。
微处理器则是控制器的大脑,根据传感器反馈的信息,对电机进行精确的控制。
传感器可以实时监测电机的转速、转矩、温度等参数,为控制器提供反馈信号,使电机能够在不同工况下保持稳定运行。
永磁同步电机的工作组成包括永磁体、定子、转子和控制器。
其中,永磁体负责产生稳定的磁场,定子和转子通过磁场的相互作用产生转矩,驱动电机旋转。
而控制器则对电机进行精确的控制,实现电机的高效运行。
这些组成部分相互配合,共同完成永磁同步电机的工作。
永磁同步电机控制系统结构原理
永磁同步电机控制系统由以下几个主要部分组成:
1.传感器:用于测量电机的运行参数,如转速、电流、电压等。
常用的传感器
包括转速传感器、电流传感器、电压传感器等。
2.控制器:根据传感器测量的数据,计算出电机的控制信号。
控制器的类型有
很多,常用的控制器包括矢量控制器、直接转矩控制器等。
3.执行器:将控制器的控制信号转换为电机能够接受的形式。
常用的执行器包
括逆变器、电机等。
永磁同步电机控制系统的结构原理如下:
●传感器测量电机的运行参数。
●控制器根据传感器测量的数据,计算出电机的控制信号。
●执行器将控制器的控制信号转换为电机能够接受的形式。
●电机根据执行器输出的控制信号进行运行。
永磁同步电机控制系统可以实现电机的速度、转矩、位置等参数的控制。
控制系统的性能将直接影响电机的运行性能和效率。
永磁同步电机控制系统的控制策略有很多,常用的控制策略包括:
●矢量控制:将电机的转子坐标系转换为定子坐标系,并在定子坐标系下进行
控制。
矢量控制具有良好的控制性能,可以实现电机的快速、精准控制。
●直接转矩控制:直接对电机的转矩进行控制。
直接转矩控制具有较高的控制
速度,可以实现电机的快速响应。
简述永磁同步电机的结构永磁同步电机是一种利用永磁体产生磁场的电机,其结构包括定子和转子两部分。
第一,定子部分:定子是永磁同步电机的固定部分,通常由外壳、定子铁心和定子绕组组成。
1. 外壳:定子的外壳是保护定子部分的外部结构,通常采用金属材料,如铝合金等。
2. 定子铁心:定子铁心是定子的主要机械支撑结构,通常由硅钢片叠装而成,以减小磁阻,提高能效。
3. 定子绕组:定子绕组是定子的主要电磁部分,由若干匝的绕组线组成。
绕组线一般采用高导磁性、低电阻的铜线,通过定子铁心的槽槽来保持形状和位置。
第二,转子部分:转子是永磁同步电机的旋转部分,通常由转子铁心和永磁体组成。
1. 转子铁心:转子铁心是转子的主要机械支撑结构,通常由硅钢片叠装而成,以减小磁阻,提高能效。
2. 永磁体:永磁体是永磁同步电机的核心部分,它能够产生恒定的磁场。
常见的永磁体材料有钕铁硼(NdFeB)、钴磁铁(CoFe)等。
永磁体通常安装在转子铁心上,通过磁场与定子绕组的磁场相互作用,达到转子的运动。
除了上述主要结构以外,永磁同步电机还包括定位传感器、轴承、连接线等次要结构部分。
1. 定位传感器:定位传感器用于检测转子的位置和角度,以实现精确的电机控制。
常见的定位传感器包括霍尔元件、编码器等。
2. 轴承:轴承用于支撑转子的旋转,通常采用滚珠轴承或滑动轴承,以减小摩擦阻力,提高电机的运行效率和稳定性。
3. 连接线:连接线用于连接定子绕组和外部电源或控制电路,通常采用导电性能好、耐高温、耐腐蚀的导线材料。
参考内容:- 《电机与拖动》(第五版),刘正湧、郭昱辉、王星星,中国电力出版社,2017年- 《电力电子技术基础与应用》(第三版),徐宇、刘臣、吴中华等,机械工业出版社,2019年- 《永磁同步电机理论与应用》(第二版),蒋皓、吴冬梅等,中国电力出版社,2018年- 《电力电子技术概论》(第三版),蔡晓明、胡明等,机械工业出版社,2015年。
永磁同步电机和伺服电机永磁同步电机与伺服电机。
一、永磁同步电机。
(一)基本原理。
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种同步电机,其转子采用永磁体励磁。
定子绕组通入三相交流电后,会在电机内部产生旋转磁场。
由于转子的永磁体与定子旋转磁场相互作用,使得转子跟随旋转磁场同步旋转。
永磁体的存在使得电机具有较高的效率,因为不需要额外的励磁电流来产生磁场。
根据永磁体在转子上的安装方式不同,可以分为表面式永磁同步电机和内置式永磁同步电机。
表面式永磁同步电机的永磁体安装在转子表面,结构简单,易于制造;内置式永磁同步电机的永磁体嵌在转子内部,具有更高的转矩密度和更好的弱磁性能。
(二)特点。
1. 高效率。
- 由于永磁体提供磁场,减少了励磁损耗,在额定工况下,永磁同步电机的效率通常比异步电机高5 - 10%。
例如,在一些工业应用中,对于长期运行的设备,高效率意味着更低的能耗成本。
2. 高功率因数。
- 永磁同步电机的功率因数接近1,这意味着在电网供电时,电机对电网的无功需求较小。
这样可以减少电网的无功补偿设备的容量需求,提高电网的供电质量。
3. 小体积、高转矩密度。
- 永磁体的高磁场强度使得电机在相同的功率和转速要求下,可以设计得更小更紧凑。
例如,在电动汽车的驱动电机应用中,小体积的永磁同步电机能够在有限的空间内提供足够的转矩。
(三)应用领域。
1. 电动汽车。
- 是电动汽车驱动电机的主流选择之一。
它能够满足电动汽车对高效率、高转矩密度和宽调速范围的要求。
例如,特斯拉的部分车型就采用了永磁同步电机,能够为车辆提供良好的加速性能和较长的续航里程。
2. 工业自动化设备。
- 在工业机器人、数控机床等设备中广泛应用。
在工业机器人关节驱动中,永磁同步电机的高精度和高响应速度能够满足机器人精确运动控制的需求。
3. 家用电器。
- 如空调、冰箱等。
在空调压缩机的驱动中,永磁同步电机的高效率有助于降低空调的能耗,符合节能的要求。
永磁同步电机控制系统结构原理永磁同步电机控制系统主要由控制器、永磁同步电机、检测装置等组成。
其结构原理如下:
1.控制器:控制器是整个系统的核心,负责接收指令和控制电机的运行。
控制器内部包含了控制算法和逻辑运算电路,可以对输入的指令进行解析和处理,并输出相应的控制信号。
2.永磁同步电机:永磁同步电机是系统的执行部分,负责将电能转换为机械能。
电机的定子部分包含多个线圈,可以通过控制电流的相位和大小来改变电机内部的磁场分布,从而驱动电机旋转。
3.检测装置:检测装置负责检测电机的位置和速度等信息,并将这些信息反馈给控制器。
控制器根据反馈信息调整控制算法,实现对电机的精确控制。
在运行过程中,控制器首先根据输入指令和电机状态信息,计算出电机的目标位置和速度。
然后,控制器输出相应的控制信号,驱动电机旋转并改变电流相位和大小,使电机旋转至目标位置并保持恒速旋转。
同时,检测装置实时检测电机的位置和速度信息,并将这些信息反馈给控制器。
控制器根据反馈信息调整控制算法,实现对电机的精确控制。
永磁同步电机控制系统具有高精度、高效率、高可靠性等优点,广泛应用于伺服系统、数控机床、电动汽车等领域。
永磁同步电机的工作原理
永磁同步电机是一种采用永磁体作为励磁源的同步电机,其工作原理如下:
1. 励磁原理:永磁同步电机通过将电源直流电流注入到永磁体中,产生恒定磁场。
永磁体的磁场与电流成正比,且在恒定电流下保持不变。
2. 定子电磁铁圈:在永磁体的周围,安装一个定子绕组,通常由三相对称的绕组组成。
当三相交流电通过定子绕组时,会在定子上产生旋转磁场。
3. 气隙电磁铁圈:在永磁体和定子之间,设有一个气隙。
当定子绕组激励电流时,在气隙内产生一个与定子旋转磁场同频率的电磁铁圈,它的磁场与定子旋转磁场相互作用,产生旋转扭矩。
4. 转子:永磁同步电机的转子上也含有永磁体,其中的磁极数与定子绕组极数保持一致。
当定子旋转磁场与转子磁极处的磁场相互作用时,转子会受到力矩的作用,产生旋转。
由于转子与定子的旋转频率一致,所以转子可以跟随定子的旋转同步运行。
5. 控制系统:为了使永磁同步电机正确运行,还需要一个控制系统。
控制系统会根据电磁铁圈和转子的反馈信号来调整定子绕组电流和转子位置,以使电机达到所需的转速和扭矩。
总结:永磁同步电机通过定子旋转磁场与转子磁场的相互作用,实现了转子的同步旋转。
由于永磁体的磁场恒定且强大,永磁同步电机拥有高效率、高功率密度和快速响应的特点,广泛应用于工业领域。
永磁同步电动机结构原理以永磁同步电动机结构原理为标题,本文将介绍永磁同步电动机的结构和工作原理。
永磁同步电动机是一种使用永磁体作为励磁源的同步电动机。
它的主要结构包括定子、转子、永磁体和控制系统。
定子是永磁同步电动机的固定部分,由定子铁心和定子绕组组成。
定子铁心是由硅钢片叠压而成,用于减小铁心磁阻,提高电机的效率。
定子绕组则是将导线绕制在定子铁心的槽中,通过电流激励产生磁场。
转子是永磁同步电动机的旋转部分,由转子铁心和永磁体组成。
转子铁心通常也是由硅钢片叠压而成,用于减小铁心磁阻。
永磁体是由强磁性材料制成,可以产生恒定的磁场。
当定子绕组通过电流激励产生磁场时,转子中的永磁体产生的磁场与之同步,从而实现电磁转换。
永磁同步电动机的控制系统起到调节电机运行状态的作用。
控制系统通常由传感器、控制器和功率放大器组成。
传感器用于检测电机的转速、转子位置等参数,控制器通过对这些参数的处理来控制电机的运行。
功率放大器则用于放大控制信号,驱动电机运行。
永磁同步电动机的工作原理是基于电磁感应和磁场作用的。
当电机通电时,定子绕组中的电流产生磁场。
根据法拉第电磁感应定律,磁场变化会在转子中产生感应电动势,从而产生转矩。
同时,转子中的永磁体产生的恒定磁场与定子磁场相互作用,使得转子跟随定子磁场旋转。
由于永磁同步电动机具有结构简单、效率高、响应快等优点,因此在许多领域得到广泛应用。
例如,永磁同步电动机常用于电动汽车、电动自行车、工业生产线等场合。
永磁同步电动机的结构和工作原理是基于定子和转子之间的电磁感应和磁场作用。
通过控制系统的调节,可以实现电机的高效运行。
永磁同步电动机的应用领域广泛,对于节能减排和提高工作效率具有重要意义。
WORD文档可编辑 技术资料 专业分享 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。 精品 感谢下载载 图1-1 面贴式的永磁同步电机在工业上是应用最广泛的,其最主要的原因是其拥有很多其他形式电机无法比拟的优点,例如其制造方便,转动惯性比较小以及结构很简单等。并且这种类型的永磁同步电机更加容易被设计师来进行对其的优化设计,其中最主要的方法是设计成近似正弦的分布把气隙磁链的分布结构,将其分布结构改成正弦分布后能够带来很多的优势,例如它所带来的负面效应,能减小磁场的谐波以及应用以上的方法能够很好的改善电机的运行性能。插入式结构的电机之所以能够跟面贴式的电机相比较有很大的改善是因为它充分的利用了它设计出的磁链的结构有着不对称性所生成的独特的磁阻转矩能大大的提高了电机的功率密度,并且在也能很方便的制造出来,所以永磁同步电机的这种结构被比较多的应用于在传动系统中,但是其缺点也是很突出的,例如制作成本和漏磁系数与面贴式的相比较都要大的多。嵌入式的永磁同步电机中的永磁体是被安置在转子的内部,相比较而言其结构虽然比较复杂,但却有几个很明显的优点是毋庸置疑的,因为有以高气隙的磁通密度,所很明显的它跟面贴式的电机相比较就会产生很大的转矩;因为在转子永磁体的安装方式是选择嵌入式的,所以永磁体在被去磁后所带来的一系列的危险的可能性就会很小,因此电机能够在更高的旋转速度下运行但是并不需要考虑转子中永磁体是否会因为离心力过大而被破坏。 精品 感谢下载载 为了体现永磁同步电机的优越性能,与传统异步电机来进行比较,永磁同步电机特别是最常用的稀土式的永磁同步电机具有结构简单,运行可靠性很高;体积非常的小,质量特别的轻;损耗也相对较少,效率也比较高;电机的形状以及大小可以灵活多样的变化等比较明显的优点。正是因为其拥有这么多的优势所以其应用范围非常的广泛,几乎遍及航空航天、国防、工农业的生产和日常生活等的各个领域。永磁同步电动机与感应电动机相比,可以考虑不输入无功励磁电流,因此可以非常明显的提高其功率因素,进而减少了定子上的电流以及定子上电阻的损耗,而且在稳定运行的时候没有转子电阻上的损耗,进而可以因总损耗的降低而减小风扇(小容量的电机甚至可以不用风扇)以及相应的风磨损耗,从而与同规格的感应电动机相比较其效率可以提高2-8个百分点。 1.3永磁同步电机的数学特性 先对永磁同步电机的转速进行研究,在分析定子和转子的磁动势间的转速关系时,n假定转子的转速为min,/r所以转子的磁动势相应的转速也为 n r/min,所以定子的电流相应的频率是f=60pn,因为定子旋转的磁动势的旋转速度是由定子上的电流产生的,所以应为
npnppf606060n1 (1.1) 可以看出转子的旋转速度是与定子的磁动势的转速相等的。 对于永磁同步电机的电压特性研究,可以利用电动机的惯例来直接写出它的电动势平衡方程式 精品 感谢下载载 qqddxIjxI••••jEU0
(1.2) 对于永磁同步电机的功率而言,同样根据发电机的惯例能够得到永磁同步电机的电磁功率为
2sin112sinP20dqdMxxUmxUEm (1.3) 对于永磁同步电机的转矩而言,在恒定的转速下1 ,转矩和功率是成正比的,所以可以得到以下公式
2sin112sinT12101dqdMxxmUxmUEP (1.4) 精品
感谢下载载 第二章 永磁同步电机物理模型开环仿真 2.1永磁同步电机模块及仿真 下面对永磁同步电机物理模型的开环进行仿真,在仿真之前先介绍各个单元模块,以便于对模型进行更好的仿真。 2.1.1物理单元模块 逆变器单元,逆变是和整流相对应的,它的主要功能是把直流电转变成交流电。逆变可以被分为两类,包括有源逆变以及无源逆变。其中有源逆变的定义为当交流侧连接电网时,称之为有源逆变;当负载直接与交流侧相连时,称之为无源逆变。 以图2-1的单相桥式逆变电路的例子来说明逆变器的工作原理。 精品 感谢下载载 S1S2S3
S4Uo负载io
Ud
图2-1逆变电路 图2-1中S1-S4为桥式电路的4个臂,它们是由电力电子器件及其辅助电路组成的。当开关S1、S4闭合,S2、S3断开时,负载电压u0为正;当S1、S4断开,S2、S3闭合时,u0为负,其波形如图2-2所示。
Uo
t1t2iot
图2-2逆变电路波形 精品
感谢下载载 通过这个方法,就可以把直流电转变成交流电,只要改变两组开关相应的切换频率,就可以改变交流电的输出频率。这就是逆变器的工作原理。 当负载是电阻时,负载电流i0和电压u0的波形是相同的,相位也相同。当负载是阻感时,i0的基波相位滞后于u0的基波,两者波形的形状也不同,图2-2给出的是阻感负载时的i0的波形。设t1时刻断开S1、S4,同时合上S2、S3,则u0的极性立刻变为负的。但是,正是因为负载中存在着电感,其中的电流极性仍将维持原来的方向而不能立刻改变。这时负载电流会从直流电源负极而流出,经过S2、负载和S3再流回正极,负载电感中储存的能量会向直流电源发出反馈信号,负载电流要逐渐减小,到t2时刻降到零,之后i0才开始并反向增大。S2、S3断开,S1、S4闭合时的情况类似。上面是S1-S4均为理想开关时的分析,实际电路的工作过程要比这更复杂一些。 逆变电路根据直流侧电源性质的不同可以被分为两种:直流侧为电压源的称为电压型逆变电路;直流侧为电流源的称为电流型逆变电路。它们也分别被称为电压源逆变电路和电流源逆变电路。 三相电压型逆变电路是由三个单相逆变电路而组成的。在三相逆变电路中三相桥式逆变电路应用的最为广泛。如图2-3所示的三相电压型桥式逆变电路IGBT是采用作为开关器件的,因此可以很明显的看出它是由三个半桥逆变电路组成的。 精品
感谢下载载 V1VD1V3V5
V4V6V2
VD3VD5
VD4VD6VD2UV
WNN’
2Ud
2dU
图2-3三相电压型桥式逆变电路 如图2-3所示的电路的直流侧一般只用一个电容器就可以了,但是为了方便分析,画出了串联的两个电容器并且标出假想的中点N,。单相半桥和全桥逆变电路是具有很多相似点的,三相电压型桥式逆变电路也是以180度的导电方式作为其基本的工作方式,同一半桥上下两个臂交替着导电,每相之间开始导电的角度以120度相错开。这样在任何时候,将会有三个桥臂同时导通。也可能是上面一个下面两个,也可能是上面两个下面一个同时导通。它之所以被称为纵向换流是因为每次换流都是在同一相上的两个桥臂之间互换进行。
逆变器的参数设置如图2-4所示 精品
感谢下载载 图2-4逆变器模块参数设置 六路脉冲触发器模块,如图2-5所示 精品
感谢下载载 图2-5六路脉冲触发器模块
同步六路脉冲发生器模块可用于很多领域。六路脉冲触发器的主要部分是六个晶闸管。该模块的输出是一个六脉冲单独同步的六晶闸管电压矢量。下面的图表显示了一个0度的α角的六路脉冲。如图2-6所示