当前位置:文档之家› 有限元分析中的材料性选择

有限元分析中的材料性选择

有限元分析中的材料性选择
有限元分析中的材料性选择

有限元分析中的材料性能单位

邹正刚(上海航天局第八设计部)

摘要:

本文对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。

关键词:有限元、材料性能、单位

大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。

比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。

物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。

基本物理量及其量纲:

?质量m;

?长度L;

?时间t;

?温度T。

导出物理量及其量纲:

◆速度:v = L / t;

◆加速度: a = L / t 2;

◆面积:A = L 2;

◆体积:V = L 3;

◆密度:ρ= m / L 3;

◆力: f = m · a = m · L / t 2;

◆力矩、能量、热量、焓等: e = f · L = m · L 2 / t 2;

◆压力、应力、弹性模量等:p = f / A = m / (t 2 · L) ;

◆热流量、功率:ψ= e / t = m · L 2 / t 3;

◆导热率:k =ψ/ (L · T) = m · L/ (t 3 · T);

◆比热:c = e / (m · T) = L 2 / (t 2 · T);

◆热交换系数:Cv = e / (L 2 · T · t) = m / (t 3 · T)

◆粘性系数:Kv = p · t = m / (t · L) ;

◆熵:S = e / T = m · l 2 / (t 2 · T);

◆质量熵、比熵:s = S / m = l 2 / (t 2 · T);

在选定基本物理量的单位后,可导出其余物理量的单位,可以选用的单位制很多,下面举两个常用的例子。

1 基本物理量采用如下单位制:

?质量m – kg;

?长度L – mm;

?时间– S;

?温度– K (温度K与C 等价)。

各导出物理量的单位可推导如下,同时还列出了与kg-m-S 单位制或一些常用单位的关系:

◆速度:v = L / t = mm / S = 10-3 m / S;

◆加速度: a = L / t 2 = mm / S 2 = 10-3 m / S 2;

◆面积:A = L 2 = mm 2 = 10-6 m 2;

◆体积:V = L 3 = mm 3 = 10-9 m 3;

◆密度:ρ= m / L 3 = kg / mm 3 = 10-9 kg / m 3 = 10-6 g / cm 3;

◆力: f = m · L / t 2 = kg · mm / S 2 = 10–3 kg · m / S 2 = mN (牛);

◆力矩、能量、热量、焓等:e = m · L 2 / t 2 = kg · mm 2 / S 2 = 10–6 kg · m 2 / S 2 = μ J (焦耳);

◆压力、应力、弹性模量等:p = m / (t 2 · L) = kg / (S 2 · mm) = 10 3 kg / (S 2 · m) = kPa (帕);

◆热流量、功率:ψ= m · L 2 / t 3 = kg · mm 2 / S 3 = 10–6 kg · m 2 / S 3 = μ w (瓦);

◆导热率:k =m · L/ (t 3 · T) = kg · mm / (S 3 · K)= 10–3 kg · m / (S 3 · K);

◆比热:c = L 2 / (t 2 · T) = mm 2 / (S 2 · K)= 10–6 m 2 / (S 2 · K);

◆热交换系数:Cv = m / (t 3 · T) = kg / (S 3 · K);

◆粘性系数:Kv = m / (t · L) = kg / (S · mm) = 10 3 kg / (S · mm);

◆熵:S = m · L 2 / (t 2 · T) = kg · mm 2 / (S 2 · K)= 10 -6 kg · m 2 / (S 2 · K);

◆质量熵、比熵:s= L2 / (t 2 · T) = mm 2 / (S 2 · K)= 10 -6 m 2 / (S 2 · K);

2 基本物理量采用如下单位制:

?质量m – g;

?长度L – μm (10 6 m);

?时间– mS (10–3 S);

?温度– K (K与C 等价)。

各导出物理量的单位可推导如下,同时还列出了与kg-m-S 单位制或一些常用单位的关系:

◆速度:v = L / t = μm / mS = 10-3 m / S;

◆加速度:a = L / t 2 = μm / mS 2 = m / S 2;

◆面积:A = L 2 = μm 2 = 10-12 m 2;

◆体积:V = L 3 = μm 3 = 10-18 m 3;

◆密度:ρ= m / L 3 = g / μm 3 = 10-21 kg / m 3 = 10-12 g / cm 3;

◆力: f = m · L / t 2 = g · μm / mS 2 = 10–3 kg · m / S 2 = mN (牛);

◆力矩、能量、热量、焓等:e = m · L 2 / t 2 = g · μm 2 / mS 2 = 10–9 kg · m 2 / S 2 = 10–9 J (焦耳);

◆压力、应力、弹性模量等:p = m / (t 2 · L) = g / (mS 2 · μm) = 10 9 kg / (S 2 · m) = 10 9 Pa (帕) = GPa;

◆热流量、功率:ψ= m · L 2 / t 3 = g · μm 2 / mS 3 = 10–6 kg · m 2 / S 3 = 10–6 w (瓦);

◆导热率:k =m · L/ (t 3 · T) = g · μm / (mS 3 · K)= kg · m / (S 3 · K);

◆比热:c = L 2 / (t 2 · T) = μm 2 / (mS 2 · K)= 10–6 m 2 / (S 2 · K);

◆热交换系数:Cv = m / (t 3 · T) = g / (mS 3 · K) = 10 3 kg / (S 3 · K);

◆粘性系数:Kv = m / (t · L) = g / (mS · μm) = 10 6 kg / (S · mm);

◆熵:S = m · L 2 / (t 2 · T) = g · μm 2 / (mS 2 · K)= 10 -9 kg · m 2 / (S 2 · K);

◆质量熵、比熵:s = L2 / (t 2 · T) = μm 2 / (mS 2 · K)= 10 -6 m 2 / (S 2 · K);

由此可见,掌握了单位之间变换的方法,就可以根据自己的需要来选择合适的单位制。更多的例子见表1。

表2给出了几种单位制与kg-m-S 单位制之间的换算因子

[注]

注:后三列中给出的是将kg-m-S 单位制中的数值转换到其它单位制时(在准备输入数据时) 所乘的因子;如果需要将其它单位制中的数值转换到kg-m-S 单位制(在分析计算结果时),则应该除以该因子。

实验材料的选取是实验成功的关键

实验材料的选取是实验成功的关键。在选择时,要符合实验要求(科学性)、取材容易(简便性)、实验现象明显(直观性)等特点。现对教材相关实验的取材作简要盘点。 1.在鉴定还原糖实验中,宜选用还原糖丰富的,白色或近于白色的材料,以避免色素对实验现象造成干扰。 2.在鉴定脂肪和蛋白质实验中,宜选用富含脂肪和蛋白质的材料,如花生种子、大豆种子和蛋清溶液。 3.在细胞膜的提取实验中,宜选用成熟的哺乳动物的红细胞,因为该细胞内无细胞核和各种细胞器,避免了其他膜结构对细胞膜的干扰。 4.在观察叶绿体实验中,藓类植物的叶薄而小,叶绿体清晰,可取整个叶制片,是作为实验材料的首选对象;或者选用菠菜叶(稍带叶肉)的下表皮,因为叶肉细胞中含有叶绿体。 5.在观察细胞质流动实验中,常选用黑藻作实验材料,因为黑藻叶小而薄,含有叶绿体可作细胞质流动的标志物。 6.在观察植物细胞有丝分裂实验中,常选用洋葱根尖分生区部位,因为该部位细胞分裂旺盛,易观察到分裂期染色体的行为变化。 7.在比较H2O2酶与Fe3 催化效率实验中,选用新鲜的肝脏研磨液,这是因为肝脏是人体内重要的解毒器官,富含H2O2酶;同时,经研磨后细胞内的H2O2酶可释放出来。

8.在叶绿体色素提取和分离实验中,要选用新鲜的颜色较深的叶片(如菠菜叶)作为实验材料,以便使滤液中含较多的色素。 9.在证明光合作用的场所和产物实验中,选用水绵和好氧性细菌作实验材料,是由于水绵为带状叶绿体;同时,通过显微镜易观察到好氧性细菌的分布情况。 10.在观察植物细胞质壁分离及复原实验中,选用紫色洋葱表皮细胞是因为细胞内具有中央液泡,且液泡内含有色素便于观察实验现象。 11.在生长素有关实验中,常选用胚芽鞘作实验材料,是因为胚芽鞘细胞只生长,不分裂,易研究生长素的生理作用。 12.在观察植物向性运动实验中,常选用植物幼苗或刚萌发并正长出幼根的蚕豆、玉米种子,这是因为幼嫩的组织细胞灵敏度高,易受外界因素影响,便于观察向性运动。 13.在验证甲状腺激素生理功能实验中,常选用蝌蚪作实验材料,是由于蝌蚪发育成青蛙的过程属于变态发育。饲喂甲状腺激素后,在短时期内就能观察到激素的增加所表现出的症状。 14.在证明DNA是遗传物质实验中,选用肺炎双球菌作为实验材料,是由于肺炎双球菌有两种类型(S型和R型),通过菌落特征或小鼠表现出的症状就可间接判断细菌是否发生转化,从而证明DNA是遗传物质。

有限元论文

机械结构有限元分析 作业名称:基于ANSYS的机械结构仿真学生姓名:陆宁 学号: 班级:机械电子工程103班 指导教师:谢占山老师 作业时间: 2013.05.28 二零一二----二零一三第二学习期

基于ANSYS的机械结构仿真 摘要:介绍了ANSYS优化设计模块,并针对机械结构优化设计给出了具体设计步骤,利用实例分析介绍ANSYS在机械结构优化设计中的应用。证明了ANSYS优化设计模块在机械结构优化设计上的方便性和可行性,为从事机械优化设计人员提供了新的方法和思路。 关键词:机械结构;ANSYS;优化设计;悬臂梁 前言:有现场合,比如,在研究桥梁的受迫振动时,由于激振载荷和和桥梁自重比较接近,所以桥梁自重是必须考虑的因素。激振载荷是正弦载荷,桥梁自重是静载荷,此时桥梁同时受静载荷和正弦载荷的作用。当结构只作用于静载荷时,可以用静力学分析计算其应力、应变等;当结构只作用于正弦载荷时,可以对其进行谐响分析。但是当结构同时作用于静载荷和正弦载荷时,却无法单独用静力学分析或谐响应分析来求解问题,因静力学分析要求载荷恒定,谐响应分析施加的载荷都是正弦载荷。如果用瞬态分析,则载荷就不能是从负无穷时刻到正无穷时刻的周期函数,即施加载荷要对正弦载荷进行加窗处理,势必存在误差,此时就应用有限元法进行分析。

一、基于ANSYS参数化语言的机械结构优化设计概述 机械最优化设计是在现代计算机广泛应用的基础上发展起来的一门新学科,是根据最优化原理和方法综合各方面的因素,以人机配合方式或/自动探索0方式在计算机上进行的半自动或自动设计,以选出在现有工程条件下最佳设计方案的一种现代设计方法.人机连接的传媒是靠一些编程语言来实现,例如C、C十十、VC、FOR-TRAM 等等,这些语言要求用户必须有深厚的理论知识,对于普通用户实现起来就显得很困难。 ANSYS软件是容结构、热、流体、电磁、声学于一体的大型通用有限元分析软件,其内嵌的参数化设计语言(APDL)用建立智能分析的手段为用户提供了自动完成循环的功能,即程序的输入可设定为根据指定的函数、变量以及选出的分析标准作决定.这样的功能扩展完全满足优化设计的要求,而且其强大的前处理建模、可视化界面也是其他优化语言所无法比拟的,更重要的是ANSYSAPDL编程语句简单,更具人性化即使是普通用户也能够掌握。 目前,关于利用ANSYS进行机械优化设计的文献鲜有报道[C17,本文具体剖析了ANSYS优化设计模块,并运用ANSYS12.0的参数化语言求解机械工程设计中的优化问题,给出了在机械优化设计方面的实现方法和具体实例,旨在为从事机械优化设计的人员提供一种新的方法和思路。

有限元分析课程论文2011

《ANSYS10.0基础及工程应用》考查要求 一、课程考核方式 撰写课程结课论文。 二、论文撰写范围 在掌握有限元基本理论及方法的基础上,运用《ANSYS10.0基础及工程应用》课程所学的建模,分网,加载,求解及后处理知识,针对某一你所熟悉的产品、设备或零件进行有限元计算分析。 三、论文撰写要求 1.论文按科技论文的标准格式撰写,包括有题目、作者、单位(班级、学号、联系方式)、摘要(200字左右)、关键词(3—4个)、正文及参考文献(包括作者姓名、文献名、出版社所在地、出版社名、出版时间等),正文引用文献要标出,严禁抄袭。2.全文字数不少于3000字。 3.参考文献至少5篇。 4.统一以武汉理工大学华夏学院论文纸。

有限元分析课程要求 要求:1)个人至少分析3种方案并独立完成(可选择一个模型三种不同方案或三个不同模型的有限元分析;题目可从上机指南,有限元分析大作业试题中选择或自行选择算例),并将计算 结果分析在论文中较详细分析说明(包括几何模型视图、单元模型视图、结果云图,矢量 分布图,列表,命令流等及结果分析说明。) 2)课程论文应包括以下部分:(正文5号字体) A、引言; B、问题描述及几何建模; C、有限元建模(单元选择、节点布置及规模、网格划分方案、载荷及边界条件 处理、求解控制) D、计算结果及结果分析(位移分析、应力分析、正确性分析评判,如同一模型 则必须进行多方案计算比较,需讨论节点规模增减对精度的影响分析、单元 改变对精度的影响分析、不同网格划分方案、不同结构对结果的影响分析等) E、结论 F、参考文献 3)12月1日前必须完成,并递交课程论文报告(报告要求打印)。 4)学生的课程总评成绩由平时成绩(占30%)和期末考查成绩(占70%)两部分构成。平时成绩中包括出勤、作业、上机操作、学习主动性等。

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

有限元分析论文

用有限元分析Hyperworks结构 机制1091 19号何志强 论文关键词:拓扑优化形状优化精密铸造后悬置支架有限元分析 论文摘要: 本文主要阐述借助于Alatir公司的Hyperworks结构优化软件,对精密铸造产品进行结构优化设计,且以对某汽车驾驶室后悬置支架的结构优化为例,着重介绍了拓扑优化和形状优化在精密铸造产品结构设计上的应用方法及功能。事实表明拓扑优化和形状优化的联合应用,对精密铸造产品的结构设计起到非常关键的帮助作用,最后通过此软件对优化后的产品结构进行有限元分析,验证优化后产品结构的强度和刚度。 HyperWorks在精密铸造产品优化设计中的应用 一、引言 在当前的汽车工业中,减轻设计重量和缩短设计周期是两个突出的问题,在传统的设计中,由于机械产品机构的复杂性,长期以来主要应用经验类比设计,对产品结构作定性分析和经验类比估算,在决定实际结构时,一般都取较大的安全系数,结果使得产品都是“傻”、“大”、“粗”,使材料的潜力得不到充分发挥,产品的性能也得不到充分的把握。所以传统的汽车设计思路已经不能满足当前设计的需要。汽车轻量化设计开始占据了汽车发展中的主要地位,它既可以提高车辆的动力性,降低成本,减少能源消耗又能减少污染。但是,简单的汽车轻量化设计却是一把双刃剑,它在减轻汽车重量的同时,也牺牲了车辆的强度和刚度,甚至对产品的结构寿命也产生影响,在此情况下,有限元分析方法在汽车设计中的合理应用就得到了充分体现,经过近几年的实践证明,Altair公司的有限元分析技术以及拓扑优化技术在汽车行业获得了非常成功的应用。特别是对于一些结构复杂的汽车铸造结构件,Hyperworks 的有限元分析技术、拓扑优化和形状优化技术的推广使得材料的潜能及铸造的优势得到了充分的发挥。 本文将详细介绍利用Hyperworks的拓扑优化和形状优化技术对东风商用车驾驶室后悬置支架进行减重优化设计的应用过程。以及如何应用Hyperworks验证改进结构后的应力和应变情况,使该后悬置支架减重优化后的结构能够满足产品的使用性能和铸造工艺性要求。 二、有限元法的概念和优化设计流程确立 2.1有限元法和有限单元的概念 有限元法又称有限单元法,是结构分析的一种数值计算方法,它随着计算机的发展而应运而生,并得到了广泛应用,目前已成为工程数值分析的有力工具。在实际工程应用中,我们首先把CAD模型分割成有限个实体或者壳单元。一般作为实体单元所适合的结构,是具有三维形状变化的物体,不太适合棒状、平板状的物体。实体单元是利用3D-CAD所作

基于abaqus的ujoint有限元分析有限元分析论文大学论文

有限元分析课程论文 课程名称:有限元分析 论文题目:ujoint有限元分析学生班级; 学生姓名: 任课教师: 学位类别: 评分标准及分值选题与参阅资料 (分值) 论文内容 (分值) 论文表述 (分值) 创新性 (分值) 评分 论文评语: 总评分评阅教师: 评阅时间 年月日 注:此表为每个学生的论文封面,请任课教师填写分项分值

基于abaqus的ujoint有限元分析 摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。 关键词:abaqus、有限元、ujoint 一问题的描述 对导入的ujoint在所有步骤完成后,施加力:在step initial:均设为0;step SPIN:doundary1:限制除 UR2的所有,且把UR2值设为:pi。在boundary2 中,限制UR1和UR3自由度。 二在abaqus中导入ujoint实体模型 启动abaqus CAE,在文件下拉菜单中选择:import , 选择最终文件位置or 输入ws_connector_ujoint.py.inp 打开文件ujoint。(如下图所示)

2.1 创建坐标系 单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。首先选择origin,在选择x正方向,Y正方向、z正方向。创建完成。 2.2创建VERT和CROSS之间的2坐标系。 根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。 Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。其他同样 2、在V-C和I-C中,x轴与cross转动所绕轴平行。

ANSYS有限元分析课程论文

题目: 如图所示是一飞轮的截面图。飞轮材料的弹性模量210GPa,泊松比0.27,密度7800kg/m3。飞轮的角速度为62.8rad/s,飞轮边缘受到压力作用,压力p为1MPa,飞轮轴孔固定。试对 飞轮进行静力分析并绘制飞轮在柱坐标系下径向、环向的应力和变形云图。 主要步骤: 1.用户自定义文件夹,以为文件名xiti开始一个新的分析。 2.定义单元类型 (1)选择Main Menu>Preprocessor> Element Type>Add/Edit/Delete>Add >select:select Solid Quad 8node 82 >OK (back to Element Types window) (2)设置Solid Quad 8node 82 的Options选项,Options… >selelt K3: Axisymmetric>Close (the Element Type window),如图1所示。

图1 单元属性设置对话框 3.定义材料性能参数 (1)定义材料的弹性模量和泊松比 Main Menu: Preprocessor >Material Props >Material Models >Structural >Linear >Elastic >Isotropic >input EX:2.10e5, PRXY:0.27 > OK (2)定义材料的密度 Main Menu: Preprocessor >Material Props >Material Models>Favorite>Linear Static>Density >input DENS:0.0078 > OK 4.建立几何模型、划分网格 (1)生成特征点 Main Menu>Preprocessor>Modeling>Create>Keypoints>In Active CS>依次输入点的坐标:input:1(50,0),2(55,0),3(55,16), 4(75,16), 5(75,5),6(80,5),7(80,40),8(75,40), 9(75,24),10(55,24),11(55,50),12(50,50) (2)连接各特征点 Main Menu>Preprocessor>Modeling>Create>Lines> Lines>Straight Line>依次连接各特征点:1(50,0),2(55,0),3(55,16), 4(75,16), 5(75,5),6(80,5),7(80,40),8(75,40), 9(75,24),10(55,24),11(55,50),12(50,50) (3)生成过度圆弧 Main Menu>Preprocessor>Modeling>Create>Lines>Line Fillet>选择需要产生过度圆弧的两边,输入过度圆弧的半径>OK 如图2所示。

谈谈小学科学课实验材料的准备

谈谈小学科学课实验材料的准备 进行实验是学生进行亲自动手,主动进行科学探究的重要活动形式。通过实验使学生在“做中学”,在实验中进行科学探究。要进行实验就必须要有实验材料,而且要有好的实验材料。课前准备实验材料就成为了自然教学一个重要的必不可少的活动。只有精心准备实验材料,才有可能指导学生进行好实验,使学生在实验中自主探究,提高能力。 一、准备实验材料的重要性 “巧妇难为无米之炊”。实验材料是学生进行实验活动的必要条件,没有实验材料,实验根本就无从谈起,那只能“纸上谈兵”,“画饼冲饥”了。因此,在进行实验教学之前必须准备好实验所需要的材料。 同一个师傅应用不同的材料做出来的产品是不同的,好的材料不一定能出好的产品,但不好的材料绝难出好的产品,此所谓“朽木难雕”啊!因此,在进行实验教学之前不仅要准备好实验所需要的全部材料,还要准备好有利于学生实验观察的材料。 二、确定需要实验材料的原则 1、根据教学需要确定材料 自然实验教学中使用的各种观察实验材料,都应是达到教学目的所必需的。所以,我们必须根据教学需要确定所要

准备的材料。首先,要根据观察实验的项目、内容和方法,确定需要准备哪些材料——实物、模型、标本、仪器、工具、试剂、药品等。例如,和这两课的实验教学都与声音有关,但这两课教学目的不一样,实验所需要准备的材料就是不一样的。一课实验是为了让学生认识声音是怎样产生的,需要准备的材料有:钢尺子、小刀、音叉、锣鼓、装水的烧杯等较多能产生声音的材料;一课实验是为了让学生认识声音是怎样传播的,需要的材料有:音叉、锣鼓等较少的能产生声音的材料,还需要一些研究声音传播途径的材料:桌子、盛水的水槽、泡沫小球等。 其次,根据观察实验的组织形式确定需要准备的材料的数量。观察实验是自然教学最常用的教学方法,不准备材料,观察实验就无法进行。但绝不是准备的观察实验材料越多越好,过多的观察实验材料会挤掉其它的教学活动时间,导致通过观察实验所获取的感性知识,来不及思考上升为理性知识。例如,一课让学生通过观察实验认识水的溶解现象,就只需要准备几种较为典型的在水中溶解和不溶解的物质:食盐、高锰酸钾、石子等,而不必准备穷尽学生所知道的所有在水中溶解的物质。 2、根据实际条件确定材料 确定需要的实验材料还要根据实际条件。特别是材料有多种选择时,要根据实际情况确定选择那些既安全,又高效;

有限元分析小论文

三角形单元与矩形单元精细网格的计算精度比较 指导老师: 一、摘要 本论文研究的是三角形单元与矩形单元的精细网格的计算精度比较,通过ANSYS进行有限元法的程序实现,最后得出四边形网格的计算精度大于三角形网格的计算精度的结论。 二、提出问题 三角形单元与矩形单元的精细网格的计算比较 针对该问题,在ANSYS平台上,进行三角形单元与矩形单元的精细网格的划分,完成相应的力学分析。 (a)采用三角形单元的划分(b)采用四边形单元的划分 图1基于ANSYS平台的精细网格划分(每边划分10段) 三、解决过程 对该问题进行有限元分析的过程如下。 1 基于图形界面(GUI)的交互式操作(step by step) (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名): TrussBridge →Press →Run →OK (2) 设置计算类型 ANSYS Main Menu: Preferences… →Structural →OK (3) 定义分析类型 ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK (4) 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →EX: 1(弹性模量), PRXY: 0.25(泊松比)→OK →鼠标点击该窗口右上角的“×”来关闭该窗口 (5)定义单元类型 ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete... →Add…→Structural Solid: Quad 4node 42 →OK(返回到Element Types窗口)→Close (6)设置为带厚度的平面问题 ANSYS Main Menu: Preprocessor →Real Constants… →Add/Edit/Delete →Add →Type 1→OK→Real Constant Set No: 1 (第1号实常数), THK: 1 (平面问题的厚度) →OK →Close

2021届高三生物一轮复习:第一单元 科学探究系列1 实验材料的选择原则 课时练含解析

实验材料的选择原则 选择理想的生物实验材料是生物科学实验、生物科学探究成败的关键之一。而选择合适的生物实验材料是制订计划与实施计划的关键。生物实验材料的选择应注意以下几点: (1)选择的生物材料应是当地较常见、易于获得的材料。 (2)选择的生物材料应健壮、新鲜。健壮的生物材料新陈代谢才旺盛,生物学特征才明显,用作实验效果才好。 (3)选择的生物材料应价格便宜、成本低廉。这是做任何实验都必须考虑的经济因素。 (4)最关键的选择原则应该是符合实验目的与要求。 1.有色、无色材料的选择和处理 实验名称 实验材料 及处理 取材主要原因 鉴定还原糖 实验苹果或梨的匀浆 用还原糖丰富的,白色或近于白色 的材料,以避免色素对实验现象造 成干扰 观察DNA和 RNA在细胞 中的分布 人的口腔上皮细胞取材方便,细胞结构完整且无色观察植物细 胞质壁分离紫色洋葱表皮细胞 细胞内具有中央液泡,且液泡内含 有色素便于观察实验现象

2.实验材料的生理状态的选择

裂实验 1.在生物组织中还原糖、脂肪、蛋白质的鉴定实验中,关于实验材料的选择的叙述,错误的是( A ) A.甘蔗茎的薄壁组织、甜菜的块根等都含有较多的糖,且近于白色,因此可以用于进行还原糖的检测 B.花生种子含脂肪多,且子叶肥厚,是用于脂肪鉴定的理想材料 C.大豆种子蛋白质含量高,是进行蛋白质鉴定的理想植物材料 D.鸡蛋清含蛋白质多,是进行蛋白质鉴定的理想动物材料 解析:甘蔗茎和甜菜的块根中含有的是蔗糖,蔗糖是非还原糖,不能作为还原糖检测的材料。 2.(2019·河北衡水中学五调)实验材料是决定实验成功与否的关键因素之一。下列关于实验选材的叙述,正确的是( A ) A.利用人口腔上皮细胞观察线粒体的形态和分布 B.利用洋葱根尖成熟区细胞诱导染色体数目加倍 C.利用山柳菊研究生物遗传的基本规律 D.利用马蛔虫的受精卵观察细胞的减数分裂 解析:洋葱根尖成熟区细胞不分裂,因此不能诱导染色体数目加倍;山柳菊没有容易区分的相对性状,有时进行无性繁殖,花小难以做人工杂交实验,不适合研究生物的遗传规律;受精卵进行的是有丝分裂。

有限元法论文

机械工程有限元法 学号: 姓名: 专业: 年月日

引言 有限元方法发展到今天。已经成为一门相当复杂的实用工程技术。有限元分析的最终目的是还原一个实际工程系统的数学行为特征。即分析必须针对一个物理原型准确的数学模型。模型包括所有节点、单元、材料属性、实常数、边界条件以及其他用来表现这个物理系统的特征。ANSYS(analysis system)是一种融结构、热、流体、电磁和声学于一体的大型CANE通用有限元分析软件,可广泛应用于航空航天、机械、汽车交通、电子等一般工业及科学研究领域。该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。ANSYS的学习、应用是一个系统、复杂的工程。由于它涉及到多方面的知识,所以在学习ANSYS 的过程中一定要对ANSYS所涉及到的一些理论知识有一个大概的了解,以加深对ANSYS的理解。

目录 引言 一、实验目的 (1) 二、ANSYS软件应用介绍 (1) 三、实验内容 (3) 四、实验步骤 (3) 1. 建立有限元模型 (3) 2. 施加载荷并求解 (9) 3、查看实验结果 (11) 五、实验结果分析 (13) 六、实验总结 (14) 参考文献

梁结构静力有限元分析 一、实验目的 1、熟悉有限元建模、求解及结果分析步骤和方法。 2、能利用ANSYS软件对梁结构进行静力有限元分析。 3、加深有限元理论关于网格划分概念、划分原则等的理解。 二、ANSYS软件应用介绍 ANSYS是一种广泛的商业套装工程分析软件。所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。想要解答,必须先简化结构,采用数值模拟方法分析。 (一)ANSYS软件主要特点 1. 唯一能实现多场及多场耦合分析的软件 2.唯一实现前后处理、求解及多场分析统一数据库的一体化大型FEA软件 3.唯一具有多物理场优化功能的FEA软件 4.唯一具有中文界面的大型通用有限元软件 5.强大的非线性分析功能,多种求解器分别适用于不同的问题及不同的硬件配置 6.支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容 ;强大的并行计算功能支持分布式并行及共享内存式并行 ;多种自动网格划分技术 7. 良好的用户开发环境 (二)、ANSYS的分析研究过程 1、前处理 (1)建模

有限元分析论文

梁结构静力有限元分析论文 姓名: 班级: 学号: 指导老师:

摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:AN SYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSY S软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B C,A 5° 1#面 2#面 C A B D

1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick8-node45,弹性模量为200e9,泊松比为0.3。 由于分析不需要定义实常数,因此可忽略提示,关闭RealConstants菜单。 建立的切片模型如下: 2网格划分 显示边线,关闭背景。通过Meshtool工具对建立好的模型进行网格划分。首先设定网格划分参数,分别设置不同线条的网格划分参数后,采用六面体单元划分模型网格。在MeshTool菜单的Shape栏选择Hex选项。在MeshTool下拉列表框中确保选中V olumes,保证实体通过体单元划分。单击Mesh按钮后,单击拾取对话框中Pick All按钮。划分网格后的图形如下:

骨强度的有限元分析.

骨强度的有限元分析 曾一鸣编译 上海交通大学医学院附属第九人民医院骨科 局部骨密度的双能X线测定已广泛用于骨质疏松症诊断和骨折风险评估。然而,临床观察表明双能X线吸收法预测骨折风险在敏感性和特异性方面存在缺陷。从生物力学角度来看,一种能准确表现骨三维几何形状及骨材料属性异质性分布的研究方法能更好地对骨强度进行评估。因此,人们对于利用有限元分析评估骨的生物力学行为产生了越来越多的兴趣。本文以此为视角,描述有限元法并综述其在骨研究方面的应用,讨论此方法的优点和缺陷,评价其评估骨折风险的临床应用前景,提出未来研究的方向。我们着重阐述该领域的发展趋势及今后的发展重点,而不是针对这一主题作一全面的综述。 一、有限元方法简介 在20世纪50年代,有限元法首次应用于结构分析[1],之后广泛用于几乎每一个工程及相关领域。在固体及结构力学方面(包括骨力学),可选择有限元法作为计算和模拟的工具。因为有限元法具有良好的准确性,可评估研究对象受到外加负荷时复杂的几何学表现(例如一块完整的骨头或骨小梁网络)。 概念上看,用有限元法处理固体及结构力学问题是通过将物体划分为有限个构件或单元,每一个单元由一些少量的参考点或节点来定义(图1)。有限元法就应这种离散化而得名。应力负荷引起每个单元的变形可通过多种简单的方程式,即所谓的形态方程式来表现。其中唯一未知的是节点位移,因此只要计算出节点位移,就能得到每个单元处的应变分布,由此确定整个物体各处的应变分布。要计算出这些位移,研究者还必须规定两个附加的条件:1)边界条件,为外加负荷和/或位移。2)材料属性:包括每个单元的弹性模量及泊松比。然后分析一系列能满足物体几何学、边界条件、材料属性力学平衡的节点位移。随后用节点位移和材料属性来计算整个物体各处的应力分布。 除了能得到应力及应变分布,节点位移还能用于计算其他一些量,如物体的整体刚度及应变能密度。如果研究者指定某些材料特性,包括破坏特性,这种方法还可用于计算物体在什么时候、什么部位、怎样遭到破坏,但这需要使用非线性建模方法进行大量的计算。因此,有限元法可估计那些可通过力学试验得到的量(例如,整骨刚度),还可以估计那些很难进行实验测量的量(例如,应变能密度分布)。

有限元分析设计论文

一、问题描述。 图4-4所示为一直齿圆柱齿轮,图4-5为其1/2纵截面的结构示意图,试对该齿轮进行模态分析。 齿轮材料参数:弹性模量E=220GPa;泊松比=0.3;密度=7800kg/m3 图4-4 直齿圆柱齿轮结构示意图 图4-5 齿轮1/2纵截面结构示意图

二、单元类型的选择与设定(说明理由),材料属性指定。 该问题属于模态分析问题。在分析过程中先建立其中一个轮齿的几何模型,再循环生成整体齿轮,选择SOLID90单元进行模态分析求解。齿轮的模态分析需要创建三维实体模型,选择单元类型的时候一般选择实体模型Structural Solid来创建齿轮,单元类型选择对复杂形状具有较好的适应性的20节点的Brick 20node 95。材料属性题目已指定:弹性模量E=220GPa,泊松比=0.3,密度=7800kg/m3。 1.定义工作文件名和工作标题。 1)选择Utility Menu︱File︱Change Jobname命令,出现Change Jobname对话框,在[/FILNAM]Enter new jobname输入栏中输入工作文件名EXERCISE1,单击OK按钮关闭该对话框。 2)选择Utility Menu︱File︱Change Title命令,出现Change Title对话框,在输入栏中输入MODAL ANALYSIS OF A GEAR,单击OK按钮关闭该对话框。2.定义单元类型 1)选择Main Menu︱Preprocessor︱Element Type︱Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现Library of Element Types对话框。2)在Library of Element Types列表框中分别选择Structural Solid、Brick 20node 95,在Element type reference number输入栏中输入1,如图4-6所示,单击OK 按钮关闭该对话框。 图4-6 单元类型列表对话框 3)单击Element Types对话框上的Close按钮,关闭该对话框。 3.定义材料性能参数 1)选择Main Menu︱Preprocessor︱Material Props︱Material Models命令,出现Define Material Model Behavior对话框。 2)在Material Models Available一栏中依次双击Structural、Linear、Elastic、Isotropic

谈谈小学科学课实验材料的准备

谈谈小学科学课实验材料的准备 无 作者:佚名文章来源:转载点击数:253 更新时间:2011-5-8 谈谈小学科学课实验材料的准备 进行实验是学生进行亲自动手,主动进行科学探究的重要活动形式。通过实验使学生在“做中学”,在实验中进行科学探究。要进行实验就必须要有实验材料,而且要有好的实验材料。课前准备实验材料就成为了自然教学一个重要的必不可少的活动。只有精心准备实验材料,才有可能指导学生进行好实验,使学生在实验中自主探究,提高能力。 一、准备实验材料的重要性 “巧妇难为无米之炊”。实验材料是学生进行实验活动的必要条件,没有实验材料,实验根本就无从谈起,那只能“纸上谈兵”,“画饼冲饥”了。因此,在进行实验教学之前必须准备好实验所需要的材料。 同一个师傅应用不同的材料做出来的产品是不同的,好的材料不一定能出好的产品,但不好的材料绝难出好的产品,此所谓“朽木难雕”啊!因此,在进行实验教学之前不仅要准备好实验所需要的全部材料,还要准备好有利于学生实验观察的材料。 二、确定需要实验材料的原则 1、根据教学需要确定材料 自然实验教学中使用的各种观察实验材料,都应是达到教学目的所必需的。所以,我们必须根据教学需要确定所要准备的材料。首先,要根据观察实验的项目、内容和方法,确定需要准备哪些材料——实物、模型、标本、仪器、工具、试剂、药品等。例如,《声音的产生》和《声音的传播》这两课的实验教学都与声音有关,但这两课教学目的不一样,实验所需要准备的材料就是不一样的。《声音的产生》一课实验是为了让学生认识声音是怎样产生的,需要准备的材料有:钢尺子、小刀、音叉、锣鼓、装水的烧杯等较多能产生声音的材料;《声音的传播》一课实验是为了让学生认识声音是怎样传播的,需要的材料有:音叉、锣鼓等较少的能产生声音的材料,还需要一些研究声音传播途径的材料:桌子、盛水的水槽、泡沫小球等。 其次,根据观察实验的组织形式确定需要准备的材料的数量。观察实验是自然教 学最常用的教学方法,不准备材料,观察实验就无法进行。但绝不是准备的观察实验材料越多越好,过多的观察实验材料会挤掉其它的教学活动时间,导致通过观察实验所获取的感性知识,来不及思考上升为理性知识。例如,《溶解》一课让学生通过观察实验认识水的溶解现象,就只需要准备几种较为典型的在水中溶解和不溶解的物质:食盐、高锰酸钾、石子等,而不必准备穷尽学生所知道的所有在水中溶解的物质。 2、根据实际条件确定材料 确定需要的实验材料还要根据实际条件。特别是材料有多种选择时,要根据实际 情况确定选择那些既安全,又高效;既便宜易得到,又实用的材料。例如:《溶解》一课让学生通过观察实验认识水的溶解现象,要准备烧杯,但实际没有那么多的烧杯,怎么办呢?可以用其它的杯子来代替嘛。

有限元分析论文

机械1003班孙祥和 3100301144 基于高速旋转齿轮的有限元分析 引言:齿轮泵是工程中较为常见的一种泵,在高速运转时齿轮受到多种力的作用,包括齿面受到的压力,啮合时的接触应力以及自身离心力。在此过程中,齿轮将发生形变,为此我们需要对其进行分析,确保其结构的稳定性,这对于齿轮泵安全有效地运行具有很重要的意义。 关键词:高速齿轮、平面静力分析、接触应力分析、离心力分析 一、分析对象 这里我们分析的对象是齿轮泵中高速运转的齿轮,在ANSYS中我们建立了标准齿轮模型,其各项数据如下表所示 齿顶直径24 mm 齿底直径20 mm 齿数10 厚度 4 mm 弹性模量 2.06E11 pa 密度7.8e3 kg/m3 最大转速62.8 rad/s 摩擦系数0.1 啮合齿轮中心距44 mm 表1 齿轮泵高速齿轮参数 二、平面静力分析 1、分析问题 为了考查齿轮泵在高速运转时,齿轮发生多大的径向位移,从而判断其变形情况,以及齿轮运转过程齿面受到的压力作用。在这里我们将齿轮的空间结构简化为平面模型,并分析其平面应力情况。 此处的静力分析为线性静力分析,求解步骤分为建模、施加载荷和边界条件并求解、结果分析和评价三个步骤,下面依序进行。 2、建立模型 2.1 定义单元类型 根据齿轮的平面几何对称性和此处分析类型,我们选择四节点矩形单元PLANE42。PLANE42不仅可以用于计算平面应力问题,还可以用于分析平面应变和轴对称问题。每个节点2个自由度:x,y方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。

设定好单元类型后,对选择的PLANE42单元进行设置,在Element behavior (单元行为方式)选择Plane stress w/wk。 2.2 定义实常数 本处选用带有厚度的平面应力行为方式的PLANE 42单元,需要设置器厚度实常数,只需在“Type1 PLANE 42”中将厚度设为4即可。 2.3 定义材料属性 考虑惯性力的静力分析中必须定义材料的弹性模量和密度。 2.4 建立齿轮面模型,如下图所示 图2 建立齿轮面模型 2.5对盘面划分网格 选择Main Menu:Preprocessor>Meshing>Meshing Tool(网格工具)命令,然后单击Line域选择所有线条(Pick All),之后用线控制单元网格划分,在No.of element division(划分单元的份数)中输入10,表示所有线条被划分为10份。本处选用PLANE 42单元对盘面划分映射网格。 3、定义边界条件并求解 建立有限元模型后,就需要定义分析类型和施加边界条件及载荷,然后求解。此处齿轮的载荷为62.8 rad/s转速形成的离心力,位移边界条件将内孔边缘节点的周向位移固定,具体分为以下几个步骤。 3.1施加位移边界 由于此处是对圆柱齿轮进行静态受力分析,为了获得较好的弯曲应力特性,

实验材料的选取(原理)

实验材料的选取(原理) 实验材料的选取在高中生物学实验中是一个比较重要的问题。 实验材料的选取要考虑什么因素呢?为什么要选取这种,而不选取哪一种呢? 这个问题的答案就是选择实验材料的基本原则,其一是可用;其二是好用。 什么是可用呢?这个问题说起来比较简单,比如DNA的粗提取实验中,既然是要提取DNA,那么材料中就必须有DNA才可用啊,所以选择哺乳动物成熟的红细胞作为材料就是不合适的!你可以选择植物的根尖细胞、也可以选择动物的上皮细胞、肌肉细胞、精子细胞、卵细胞等,只要有DNA的存在就是可用的。 但好用这个原则的要求就高了,题目是要提纯DNA,既然是提纯,其杂质越少、DNA含量越高提纯就会越简便,植物细胞有细胞壁,动物的上皮细胞、肌肉细胞、卵细胞有很多细胞质(细胞器),精子细胞虽然说DNA含量少,但是杂质也很少(细胞器变形或丢失了),所以这些材料中精子是比较不错的,但是那里找那么多的精子呢?人的就免了,牲畜的也别提,最好的是鱼的精子,材料容易获取,而且量非常大(一条公鱼体内的精子数量惊人) 其实鸟类的红细胞中有细胞核(有DNA),而且容易获取,所以教材上选择了鸟类的血液作为材料,其实在鱼精子和鸟类的红细胞中做选择的话,我会选择鱼的精子,原因是鱼的精子体积小,数量多,提取的效果明显(实事证明也就是如此) 在例如在做还原糖的鉴定中,材料可用的意思就是要有还原糖,其实果汁中都含有还原糖(至少含有葡萄糖吧),所以从这个层面上说选取什么果汁都是可以的,但有一点给忽略了,那就是鉴定还原性糖的反应是一个显色反应,也就是说最后要观察反应液的颜色,所以从可用的角度上看,凡是原本就有颜色的果汁就不可用,比如红葡萄汁、西瓜汁、橙汁、红萝卜汁等。第二个原则是好用,好用的原则当然是还原性糖含量多,材料容易获取,从这个层面上说白萝卜汁就不合适了,原因是还原性糖较少,甘蔗汁也不合适了,甘蔗种含量最多的蔗糖不是还原性糖,白葡萄汁就是非常合适的了,雪梨当然也不错了! 再如在遗传学的实验中,豌豆、玉米和果蝇都是常用的好材料,主要原因就是考虑了这两个原则。果蝇的体积小、容易饲养、繁殖速度快、量大,而且染色体较少,容易定位,性状区分明显,容易统计。若是换成水牛那就很惨了,等上一年才会有一个小牛出生,那要是研究一个性状,那就要上百年了,很不现实阿!有人会说,那要是就研究牛的某个性状呢,那当然要选用这种牛作实验材料了,但试验过程中要改变策略,以克服缺点,比如使用人工授精的方式短时间内产生多个受精卵,再利用胚胎工程实现借腹生子,这就可以了!

有限元论文

基于ANSYS的平面板有限元分析班级:机械11-4 姓名:高尚学号:111014410 引言:有限元分析是利用数学近似的方法对真实物理系统进行模拟,利用简单而又相互作用的元素拼接,用有限数量的未知量去接近无限未知量的真实系统。现今几乎所有的有限元分析模型都是用实体模型建模,类似于CAD,ANSYS等软件以数学方式表达结构的几何形状,用于在里面填充节点和单元,还可以在几何模型边界上方便地施加载荷。ANSYS软件是一个多用途的有限元法计算机设计程序,技术涵盖多个学科领域,无论是需要结构分析、流体、热力、电磁学、显式分析、系统仿真还是数据管理,ANSYS 的产品均能为各个行业的企业取得成功助一臂之力。基于ANSYS 软件对平面板进行应力分析是本论文的主要内容,先通过设计分析范畴、选择单元类型、建立有限元模型、划分网格、施加边界条件,求解;最后得出结果,画出应力图,从而得到对平面板的有限元分析。 μ。题目:已知平面板的厚度m E11 2 =,3.0 =,Pa e =,圆孔半径m r6.0 t1.0 = 利用ANSYS求(1)应力分布;(2)节点位移;(3)最大应力;(4)最大位移。 一、设计平面板的有限元模型 1、设计分析范畴和定义单元类型 进行任何有限元分析都必须选择合适的单元类型,单元类型决定附加的自由度。对于图1的平面结构,首先设置分析范畴,在proference中选择structure,然后从Element Type对话框中选择Structural Solid中的实体单元Quad node 882,即四边形八节点平面单元,Solid结构实体单元,适用于模拟边界曲线。在Opions 对话框的Element Behavior选项中选Plane stress with thickness,用来表示应变会受到载荷对厚度的影响。

相关主题
文本预览
相关文档 最新文档