二章Z变换及离散时间系统分析
- 格式:ppt
- 大小:1.96 MB
- 文档页数:39
离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。
离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。
其中,Z变换是离散时间信号的重要工具之一。
离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。
离散时间信号通常用序列表示,即按一定顺序排列的值的集合。
离散时间信号可以是有限长度的,也可以是无限长度的。
离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。
在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。
在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。
在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。
Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。
Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。
Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。
离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。
通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。
在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。
我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。
Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。
这些性质使得Z变换在信号处理中有着广泛的应用。
通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。
此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。
总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。
信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。
本文将介绍信号与系统中的z变换原理及应用。
一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。
在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。
它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。
z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。
通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。
此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。
二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。
通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。
2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。
我们可以通过分析代数方程的根的位置,判断系统的稳定性。
如果差分方程的根都在单位圆内,说明系统是稳定的。
3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。
通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。
4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。
通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。
然后再通过z逆变换将离散时间信号重构为连续时间信号。
5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。
通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。
z变换是信号与系统分析中非常重要的工具。
(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。
【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。
解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。
【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。
解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。
南昌大学实验报告(信号与系统)学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/6/1 实验成绩:Z变换、离散时间系统的Z域分析一、实验目的1、学会用matlab求解z变换与逆z变换。
2、学会离散系统零极点分布图的绘制,理解离散系统零极点分布图的含义。
3、求解离散系统的频率响应特性。
二、实验说明1、一离散系统的差分方程为y(n)-by(n-1)=x(n),若激励为x(n)=a n u(n),起始值y(-1)=0,求响应y(n)。
2、当H(s)极点位于z平面中各方框附近的位置,画出对应的h(n)波形填入方框中。
3、求系统差分方程为y(n)-1.1y(n-1)+0.7y(n-2)=x(n-1),的系统的频率响应特性。
三、实验内容1、syms n a b z%定义符号n a b zx=a^n; %定义激励信号X=ztrans(x); %计算激励信号的变换H=1/(1-b*z^(-1)); %写出系统z变换式Y=H*X; %计算输出的变换式y1=iztrans(Y); %计算输出时域表达式y=simplify(y1) %化简表达式2、pos=[26,19,18,17,24,27,13,11,9,23,28,7,4,1,22];figure,id=1; %生成新图框,子图id初始化为1for r=0.8:0.2:1.2 %极点的幅度依次为0.8,1.0,1.2for theta=0:pi/4:pi %极点的弧度依次为0,Π/4,Π/2,3Π/4,Πp=r*exp(j*theta);if theta~=0&theta~=pip=[p;p']; %如果极点不在实轴上添加一个共轭极点end[b a]=zp2tf([],p,1); %由零极点得到传递函数subplot(4,7,pos(id));[h,t]=impz(b,a,20); %计算20个点的单位样值响应stem(t,h,'k-','MarkerSize',5);%绘制单位样值响应id=id+1; %子图序号加1end%退出弧角循环end%退出幅度循环3、a=[1,-1.1,0.7];b=[0,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a) %绘制频率特性4、a=[1,-1.1,0.6];b=[0.6,-1.1,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a); %绘制频率响应n=[0:40]'; %生成时间点x1=sin(0.1*pi*n); %生成单频信号x2=0*n; %准备方波信号x2(mod(n,10)<5)=1; %生成周期为10的方波信号y1=filter(b,a,x1); %分别对两个信号滤波y2=filter(b,a,x2);figuresubplot(2,1,1),stem(n,x1); %绘制单频信号及其输出波形subplot(2,1,2),stem(n,y1);figuresubplot(2,1,1),stem(n,x2); %绘制方波信号及其输出波形subplot(2,1,2),stem(n,y2);四、实验结果1、y =(a^(1+n)-b^(1+n))/(a-b)2、输出波形如下3、输出波形如下:4、输出波形如下:五、实验总结通过本次实验的学习,对离散系统有了更多的了解,通过用matlab画出离散系统的零极点分布图,使我对离散系统的零极点分布与其对用的频响特性有了深刻的了解;同时对全通网络的相频失真有了进一步了解,幅度没有失真,但对不同的频率信号的相移不同,因此单频信号输入时,其输出信号的波形没有失真,只是整个波形发生了移位,但对于方波信号,由于其中包含了各种频率的信号,因此不同频率的信号相频失真不同,因此输出波形不再是方波。
离散时间信号及其Z变换离散时间信号是指在离散时间点上取值的信号。
它可以用一个数列来表示,其中每个数代表了在相应时间点上的信号取值。
离散时间信号在数字信号处理中起着重要的作用,因为它们可以通过数字系统来表示和处理。
离散时间信号的定义可以表示为x(n),其中n是离散时间点的索引。
离散时间信号可以是有限长度的,也可以是无限长度的。
有限长度的离散时间信号可以表示为x(n),其中n取值范围在0到N-1之间,N为信号的长度。
而无限长度的离散时间信号可以表示为x(n),其中n取遍整个整数集。
离散时间信号的Z变换是一种重要的信号变换方法,它将离散时间信号转换为复变量的函数。
Z变换是一种在数字信号处理中常用的工具,它将离散时间信号从时域转换到复频域,从而可以进行频谱分析和系统设计等操作。
离散时间信号x(n)的Z变换可以表示为X(z),其中z为复变量。
Z变换的定义可以表示为:X(z) = Σ(x(n) * z^(-n))其中Σ表示求和符号,x(n)表示离散时间信号的取值,z^(-n)表示z的负幂次方。
Z变换的性质和连续时间信号的拉普拉斯变换类似,具有线性性、平移性、卷积性、频率抽样等性质。
Z变换将离散时间信号映射到复平面上的点,其中每个点对应离散时间信号在不同频率上的幅度和相位信息。
Z变换在信号处理中有广泛的应用。
它可以用于系统的频域分析,比如计算系统的频率响应、幅频特性和相频特性等。
Z变换还可以用于信号的滤波和等级控制,用于设计数字滤波器和控制器,从而实现对信号的调制和解调。
此外,Z变换还可以用于信号的压缩和编码,用于提取信号中的相关特征和压缩信号的数据量。
总而言之,离散时间信号及其Z变换是数字信号处理中的重要概念和工具。
离散时间信号可以用一个数列来表示,在离散时间点上取值。
而Z变换则将离散时间信号从时域转换到复频域,从而实现对信号的频谱分析和系统设计等操作。
离散时间信号及其Z变换的应用广泛,包括系统分析、信号滤波、信号压缩等领域。
z变换知识点总结一、引言在信号处理领域中,z变换(Z-transform)是一种重要的数学工具,用于分析和处理离散时间信号。
与连续时间信号相对应的拉普拉斯变换用于处理连续时间信号,而z变换则用于处理离散时间信号。
z变换可以将离散时间信号转换为复变量域中的复数函数,从而更容易地进行信号分析和处理。
本文将对z变换的基本概念、性质、逆z变换、收敛域、z变换与拉普拉斯变换的关系以及在数字滤波器设计中的应用等知识点进行总结和讨论。
二、z变换的基本概念1. 离散时间信号的z变换对于一个离散时间信号x[n],其z变换定义如下:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n] z^(-n)其中,z是一个复数变量,n为离散时间序列,x[n]是每个时间点上的信号值。
2. z变换的双边z变换和单边z变换双边z变换定义在整个序列上,包括负无穷到正无穷的所有时间点。
而单边z变换定义在0和正无穷之间的时间点上,通常用于信号的因果系统的分析。
3. z域表示z变换把离散时间信号的时域表示转换为z域表示。
z域是复平面上的一种表示,其中z = a + jb,其中a为实部,b为虚部。
z域表示包含了离散时间信号的频率、相位和幅值信息。
三、z变换的性质1. 线性性质类似于连续时间信号的拉普拉斯变换,z变换也具有线性性质,即对于任意常数a和b,有Z{a x1[n] + b x2[n]} = a X1(z) + b X2(z)。
这意味着z变换对于信号的线性组合保持封闭性。
2. 移位性质类似于连续时间信号的移位特性,z变换也具有移位性质,即Z{x[n-k]} = z^(-k) X(z),其中k是任意常数。
这意味着z变换对于离散时间信号的时移操作具有相应的变换规律。
3. 初值定理和终值定理z变换有类似于连续时间信号的初值定理和终值定理。
初值定理表示当n趋向负无穷时,z变换为Z{x[0]}。
终值定理表示当n趋向正无穷时,z变换为Z{x[∞]}。
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。