当前位置:文档之家› 最新中考数学试卷及答案

最新中考数学试卷及答案

最新中考数学试卷及答案
最新中考数学试卷及答案

中考数学一模试题

(本试卷共150分 考试时间120分钟)

请注意:考生须将本卷答案答到答题纸上,答案写在试卷上无效! 一、选择题(每题3分,共24分) 1.5

1

-

的倒数是 A. -5

B.

C. D. 5

2.下列运算正确的是 A .236·a a a =

B .1

122-??

=- ???

C .164=±

D .|6|6-=

3.2012年3月5日上午,国务院总理温家宝向第十一届全国人大五次会议作政府工作报告时提出,2012年中央财政要进一步增加教育投入,国家财政性教育经费支出21984.63亿元.将21984.63用科学记数法可表示为

A .21.98463?103

B .0.2198463?105

C .2.198463?104

D . 2.198463?103 4.下列几何体的正视图与众不同的是

5.物理学家波义耳1662年的一项重要研究结果是:在温度不变的情况下,气球内气体

的压强()a p p 与它的体积3

()v m 的乘积是一个常数k ,即pv k =(k 为常数,0k >),

下列图象能正确反映p 与v 之间函数关系图像的是

6.⊙O 1和⊙O 2的半径分别为1和4,若两圆相交,则圆心距O 1O 2的取值范围在数轴上表示正确的是

1

5

1

5

-

A B C D

E

F B

C

D

A

G A B C D 7.在“走进苏馨家园奉献助残爱心”的活动中,某班50位同学捐款金额统计如下,则在这次活动中,该班同学捐款金额的中位数是 金额(元) 20 30 35 50 100 学生数(人)

20

10

5

10

5

A .10元

B .25元

C .30元

D .35元 8.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1 与S 2的大小关系是 A. S 1 >S 2

B. S 1 < S 2

C. S 1 = S 2

D. 无法确定

二、填空题(本大题共10小题,每小题3分,共30分.) 9. 点A(2, 3-)关于原点对称的点的坐标为 . 10.分解因式:3x 2-27=__________ .

11.函数3

1

x y x -=

+的自变量x 的取值范围是__________________. 12.如果关于x 的方程x x a 2

40++=有两个相等的实数根,那么a =__________.

13.如图,梯形ABCD 纸片,AD ∥BC ,现将纸片沿EF 折叠,使点C 与点A 重合,点D

落在点G 处,展开后,若∠AFG =30°,则∠CEF =___________°.

第13题 第16题 第18题

14.已知实数m 是关于x 的方程x 2-3x -1=0的一根,则代数式2m 2-6m +2值为_____. 15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展

了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分,小明参加竞赛得分要超过100分,他至少要答对 道题. 16.如图,D 是反比例函数的图像上一点,过D 作DE ⊥轴于E ,DC ⊥)0(<=

k x

k

y x y

C B

A

C B

A

图1

图2

3 1 0 2

4

5 3 1 0 2 4 5 3 1 0 2 4 5 x

x

A

B

C

x

y

B

A C

E D

O

轴于C ,一次函数与的图象都经过点C ,与轴分别交于 A 、B 两点,四边形DCAE 的面积为4,则的值为 . 17.如图,在正方形网格中,sin ABC ∠= .

18.一个包装盒的设计方法如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影

部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE = FB = xcm 。若广告商要求包装盒侧面积S(cm 2)最大,试问x 应取的值为 cm. 三、解答题

19.(6分)2

018(1)tan 4512π---+-??

? ???

(6分)

20.(8分)先化简:1

44)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值.

21. (10分)为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,

农民只需每人每年交20元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图. 根据以上信息,解答下列问题: (1) 本次共调查了多少村民?

被调查的村民中,有多 少人参加合作医疗得到 了报销款?

(2) 若该镇有村民12500人,

y x m =-+233

+-

=x y x k C

B

A

请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到12100人,假设这两年的年增长率相同,求这个年增长率.

22.(10分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的

扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m ,乙转盘中指针所

指区域内的数字为n (若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).

(1) 请你用画树状图或列表格的方法求出|m +n |>1的概率; (2) 直接写出点(m ,n )落在函数y =- 1

x

图象上的概率.

23. (10分)如图,在

ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC

于点F 。

(1) 求证:ABE CDF △≌;

(2) 若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.

24. (10分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45o降为

30o,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1) 改善后滑滑板会加长多少?(精确到0.01)

(2) 若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。 (参考数据:2 1.414,3 1.732,6 2.449===)

D

E C

F

A

B

25.(10分)

已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形

对应边互相平行且三处所示宽度相等).

操作:将三角尺移向直径为4cm 的⊙O ,它的内Rt ⊙ABC 的斜边AB 恰好等于⊙O 的直

径,它的外Rt ⊙A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。 思考:

(1) 求直角三角尺边框的宽。

(2) 求证:∠BB′C ′+∠CC′B′=90°。

(3) 求边B′C ′的长。

26. (10分) 已知一次函数y 1 = 2x 和二次函数y 2 = x 2 + 1。

(1) 求证:函数y 1、y 2的图像都经过同一个定点;

(2) 求证:在实数范围内,对于任意同一个x 的值,这两个函数所对应的函数值y 1 ≤ y 2

总成立;

(3) 是否存在抛物线y 3 = ax 2 + bx + c ,其图象经过点(-5,2),且在实数范围内,对于

同一个x 的值,这三个函数所对应的函数值y 1 ≤ y 3 ≤ y 2总成立?若存在,求出y 3的解析式;若不存在,说明理由。

A

B C

A'

B'

C'

O

图2

O

宽宽

C'

B'

A'

C B

A

图1

C

y

O′

? M

C

y

O′

? M

27.(10分)有一批物资,由甲汽车从M 地运往距M 地180千米的N 地。而甲车在驶往N

地的途中发生故障,司机马上通知N 地,并立即自查和维修.N 地在接到通知后第12分钟时,立即派乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到N 地,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达N 地.下图是甲、乙两车离N 地的距离y (千米)与时间x (小时)之间的函数图象。请结合图象信息解答下列问题: (1) 请直接在坐标系中的( )内填上数据; (2) 求线段CD 的函数解析式,并写出 自变量x 的取值范围; (3) 求乙车的行驶速度.

28. (12分)如图,在平面直角坐标系中,O 是坐标原点,直线y = 3x + 9与x 轴、y 轴分别

交于A 、C 两点,抛物线c bx x y ++-

=2

4

1经过A 、C 两点,与x 轴的另一个交点为点B ,动点P 从点A 出发沿AB 以每秒3个单位长度的速度向点B 运动,动点Q 从点B 出发沿BC 以每秒3个单位长度的速度向点C 运动,动点N 从点C 出发沿CA 以每秒

5

10

3个单位长度的速度向点A 运动,点P 、Q 、N 同时出发、同时停止,设 运动时间为t (0<t <5)秒. (1) 求抛物线的解析式; (2) 判断⊙ABC 的形状;

(3) 以OC 为直径的⊙O′与BC 交于点M ,求当t 为何值时,PM 与⊙O′相切?请说明理由;

(4) 在点P 、Q 、N 运动的过程中,是否存在△NCQ 为直角三角形的情形,若存在,求出相应的t 值;若不存在,请说明理由.

参考答案

1-8. ADCDC ACC 9. (2-,3) 10. 3(3)(3)x x +- 11. 3x ≥ 12. 4 13. 75° 14. 4 15. 14

16. 2-

17.

18. 15

19. 3 (4分 + 2分)

20. 22a a

+- 1,2 0=1a a ≠-∴=当时,原式 (5分 + 3分)

21. (1) 500(2分) 485(2分) (2) 10000(人) (2分) 10%(4分)

22. (1) 图表略(4分) 512(3分) (2) 1

6

(3分)

23. (1)略(5分) (2) 菱形(1分 + 4分)

24. (1) 2.07 (5分) (2) 可行 理由略(1分 + 4分)

25.(1) 1(4分) (2)略(3分) (3)3(3分)

26. (1)略(3分) (2)略(3分) (3) 存在 23141

333

y x x =++(1分 + 2分)

27.(1)1.2 2.1 120 (1分+1分+1分)

(2) 460200( 2.1)3y x x =-+≤≤(3分+1分) (3) 740

/9

km h (3分)

28.(1)219

944

y x x =-++ (3分)

(2) 等腰三角形 (3分) (3) 3s (3分)

(4) 存在 255

63

t =或(1分+2分)

2021年中考数学压轴题及答案精选(二)

2021年中考数学压轴题及答案精选(二) 2021年中考数学压轴题汇编(二) 31.(12分)(2021?宜昌)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax+bx+n(a≠0)过E,A′两点. (1)填空:∠AOB= 45 °,用m表示点A′的坐标:A′( m ,﹣m );(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且 =时,△D′OE与△ABC是否 2 相似?说明理由; (3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN ⊥y轴,垂足为N: ①求a,b,m满足的关系式; ②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围. 考点:二次函数综合题.专题:综合题.分析:( 1)由B与C的坐标求出OB与OC的长,根据OC﹣OB表示出BC的长,由题意AB=2BC,表示出AB,得到AB=OB,即三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得:OD′=D′A′=m,即可确定出A′坐标;(2)△D′OE∽△ABC,理由如下:根据题意表示出A与B的坐标,由=,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入整理得到m与n的关系式,利用两边对应成比例且夹角相等的三角形相似即可得证; 2(3)①当E与原点重合时,把A与E坐标代入y=ax+bx+c,整理即可得到a,b,m的关系式;②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学专题练习数与式

数与式 一、选择题(每小题3分,共24分) 1.3-的相反数是( ) A .1 3 B . 1 3- C . 3 D . -3 2.下列数022cos 607π,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 3.下列计算中,结果正确的是( ) A.030= B.1221 -=?- C.331-=- D.527-+=- 4.若式子x 的取值范围是( ) A.1 12x x ≥-≠且 B.1x ≠ C.12x ≥- D.1 12x x >-≠且 5. 下列运算中,结果正确的是( )

A .235x x x += B .326x x x ?= C .55x x x ÷= D .()2 3539x x x ?= 6.a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( ) ,3 ,2 ,4 ,8 7.若2(1)20m n -++=,则m n +的值是( ) A .-1 B .0 C .1 D .2 8.我们规定[]x 表示不大于x 的最大整数,例如[]12.1=, []33=,[]35.2-=-,若5104=?? ????+x ,则x 的取值可以是( ) 二、填空题(每小题3分,共24分) 9.四个实数2-,0,2-,1中,最小的实数是 . 10.分解因式:22(21)a a --= .

11.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=_________. 12.如图,一个正方形纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2,使得按虚线折成的正方体后,相对面上的两个数互为相反数, 则A 处应填 . 13. 计算:323()a a ?= . 14.当分式24 2 +-x x 的值为0时,x 的值是 _. 15.已知2x y -=3,则代数式624x y -+的值为 . 16.观察下列等式: 1 11122=-?,1112323=-?,111 3434=-?, 将以上三个等式两边分别相加得: 1 1 1 1 1 1 1 1 13 111223342233444++=-+-+-=-=???. 那么,计算1 1 1 1 12233420142015++++????L 的结果是

2020年中考数学压轴题(含答案)

2020年中考数学压轴题 一、选择题 1.如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0°<α<120°)得到△AB′C′,B′C′与BC,AC分别交于点D,E.设CD+DE=x,△AEC′的面积为y,则y与x的函数图象大致() A.B.C.D. 2.如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现() A.3次B.5次C.6次D.7次 二、填空题 3.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为. 第3题第4题 4.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B →A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q 也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为. 三、解答题 5.如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴

上,连结AC,OA=3,∠OAC=30°,点D是BC的中点, (1)OC=:点D的坐标为 (2)若点E在线段0A上,直线DE把矩形OABC面积分成为2:1,求点E坐标; (3)如图2,点P为线段AB上一动点(与A、B重合),连接DP; ①将△DBP沿DP所在的直线翻折,若点B恰好落在AC上,求此时BP的长; ②以线段DP为边,在DP所在直线的右上方作等边△DPQ,当动点P从点B运动到点A时,点Q也随之运动,请直接写出点Q运动路径的长. 6.如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求抛物线的解析式; (2)点P是抛物线上一点,设P点的横坐标为m. ①当点P在第一象限时,过点P作PD⊥x轴,交BC于点D,过点D作DE⊥y轴,垂足为E,连接 PE,当△PDE和△BOC相似时,求点P的坐标; ②请直接写出使∠PBA=∠ABC的点P的坐标. 【答案与解析】 一、选择题 1.【分析】可证△ABF≌△AC′E(AAS)、△CDE≌△B′DF(AAS),则B′D+DE=CD+ED=x,y=EC′×△AEC′ 的EC′边上的高,即可求解. 【解答】解:∵△ABC绕点A逆时针旋转α,设AB′与BC交于点F,

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

挑战中考数学压轴题-最新

目录 第一部分函数图象中点的存在性问题 1.1 因动点产生的相似三角形问题 例1 2013年上海市中考第24题 例2 2012年苏州市中考第29题 例3 2012年黄冈市中考第25题 例4 2010年义乌市中考第24题 例5 2009年临沂市中考第26题 例6 2008年苏州市中考第29题 第一部分函数图象中点的存在性问题 1.1 因动点产生的相似三角形问题

例1 2013年上海市中考第24题 如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. 图1 动感体验 请打开几何画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似. 请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。 思路点拨 1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答 (1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-. 因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得 3 a = . 图2 所以抛物线的表达式为23323(2)333 y x x x x =-=-. (2)由2232333 (1)y x x x = -=-- , 得抛物线的顶点M 的坐标为3(1,)- .所以3 tan BOM ∠= . 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3 (1,)-, 得3 tan 3 ABO ∠= ,23AB =,233OM =.

初三数学圆测试题和答案及解析

九年级上册圆单元测试 一、选择题(本大题共10小题,每小题3分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆 的位置关系是( ) A.外离 B.相切 C.相交 D.内含 3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140° 4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20° 6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm 7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图

中阴 影部分的面积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相 切,则满足条件的⊙C有( ) A.2个 B.4个 C.5个 D.6个 9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数 根,则直线与⊙O的位置关系为( ) A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定 10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 二、填空题(本大题共5小题,每小4分,共计20分) 11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包 装侧面,则需________________的包装膜(不计接缝,取3). 12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅

中考数学专题训练:专题1 数与式

2019-2020年中考数学专题训练:专题1 数与式 一、选择题(每小题3分,共30分) 1.绝对值大于2而小于5的所有正整数之和为() A、7 B、8 C、9 D、10 2.数轴上的点P与表示有理数2的点的距离是6个单位长度,由点P表示的数是() A、6 B、8 C、8或-4 D、8 3.若,则的取值范围是() A.B.C.D. 4.下列二次根式中,不是最简二次根式的是() A.B.C.D. 5.分式有意义的条件是() A.B.C.D. 6.下列计算中,结果正确的是 A.2x2+3x3=5x5 B.2x3·3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6 7.下列计算结果为正数的是( ) A. B. C. D. 8.-2的绝对值等于 A.2 B.-2 C.1 2D.4 9.已知,,则的值为() A、7 B、5 C、3 D、1 10.下列计算中,正确的有( ) ①②③④ A. 0个 B. 1个 C. 2个 D. 3个 二、填空题(每小题3分,共30分) 11.将分式约分可得; 12.当时,分式的值为零. 13.甲数的与乙数的差可以表示为_________ 14..当时,化简的结果是.

15.根据如图所示的计算程序,若输出的值为-1,则输入的值为 _ _ . 16.使有意义的的取值范围为 . 17.把一根32㎝长的铁丝弯成长宽之比5:3的长方形,则长方形的面积为( ) 18.若|m -2|+|n +3|=0,则n m 。 19.一组按规律排列的式子…,其中第8个式子是 ,第n 个式子是 (n 为正整数). 20.248-1能够被60~70之间的两个数整除,则这两个数是______________. 三、解答题(共60分) 21 ()()202532014?-+-+ 22.先化简,再求值:,其中. 23.已知,求()() ()32235156a a a a a ++--+的值.

2020年中考数学压轴题突破(含答案)

2014中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。 答题规范动作 1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练) 一、图形运动产生的面积问题 一、知识点睛 1.研究_基本_图形 2.分析运动状态: ①由起点、终点确定t的范围; ②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3.分段画图,选择适当方法表达面积. 二、精讲精练 1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以 1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为t秒. (1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积. (2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

中考数学数与式专题测试卷(附答案)

中考数学数与式专题测试卷(附答案) 一、单选题(共12题;共24分) 1.下列各式中正确的是() A. B. C. D. 2.下列各式中,计算正确的是() A. B. C. D. 3.2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为() A. B. C. D. 4.要使分式有意义,则x的取值范围是() A. B. C. D. 5.-3相反数是() A. 3 B. -3 C. D. 6.下列式子运算正确的是() A. B. C. D. 7.已知,则a+2b的值是() A. 4 B. 6 C. 8 D. 10 8.﹣3的相反数是() A. ﹣3 B. ﹣ C. D. 3 9.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为() A. 0.69×107 B. 69×105 C. 6.9×105 D. 6.9×106 10.若有意义,则a的取值范围是() A. a≥1 B. a≤1 C. a≥0 D. a≤﹣1 11.下列计算正确的是() A. B. C. D. 12.下列等式成立的是() A. B. C. D. 二、填空题(共6题;共12分) 13.计算:________.

14.因式分解:x3y﹣4xy3=________. 15.若多项式是关于x,y的三次多项式,则________. 16.关于x的分式方程的解为正实数,则k的取值范围是________. 17.计算:=________. 18.计算的结果是________. 三、计算题(共3题;共25分) 19. (1)计算:; (2)先化简,再从中选择合适的值代入求值. 20. (1)计算:| ﹣3|+2 cos60°﹣× ﹣(﹣)0. (2)先化简,再求值:(x+2+ )÷ ,其中x=﹣1. 21.先化简,再求值:,其中. 四、综合题(共4题;共39分) 22.用※定义一种新运算:对于任意实数m和n,规定,如: . (1)求; (2)若,求m的取值范围,并在所给的数轴上表示出解集. 23.阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题: 定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数. 请思考小明的方法解决下面问题: (1)写出函数y=x2﹣4x+3的旋转函数. (2)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”. 24.已知

最新中考数学压轴题汇总

中考数学压轴题汇总(一) 17.(2005浙江台州)如图,在平面直角坐标系内,⊙C 与y 轴相切于D 点,与x 轴相交于A (2,0)、B (8,0)两点,圆心C 在第四象限. (1)求点C 的坐标; (2)连结BC 并延长交⊙C 于另一点E ,若线段..BE 上有一点P ,使得 AB 2=BP·BE ,能否推出AP ⊥BE ?请给出你的结论,并说明理由; (3)在直线..BE 上是否存在点Q ,使得AQ 2=BQ·EQ ?若存在,求出点Q 的坐标;若不存在,也请说明理由. [解] (1) C (5,-4); (2)能。连结AE ,∵BE 是⊙O 的直径, ∴∠BAE=90°. 在△ABE 与△PBA 中,AB 2=BP· BE , 即AB BE BP AB , 又 ∠ABE=∠PBA, ∴△ABE ∽△PBA . ∴∠BPA=∠BAE=90°, 即AP ⊥BE . (3)分析:假设在直线EB 上存在点Q ,使AQ 2=BQ· EQ. Q 点位置有三种情况: ①若三条线段有两条等长,则三条均等长,于是容易知点C 即点Q ; ②若无两条等长,且点Q 在线段EB 上,由Rt △EBA 中的射影定理知点Q 即为AQ ⊥EB 之垂足; ③若无两条等长,且当点Q 在线段EB 外,由条件想到切割线定理,知QA 切⊙C 于点A.设Q()(,t y t ),并过点Q 作QR ⊥x 轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法. 解题过程: ① 当点Q 1与C 重合时,AQ 1=Q 1B=Q 1E, 显然有AQ 12=BQ 1· EQ 1 , ∴Q 1(5, -4)符合题意; ② 当Q 2点在线段EB 上, ∵△ABE 中,∠BAE=90°

中考数学圆试题及答案

0 1 2 3 4 5 0 1 2 3 4 5 B . C . 一.选择 1. (2009 年泸州)已知⊙O 1 与⊙O 2 的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009 年滨州)已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结论正确的是( ) A . 0 < d < 1 B . d > 5 C . 0 < d < 1或 d > 5 D . 0 ≤ d < 1 或 d > 5 3.(2009 年台州市)大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009 年益阳市)已知⊙O 1 和⊙O 2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距 O 1O 2 的 取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 A . D . 9. (2009 年宜宾)若两圆的半径分别是 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关系是( ) A. 内切 B.相交 C.外切 D. 外离 10.. (2009 肇庆)10.若⊙O 与 ⊙O 相切,且 O O = 5 ,⊙O 的半径 r = 2 ,则⊙O 的半径 r 是( ) 1 2 1 2 1 1 2 2 A . 3 B . 5 C . 7 D . 3 或 7 11. .(2009 年湖州)已知⊙O 与 ⊙O 外切,它们的半径分别为 2 和 3,则圆心距 O O 的长是( ) 1 2 1 2 A . O O =1 B . O O =5 C .1< O O <5 D . O O >5 1 2 1 2 1 2 1 2

2020-2021学年中考数学一轮复习《数与式》专题练习卷及答案

数与式专题 1.下列各数:–2,0, 1 3 ,0.020020002……,π A .4 B .3 C .2 D .1 【答案】C 2.下列无理数中,与4最接近的是 A B C D 【答案】C 3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km ,用科学记数法表示1.496亿是 A .1.496×107 B .14.96×108 C .0.1496×108 D .1.496×108 【答案】D 4.如果2x a+1 y 与x 2y b –1 是同类项,那么a b 的值是 A . 12 B . 32 C .1 D .3 【答案】A 5.下列运算正确的是 A .2a –a=1 B .2a+b=2ab C .(a 4 )3 =a 7 D .(–a )2 ?(–a )3 =–a 5

【答案】D 6.–1 3 的倒数是 A.3 B.–3 C.1 3 D.– 1 3 【答案】B 7.–3的绝对值是 A.–3 B.3 C.–1 3 D. 1 3 【答案】B 8.数轴上A,B两点所表示的数分别是3,–2,则表示AB之间距离的算式是A.3–(–2)B.3+(–2) C.–2–3 D.–2–(–3) 【答案】A 9.下列计算正确的是 A=2 B=±2 C=2 D=±2 【答案】A 10.的立方根是 A.–8 B.–4 C.–2 D.不存在 【答案】C

11.2018的相反数是 A.–2018 B.2018 C.– 1 2018 D. 1 2018 【答案】A 12.按如图所示的运算程序,能使输出的结果为12的是 A.x=3,y=3 B.x=–4,y=–2 C.x=2,y=4 D.x=4,y=2 【答案】C 13.分解因式:x2y–y=__________. 【答案】y(x+1)(x–1) 14.若分式 29 3 x x - - 的值为0,则x的值为__________. 【答案】–3 15.已知:a2+a=4,则代数式a(2a+1)–(a+2)(a–2)的值是__________.【答案】8 163 x-有意义,则x的取值范围是__________.【答案】x≥3

中考数学专题复习 数与式

中考数学专题复习 专题一 数与式 [基础训练] 1.如果a 与2-的和为O ,那么a 是( ) A .2 B . 12 C .1 2 - D .2- 2.23 4 ()m m g 等于( ) A.9 m B .10 m C .12 m D .14 m 3. 若4x =,则5x -的值是( ) A .1 B .-1 C .9 D .-9 4、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2 =4,ab=2 1,则(a+b)2 = 5.在函数1-=x y 中,自变量x 6.若分式 1 2 --x x 的值为零,则=x . 7.因式分解:=+-2 2 3 2xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简: (1)0 3260tan 33 ? ? ? ? ? - +?+ 11.已知12+=x ,求代数式x x x x x x x 1 12122÷??? ??+---+的值. (第9题图)

[精选例题] 例题1(1)1:2的倒数是( ) A 21 B-21 C ±2 1 D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解 (1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是( A 点P B 点Q C 点M D 点N (2)当x=_____时,分式 3 3--x x 无意义. (3)已知 a a a a -=-112 ,则a 的取值范围是( ) A a 0≤ B a<0 C 00 说明:本题考查对数与式有关性质的掌握 (1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质 例题3(1)下列运算正确的是( ) A 2 2 a a a =? B 2 a a a =+ C 2 3 6 a a a =÷ D () 62 3 a a = (2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( ) A -(-2)=2 B 228= C 2 22532x x x =+ D () 53 2 a a = (4)先化简4 1 )231(2 -+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.

最新2019年中考数学压轴题专题汇总

2019年中考数学专项训练---选择题压轴题1.某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是() A.B. C.D. 2.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x 轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是() A.B.C.D.

3.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点A 2018处,则点A 2018与点0A 间的距离是( ) A.4 B. C.2 D.0 4.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为阴影部分,则S 与t 的大致图象为 A. B. C. D. 5.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的

单词个数与复习的单词个数的比值.右图描述了某次单词复习中 M N S T四位同学的单词记忆效率y与复习的单词个数x的情况,则,,, 这四位同学在这次单词复习中正确默写出的单词个数最多的是Array A.M B.N C.S D.T 6.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为 e的直径,且AB⊥CD. 入口K位于弧AD中点,园丁在苗苗圃O 圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示, 则该园丁行进的路线可能是 A. A→O→D B. C→A→O→ B C. D→O→C D. O→D→B→C

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

相关主题
文本预览
相关文档 最新文档