当前位置:文档之家› 人教中考数学 圆的综合综合试题附答案

人教中考数学 圆的综合综合试题附答案

人教中考数学 圆的综合综合试题附答案
人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.

()1如图①,若m 5=,则C ∠的度数为______;

()2如图②,若m 6=.

①求C ∠的正切值;

②若ABC 为等腰三角形,求ABC 面积.

【答案】()130;()2C ∠①的正切值为3

4

;ABC

S 27=②或

432

25

. 【解析】 【分析】

()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;

()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结

论;

②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.

【详解】

()1如图1,连接OB ,OA ,

OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形,

AOB 60∠∴=,

1

ACB AOB 302

∠∠∴==,

故答案为30;

()2①如图2,连接AO 并延长交

O 于D ,连接BD ,

AD 为O 的直径,

AD 10∴=,ABD 90∠=,

在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,

AB 3

tan ADB BD 4

∠∴=

=, C ADB ∠∠=,

C ∠∴的正切值为3

4

②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,

AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==,

在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,

ABC 11

S AB CE 692722

∴=?=??=;

Ⅱ、当AC AB 6==时,如图4,

连接OA 交BC 于F ,

AC AB =,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,

1AOG AOB 2∠∠∴=,1

AG AB 32

==,

AOB 2ACB ∠∠=, ACF AOG ∠∠∴=,

在Rt AOG 中,AG 3

sin AOG AC 5

∠=

=, 3

sin ACF 5

∠∴=,

在Rt ACF 中,3

sin ACF 5

∠=,

318

AF AC 55∴==,

24

CF 5∴=,

ABC 111824432

S AF BC 225525

∴=?=??=;

Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC

432

S

25

=

【点睛】

圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.

2.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802

AE ππ

??=

=.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

3.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB . (1)如图1,求证:∠DAC=∠ABO;

(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;

(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。

【答案】(1)详见解析;(2)详见解析;(3)1114

. 【解析】

试题分析:(1)延长BO 交⊙O 于点Q ,连接AQ .由圆周角定理可得:∠AQB =∠ACB ,再由等角的余角相等即可得出结论; (2)证明△DFG 是等边三角形即可;

(3)延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .设AF =k ,则FE =9k ,AE =10k .在△AHE 中, AH =5k .设NH =x ,则AN =5k -x , AD =10k -2x .在△AQF 中, AF =k ,AQ =

2k ,FQ =

3

2

k .由(2)知:△GDF 是等边三角形,得到GD =GF =DF ,进而得到AG =9k -2x .

OM =NH =x ,BC =23x , GF =BC =23x .在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3

k ,GF =23x ,由勾股定理解出74x k

,得到AG =9k -2x =11

2

k ,AR =2OB =4OM =4x =7k .在△GAR 中,由sin ∠ADG =sin ∠R 即可得出结论.

试题解析:解:(1)证明:如图1,延长BO 交⊙O 于点Q ,连接AQ . ∵BQ 是⊙O 直径,∴∠QAB =900.∵AD ⊥BC ,∴∠AHC =900. ∵弧AB =弧AB ,∴∠AQB =∠ACB .

∵∠AQB +∠ABO =900,∠ACB +∠CAD =900 ∴∠ABO =∠CAD

(2)证明:如图2,连接DF .

∵AG ∥OB ,∴∠ABO =∠BAG .∵∠ABO =∠CAD ,∴∠CAD =∠BAG . ∵∠BAC =600,∴∠BAD +∠CAD =∠BAD +∠BAG =600,即

∠GAD =∠BAC =60°.∵∠BAD =∠CAF .∴∠CAF +∠CAD =600,∴∠GAD =∠DAF =600,∴∠DGF =∠DAF =60°.

∵弧GD =弧GD ,∴∠GAD =∠GFD =600,∴∠GFD =∠DGF =600,∴△DFG 是等边三角形,∴GD =GF . (3)如图3,

延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .

∵AF :FE =1:9,∴设AF =k ,则FE =9k ,AE =10k .在△AHE 中,∠E =300,∴AH =5k . 设NH =x ,则AN =5k -x .∵ON ⊥AD ,∴AD =2AN =10k -2x 又在△AQF 中,∵∠GAF =1200,∴∠QAF =600,AF =k ,∴AQ =2k ,FQ 3

. 由(2)知:△GDF 是等边三角形,∴GD =GF =DF ,

∵∠GAD =∠DAF =600,∴DP =DK ,∴△GPD ≌△FKD ,△APD ≌△AKD ∴FK =GP ,AP =AK ,∠ADK =300,∴AD =2AK =AP +AK =AF +AG ∴AG =10k -2x -k =9k -2x .

∵作OM ⊥BC ,ON ⊥AD ,∴OM =NH =x .∵∠BOD =

1

2

∠BOC =∠BAC =600 ∴BC =2BM =23.∵∠BOC =∠GOF ,∴GF =BC =23 在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3

2

k ,GF =23 ∵222GQ FQ GF +=

∴()

2

2

21932322k x k x ??

??-+= ? ? ?????

, ()12713

42

x k x k =

=-,舍去. ∴AG =9k -2x =11

2

k ,AR =2OB =4OM =4x =7k , 在△GAR 中,∠RGA =900,

∴sin ∠ADG =sin ∠R =

AG AR =11

14

点睛:本题是圆的综合题.熟练掌握圆的基本性质和常用的辅助线做法是解答本题的关键.

4.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).

(1)求证:PA?BD=PB?AE;

(2)求证:⊙O的直径长为常数k;

(3)求tan∠FPA的值.

【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .

【解析】

试题分析:

(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA?BD=PB?AE;

(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;

(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.

试题解析:

(1)证明:如图,

∵PB切⊙O于点B,

∴∠PBD=∠A,

∵PF平分∠APB,

∴∠APE=∠BPD,

∴△PBD∽△PAE,

∴PB:PA=BD:AE,

∴PA?BD=PB?AE;

(2)证明:如图,

∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.

又∵∠PBD=∠A,∠EPA=∠BPD,

∴∠BED=∠BDE.

∴BE=BD.

∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),

∴AE+BD=k,

∴AE+BD=AE+BE=AB=k,

即⊙O直径为常数k.

(3)∵PB切⊙O于B点,AB为直径.

∴∠PBA=90°.

∵∠A=60°.

∴PB=PA?sin60°=PA,

又∵PA?BD=PB?AE,

∴BD=AE,

∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).

∴AE?BD=2,

即AE2=2,

解得:AE=2,BD=,

∴AB=k=AE+BD=2+,BE=BD=,

在Rt△PBA中,PB=AB?tan60°=(2+)×=3+2.

在Rt△PBE中,tan∠BPF===2﹣,

∵∠FPA=∠BPF,

∴tan∠FPA=2﹣.

【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.

5.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.

(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问

BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】

试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得

OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;

(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得

∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,

得到BE+CF=BM+CN,由BM=1

2

BD,CN=

1

2

OC,得到BE+CF=

1

2

BC,即可判断BE+CF的值是

定值,为等边△ABC边长的一半.

试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,

∴∠ODB=90°,∵∠BMC=1

2

∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三

角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;

(2)BE+CF的值是为定值.

作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,

∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,

∵∠DBM=60°,∴BM=1

2

BD,同理可得CN=

1

2

OC,∴BE+CF=

1

2

OB+

1

2

OC=

1

2

BC,∴BE+CF

的值是定值,为等边△ABC边长的一半.

考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.

6.如图,□ABCD的边AD是△ABC外接圆⊙O的切线,切点为A,连接AO并延长交BC于点E,交⊙O于点F,过点C作直线CP交AO的延长线于点P,且∠BCP=∠ACD.

(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .

【答案】(1)见解析;(2)14

π- 【解析】

【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;

(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE =

1

2

BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.

【详解】(1) 过C 点作直径CM ,连接MB , ∵CM 为直径,

∴∠MBC =90°,即∠M+∠BCM =90°, ∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD ∥BC , ∴∠ACD =∠BAC ,

∵∠BAC =∠M ,∠BCP =∠ACD , ∴∠M =∠BCP ,

∴∠BCP+∠BCM =90°,即∠PCM =90°, ∴CM ⊥PC , ∴PC 与⊙O 相切; (2)连接OB ,

∵AD 是⊙O 的切线,切点为A , ∴OA ⊥AD ,即∠PAD =90°,

∵BC ∥AD ,∠AEB=∠PAD =90°, ∴AP ⊥BC .∴BE =CE = 1

2

BC =1, ∴AB =AC ,∴∠ABC =∠ACB =67.5°, ∴∠BAC =180°-∠ABC -∠ACB =45°, ∴∠BOC =2∠BAC =90°,

∵OB =OC ,AP ⊥BC ,∴∠BOE =∠COE =∠OCE = 45°,

∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,

∴OE=CE=1,PC=OC=22

OE CE2

+=

∴S=S△POC-S扇形OFC=

()2

45π2

1π221 23604

?

??-=-.

【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.

7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个

点,连接OC、AC,且∠BOC<90°,直线

BC和直线AD相交于点E,过点C作直线CG与线

段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

【答案】(1)证明见解析;(2)①证明见解析;②5.

【解析】

分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;

(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明

△CBH∽△OBC;

②由△CBH∽△OBC可知:BC HB

OC BC

=,所以HB=

2

4

BC

,由于BC=HC,所以

OH+HC=4?

2

4

BC

+BC,利用二次函数的性质即可求出OH+HC的最大值.

详解:(1)由题意可知:∠CAB=∠GAF,

∵AB 是⊙O 的直径, ∴∠ACB=90° ∵OA=OC , ∴∠CAB=∠OCA , ∴∠OCA+∠OCB=90°, ∵∠GAF=∠GCE ,

∴∠GCE+∠OCB=∠OCA+∠OCB=90°, ∵OC 是⊙O 的半径, ∴直线CG 是⊙O 的切线; (2)①∵CB=CH , ∴∠CBH=∠CHB , ∵OB=OC , ∴∠CBH=∠OCB , ∴△CBH ∽△OBC ②由△CBH ∽△OBC 可知:BC HB OC BC

= ∵AB=8,

∴BC 2=HB?OC=4HB ,

∴HB=2

4BC ,

∴OH=OB-HB=4-2

4

BC ∵CB=CH ,

∴OH+HC=4?2

4

BC +BC ,

当∠BOC=90°,

此时 ∵∠BOC <90°, ∴0<BC <

令BC=x 则CH=x ,BH=2

4

x

()2

21142544

OH HC x x x ∴+=-++=--+

当x=2时,

∴OH+HC 可取得最大值,最大值为5

点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.

8.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点

D ,交⊙O 于点

E ,连接AC 、AE ,且AE 与BC 交于点

F . (1)连接BD ,求证:BD 是⊙O 的切线; (2)若AF :EF=2:1,求tan ∠CAF 的值.

【答案】(1)证明见解析;(2)3

. 【解析】 【分析】

(1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到

AC :EG=2:1,EG=

12AC ,根据三角形的中位线的性质得到OG=1

2

AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论. 【详解】

证明:(1)∵OC=OB ,OD ⊥BC , ∴∠COD=∠BOD , 在△COD 与△BOD 中,

OC OB COD BOD OD OD ===??

∠∠???

, ∴△COD ≌△BOD , ∴∠OBD=∠OCD=90°, ∴BD 是⊙O 的切线;

(2)解:∵AB 为⊙O 的直径,AC ⊥BC , ∵OD ⊥CB , ∴AC ∥DE , 设OD 与BC 交于G , ∵OE ∥AC ,AF :EF=2:1, ∴AC :EG=2:1,即EG=1

2

AC , ∵OG ∥AC ,OA=OB , ∴OG=

1

2

AC , ∵OG+GE=12AC+1

2

AC=AC , ∴AC=OE ,

∴AC=

1

2

AB , ∴∠ABC=30°, ∴∠CAB=60°, ∵

CE BE =,

∴∠CAF=∠EAB=

1

2

∠CAB=30°, ∴tan ∠CAF=tan30°=3. 【点睛】

本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.

9.如图,AB 是

O 的直径,DF 切O 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交

BD 的延长线于点C .

(1)求证:ABC C ∠∠=;

(2)设CA 的延长线交

O 于E BF ,交O 于G ,若DG 的度数等于60,试简要说明

点D 和点E 关于直线AB 对称的理由.

【答案】(1)见解析;(2)见解析.

【解析】

【分析】

(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;

(2)连接OG,OD,AD,由BF∥OD,GD=60°,可求证BG=GD AD

==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.

【详解】

(1)连接OD,

∵DF为⊙O的切线,

∴OD⊥DF.

∵BF⊥DF,AC∥BF,

∴OD∥AC∥BF.

∴∠ODB=∠C.

∵OB=OD,

∴∠ABD=∠ODB.

∴∠ABC=∠C.

(2)连接OG,OD,AD,DE,DE交AB于H,

∵BF∥OD,

∴∠OBG=∠AOD,∠OGB=∠DOG,

∴GD AD

==BG.

∵GD=60°,

∴BG=GD AD

==60°,

∴∠ABC=∠C=∠E=30°,

∵OD//CE

∴∠ODE=∠E=30°.

在△ODH中,∠ODE=30°,∠AOD=60°,

∴∠OHD=90°,

∴AB⊥DE.

∴点D和点E关于直线AB对称.

【点睛】

本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.

10.已知AB 是半圆O 的直径,点C 在半圆O 上.

(1)如图1,若AC=3,∠CAB=30°,求半圆O 的半径;

(2)如图2,M 是BC的中点,E 是直径AB 上一点,AM 分别交CE,BC 于点F,D. 过点F 作FG∥AB 交边BC 于点G,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.

【答案】(1)半圆O的半径为3;

(2)⊙D与直线AC相切,理由见解析

【解析】

试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.

试题解析:

(1)∵ AB是半圆O的直径,

∴∠C=90°.

在Rt△ACB中,AB=

cos AC CAB

3 cos30

=23.

∴ OA=3

(2)

⊙D与直线AC相切.

理由如下:

由(1)得∠ACB=90°.

∵∠AEC=∠ECB+∠6,

∴∠AEC>∠ECB,∠AEC>∠6.

∵△ACE与△CEB相似,

∴∠AEC=∠CEB=90°.

在Rt△ACD,Rt△AEF中分别有

∠1+∠3=90°,∠2+∠4=90°.

∵ M是BC的中点,

∴∠COM=∠BOM.

∴∠1=∠2,

∴∠3=∠4.

∵∠4=∠5,

∴∠3=∠5.

∴ CF=CD.

过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有

∠CAE+∠ACE=90°,∠CAE+∠6=90°.

∴∠ACE=∠6=∠FPE.

又∵∠1=∠2,AF=AF,

∴△ACF≌△APF.

∴ CF=FP.

∵ FP∥GB,FG∥AB,

∴四边形FPBG是平行四边形.

∴ FP=GB.

∴ CD=GB.

∵ CD⊥AC,

∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.

相关主题
相关文档推荐: