一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.
()1如图①,若m 5=,则C ∠的度数为______;
()2如图②,若m 6=.
①求C ∠的正切值;
②若ABC 为等腰三角形,求ABC 面积.
【答案】()130;()2C ∠①的正切值为3
4
;ABC
S 27=②或
432
25
. 【解析】 【分析】
()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;
()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结
论;
②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.
【详解】
()1如图1,连接OB ,OA ,
OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形,
AOB 60∠∴=,
1
ACB AOB 302
∠∠∴==,
故答案为30;
()2①如图2,连接AO 并延长交
O 于D ,连接BD ,
AD 为O 的直径,
AD 10∴=,ABD 90∠=,
在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,
AB 3
tan ADB BD 4
∠∴=
=, C ADB ∠∠=,
C ∠∴的正切值为3
4
;
②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,
AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==,
在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,
ABC 11
S AB CE 692722
∴=?=??=;
Ⅱ、当AC AB 6==时,如图4,
连接OA 交BC 于F ,
AC AB =,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,
1AOG AOB 2∠∠∴=,1
AG AB 32
==,
AOB 2ACB ∠∠=, ACF AOG ∠∠∴=,
在Rt AOG 中,AG 3
sin AOG AC 5
∠=
=, 3
sin ACF 5
∠∴=,
在Rt ACF 中,3
sin ACF 5
∠=,
318
AF AC 55∴==,
24
CF 5∴=,
ABC 111824432
S AF BC 225525
∴=?=??=;
Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC
432
S
25
=
.
【点睛】
圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.
2.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .
(1)如图①,求证:四边形 ABCD 为菱形;
(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.
【答案】(1)见解析;(2)π2
【解析】
试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.
试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;
(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1
32
OF AD =
=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =
CG CD =1
2
,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802
AE ππ
??=
=.
点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.
3.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB . (1)如图1,求证:∠DAC=∠ABO;
(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;
(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。
【答案】(1)详见解析;(2)详见解析;(3)1114
. 【解析】
试题分析:(1)延长BO 交⊙O 于点Q ,连接AQ .由圆周角定理可得:∠AQB =∠ACB ,再由等角的余角相等即可得出结论; (2)证明△DFG 是等边三角形即可;
(3)延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .设AF =k ,则FE =9k ,AE =10k .在△AHE 中, AH =5k .设NH =x ,则AN =5k -x , AD =10k -2x .在△AQF 中, AF =k ,AQ =
2k ,FQ =
3
2
k .由(2)知:△GDF 是等边三角形,得到GD =GF =DF ,进而得到AG =9k -2x .
OM =NH =x ,BC =23x , GF =BC =23x .在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3
k ,GF =23x ,由勾股定理解出74x k
,得到AG =9k -2x =11
2
k ,AR =2OB =4OM =4x =7k .在△GAR 中,由sin ∠ADG =sin ∠R 即可得出结论.
试题解析:解:(1)证明:如图1,延长BO 交⊙O 于点Q ,连接AQ . ∵BQ 是⊙O 直径,∴∠QAB =900.∵AD ⊥BC ,∴∠AHC =900. ∵弧AB =弧AB ,∴∠AQB =∠ACB .
∵∠AQB +∠ABO =900,∠ACB +∠CAD =900 ∴∠ABO =∠CAD
(2)证明:如图2,连接DF .
∵AG ∥OB ,∴∠ABO =∠BAG .∵∠ABO =∠CAD ,∴∠CAD =∠BAG . ∵∠BAC =600,∴∠BAD +∠CAD =∠BAD +∠BAG =600,即
∠GAD =∠BAC =60°.∵∠BAD =∠CAF .∴∠CAF +∠CAD =600,∴∠GAD =∠DAF =600,∴∠DGF =∠DAF =60°.
∵弧GD =弧GD ,∴∠GAD =∠GFD =600,∴∠GFD =∠DGF =600,∴△DFG 是等边三角形,∴GD =GF . (3)如图3,
延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .
∵AF :FE =1:9,∴设AF =k ,则FE =9k ,AE =10k .在△AHE 中,∠E =300,∴AH =5k . 设NH =x ,则AN =5k -x .∵ON ⊥AD ,∴AD =2AN =10k -2x 又在△AQF 中,∵∠GAF =1200,∴∠QAF =600,AF =k ,∴AQ =2k ,FQ 3
. 由(2)知:△GDF 是等边三角形,∴GD =GF =DF ,
∵∠GAD =∠DAF =600,∴DP =DK ,∴△GPD ≌△FKD ,△APD ≌△AKD ∴FK =GP ,AP =AK ,∠ADK =300,∴AD =2AK =AP +AK =AF +AG ∴AG =10k -2x -k =9k -2x .
∵作OM ⊥BC ,ON ⊥AD ,∴OM =NH =x .∵∠BOD =
1
2
∠BOC =∠BAC =600 ∴BC =2BM =23.∵∠BOC =∠GOF ,∴GF =BC =23 在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3
2
k ,GF =23 ∵222GQ FQ GF +=
∴()
2
2
21932322k x k x ??
??-+= ? ? ?????
, ()12713
42
x k x k =
=-,舍去. ∴AG =9k -2x =11
2
k ,AR =2OB =4OM =4x =7k , 在△GAR 中,∠RGA =900,
∴sin ∠ADG =sin ∠R =
AG AR =11
14
.
点睛:本题是圆的综合题.熟练掌握圆的基本性质和常用的辅助线做法是解答本题的关键.
4.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).
(1)求证:PA?BD=PB?AE;
(2)求证:⊙O的直径长为常数k;
(3)求tan∠FPA的值.
【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .
【解析】
试题分析:
(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA?BD=PB?AE;
(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;
(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.
试题解析:
(1)证明:如图,
∵PB切⊙O于点B,
∴∠PBD=∠A,
∵PF平分∠APB,
∴∠APE=∠BPD,
∴△PBD∽△PAE,
∴PB:PA=BD:AE,
∴PA?BD=PB?AE;
(2)证明:如图,
∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.
又∵∠PBD=∠A,∠EPA=∠BPD,
∴∠BED=∠BDE.
∴BE=BD.
∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),
∴AE+BD=k,
∴AE+BD=AE+BE=AB=k,
即⊙O直径为常数k.
(3)∵PB切⊙O于B点,AB为直径.
∴∠PBA=90°.
∵∠A=60°.
∴PB=PA?sin60°=PA,
又∵PA?BD=PB?AE,
∴BD=AE,
∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).
∴AE?BD=2,
即AE2=2,
解得:AE=2,BD=,
∴AB=k=AE+BD=2+,BE=BD=,
在Rt△PBA中,PB=AB?tan60°=(2+)×=3+2.
在Rt△PBE中,tan∠BPF===2﹣,
∵∠FPA=∠BPF,
∴tan∠FPA=2﹣.
【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.
5.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.
(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问
BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.
【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】
试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得
OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;
(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得
∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,
得到BE+CF=BM+CN,由BM=1
2
BD,CN=
1
2
OC,得到BE+CF=
1
2
BC,即可判断BE+CF的值是
定值,为等边△ABC边长的一半.
试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,
∴∠ODB=90°,∵∠BMC=1
2
∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三
角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;
(2)BE+CF的值是为定值.
作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,
∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,
∵∠DBM=60°,∴BM=1
2
BD,同理可得CN=
1
2
OC,∴BE+CF=
1
2
OB+
1
2
OC=
1
2
BC,∴BE+CF
的值是定值,为等边△ABC边长的一半.
考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.
6.如图,□ABCD的边AD是△ABC外接圆⊙O的切线,切点为A,连接AO并延长交BC于点E,交⊙O于点F,过点C作直线CP交AO的延长线于点P,且∠BCP=∠ACD.
(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .
【答案】(1)见解析;(2)14
π- 【解析】
【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;
(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE =
1
2
BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.
【详解】(1) 过C 点作直径CM ,连接MB , ∵CM 为直径,
∴∠MBC =90°,即∠M+∠BCM =90°, ∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD ∥BC , ∴∠ACD =∠BAC ,
∵∠BAC =∠M ,∠BCP =∠ACD , ∴∠M =∠BCP ,
∴∠BCP+∠BCM =90°,即∠PCM =90°, ∴CM ⊥PC , ∴PC 与⊙O 相切; (2)连接OB ,
∵AD 是⊙O 的切线,切点为A , ∴OA ⊥AD ,即∠PAD =90°,
∵BC ∥AD ,∠AEB=∠PAD =90°, ∴AP ⊥BC .∴BE =CE = 1
2
BC =1, ∴AB =AC ,∴∠ABC =∠ACB =67.5°, ∴∠BAC =180°-∠ABC -∠ACB =45°, ∴∠BOC =2∠BAC =90°,
∵OB =OC ,AP ⊥BC ,∴∠BOE =∠COE =∠OCE = 45°,
∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,
∴OE=CE=1,PC=OC=22
OE CE2
+=
,
∴S=S△POC-S扇形OFC=
()2
45π2
1π221 23604
?
??-=-.
【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.
7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个
点,连接OC、AC,且∠BOC<90°,直线
BC和直线AD相交于点E,过点C作直线CG与线
段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
【答案】(1)证明见解析;(2)①证明见解析;②5.
【解析】
分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;
(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明
△CBH∽△OBC;
②由△CBH∽△OBC可知:BC HB
OC BC
=,所以HB=
2
4
BC
,由于BC=HC,所以
OH+HC=4?
2
4
BC
+BC,利用二次函数的性质即可求出OH+HC的最大值.
详解:(1)由题意可知:∠CAB=∠GAF,
∵AB 是⊙O 的直径, ∴∠ACB=90° ∵OA=OC , ∴∠CAB=∠OCA , ∴∠OCA+∠OCB=90°, ∵∠GAF=∠GCE ,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°, ∵OC 是⊙O 的半径, ∴直线CG 是⊙O 的切线; (2)①∵CB=CH , ∴∠CBH=∠CHB , ∵OB=OC , ∴∠CBH=∠OCB , ∴△CBH ∽△OBC ②由△CBH ∽△OBC 可知:BC HB OC BC
= ∵AB=8,
∴BC 2=HB?OC=4HB ,
∴HB=2
4BC ,
∴OH=OB-HB=4-2
4
BC ∵CB=CH ,
∴OH+HC=4?2
4
BC +BC ,
当∠BOC=90°,
此时 ∵∠BOC <90°, ∴0<BC <
,
令BC=x 则CH=x ,BH=2
4
x
()2
21142544
OH HC x x x ∴+=-++=--+
当x=2时,
∴OH+HC 可取得最大值,最大值为5
点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.
8.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点
D ,交⊙O 于点
E ,连接AC 、AE ,且AE 与BC 交于点
F . (1)连接BD ,求证:BD 是⊙O 的切线; (2)若AF :EF=2:1,求tan ∠CAF 的值.
【答案】(1)证明见解析;(2)3
. 【解析】 【分析】
(1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到
AC :EG=2:1,EG=
12AC ,根据三角形的中位线的性质得到OG=1
2
AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论. 【详解】
证明:(1)∵OC=OB ,OD ⊥BC , ∴∠COD=∠BOD , 在△COD 与△BOD 中,
OC OB COD BOD OD OD ===??
∠∠???
, ∴△COD ≌△BOD , ∴∠OBD=∠OCD=90°, ∴BD 是⊙O 的切线;
(2)解:∵AB 为⊙O 的直径,AC ⊥BC , ∵OD ⊥CB , ∴AC ∥DE , 设OD 与BC 交于G , ∵OE ∥AC ,AF :EF=2:1, ∴AC :EG=2:1,即EG=1
2
AC , ∵OG ∥AC ,OA=OB , ∴OG=
1
2
AC , ∵OG+GE=12AC+1
2
AC=AC , ∴AC=OE ,
∴AC=
1
2
AB , ∴∠ABC=30°, ∴∠CAB=60°, ∵
CE BE =,
∴∠CAF=∠EAB=
1
2
∠CAB=30°, ∴tan ∠CAF=tan30°=3. 【点睛】
本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.
9.如图,AB 是
O 的直径,DF 切O 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交
BD 的延长线于点C .
(1)求证:ABC C ∠∠=;
(2)设CA 的延长线交
O 于E BF ,交O 于G ,若DG 的度数等于60,试简要说明
点D 和点E 关于直线AB 对称的理由.
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;
(2)连接OG,OD,AD,由BF∥OD,GD=60°,可求证BG=GD AD
==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.
【详解】
(1)连接OD,
∵DF为⊙O的切线,
∴OD⊥DF.
∵BF⊥DF,AC∥BF,
∴OD∥AC∥BF.
∴∠ODB=∠C.
∵OB=OD,
∴∠ABD=∠ODB.
∴∠ABC=∠C.
(2)连接OG,OD,AD,DE,DE交AB于H,
∵BF∥OD,
∴∠OBG=∠AOD,∠OGB=∠DOG,
∴GD AD
==BG.
∵GD=60°,
∴BG=GD AD
==60°,
∴∠ABC=∠C=∠E=30°,
∵OD//CE
∴∠ODE=∠E=30°.
在△ODH中,∠ODE=30°,∠AOD=60°,
∴∠OHD=90°,
∴AB⊥DE.
∴点D和点E关于直线AB对称.
【点睛】
本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.
10.已知AB 是半圆O 的直径,点C 在半圆O 上.
(1)如图1,若AC=3,∠CAB=30°,求半圆O 的半径;
(2)如图2,M 是BC的中点,E 是直径AB 上一点,AM 分别交CE,BC 于点F,D. 过点F 作FG∥AB 交边BC 于点G,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.
【答案】(1)半圆O的半径为3;
(2)⊙D与直线AC相切,理由见解析
【解析】
试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.
试题解析:
(1)∵ AB是半圆O的直径,
∴∠C=90°.
在Rt△ACB中,AB=
cos AC CAB
=
3 cos30
=23.
∴ OA=3
(2)
⊙D与直线AC相切.
理由如下:
由(1)得∠ACB=90°.
∵∠AEC=∠ECB+∠6,
∴∠AEC>∠ECB,∠AEC>∠6.
∵△ACE与△CEB相似,
∴∠AEC=∠CEB=90°.
在Rt△ACD,Rt△AEF中分别有
∠1+∠3=90°,∠2+∠4=90°.
∵ M是BC的中点,
∴∠COM=∠BOM.
∴∠1=∠2,
∴∠3=∠4.
∵∠4=∠5,
∴∠3=∠5.
∴ CF=CD.
过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有
∠CAE+∠ACE=90°,∠CAE+∠6=90°.
∴∠ACE=∠6=∠FPE.
又∵∠1=∠2,AF=AF,
∴△ACF≌△APF.
∴ CF=FP.
∵ FP∥GB,FG∥AB,
∴四边形FPBG是平行四边形.
∴ FP=GB.
∴ CD=GB.
∵ CD⊥AC,
∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.