当前位置:文档之家› Beam188 单元描述

Beam188 单元描述

Beam188 单元描述
Beam188 单元描述

Beam188

3 维线性有限应变梁单元

Beam188 单元描述

Beam188 单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影响。

Beam188 是三维线性(2 节点)或者二次梁单元。每个节点有六个或者七个自由度,自由度的个数取决于KEYOPT(1)的值。当KEYOPT(1)=0(缺省)时,每个节点有六个自由度;节点坐标系的x、y、z 方向的平动和绕x、y、z 轴的转动。当KEYOPT(1)=1 时,每个节点有七个自由度,这时引入了第七个自由度(横截面的翘曲)。这个单元非常适合线性、大角度转动和/并非线性大应变问题。

当NLGEOM 打开的时候,beam188 的应力刚化,在任何分析中都是缺省项。应力强化选项使本单元能分析弯曲、横向及扭转稳定问题(用弧长法)分析特征值屈曲和塌陷)。

Beam188/beam189 可以采用sectype、secdata、secoffset、secwrite 及secread 定义横截面。本单元支持弹性、蠕变及素性模型(不考虑横截面子模型)。这种单元类型的截面可以是不同材料组成的组和截面。

Beam188 从6.0 版本开始忽略任何实参数,参考seccontrols 命令来定义横向剪切刚度和附加质量。

单元坐标系统(/psymb,esys)与beam188 单元无关。

下图是单元几何示意图:

BEAM188 输入数据

该单元的几何形状、节点位置、坐标体系如图“BEAM Geometry”所示,beam188 由整体坐标系的节点i 和j 定义。

节点K 是定义单元方向的所选方式,有关方向节点和梁的网格划分的信息可以参见ANSYS Modeling and Meshing Guide中的Generating a Beam Mesh With Orientation Nodes。参考lmesh 和latt 命令描述可以得到k 节点自动生成的详细资料。

Beam188 可以在没有方向节点的情况下被定义。在这种情况下,单元的x 轴方向为i 节点指向j 节点。对于两节点的情况,默认的y 轴方向按平行x-y 平面自动计算。对于单元平行与z 轴的情况(或者斜度在0.01%以内),单元的y 轴的方向平行与整体坐标的y 轴(如图)。用第三个节点的选项,用户可以定义单元的x 轴方向。如果两者都定义了,那么第三节点的选项优先考虑。第三个节点(K),如果采用的话,将和i、j 节点一起定义包含单元x 轴和z 轴的平面(如图)。如果该单元采用大变形分析,需要注意这个第三号节点紧紧在定义初始单元方向的时候有效。

梁单元是一维空间线单元。横截面资料用sectype 和secdata 命令独立的提供,参见ANSYS Structural Analysis Guide 的Beam Analysis and Cross Sections 看详细资料。截面与单元用截面ID 号(SECNUM)来关联,截面号是独立的单元属性。除了等截面,还可以用sectype 命令中的锥形选项来定义锥形截面(参考Defining a Tapered Beam)。

单元基于铁木辛哥梁理论,这个理论是一阶剪切变形理论;横向剪切应力在横截面是不变的,也就是说变形后横截面保持平面不发生扭曲。Beam188 是一阶铁木辛哥梁单元,沿着长度用了一个积分点,用默认的KEYOPT(3)设置。因此,在i 和j 节点要求SMISC 数值的时候,中间数值在两端节点均输出。当KEYOPT(1)设置为2,两个积分点作为延长的线性变量被

运用。

Beam188/beam189 单元可以用在细长或者短粗的梁。由于一阶剪切变形的限制,只有适度的“粗”梁可以分析。梁的长细比(GAL2/(EI))可以用来判定单元的适用性,这里:

G

剪切模量

A

截面积

L

长度

EI

抗弯刚度

需要注意的是这个比例的计算需要用一些全局距离尺寸,不是基于独立的单元尺度。下面这个图提供了受端部集中荷载的悬臂梁的横向剪切变形的评估,这个例子可以作为一个很好的大致的指导。我们推荐长细比要大于30。

这些单元支持横向剪切力和横向剪切变应力的弹性关系。你可以用seccontrols 命令忽略默认的横向剪切刚度值。

无形变的状态决定了扭转作用引起的St.Venant 翘曲变形,甚至可以用来定义屈服后的剪应力。Ansys 没有提供选项来不成型的结构重新计算,这种结构是由分析过程中的扭转剪切对横截面的作用和可能的截面的部分塑性屈服引起的。正因为此,由扭转作用引起的非弹性大变形需要小心的来处理和较合。在这样的情况下,要求用solid 或者shell 单元来替换。

Beam188/beam189 单元支持“约束扭转”分析,通过定义梁节点的第七个自由度来实现。Beam188 单元默认的假设是截面的扭转是足够小的以至于可以忽略(KEYOPT(1)=0)。你可以激活它的扭转自由度通过定义KEYOPT(1)=1。当激活节点的扭转自由度的时候,每个节点有七个自由度:UX,UY,UZ,ROTX, ROTY, ROTZ, and W ARP。当KEYOPT(1) = 1,双力矩合双弧线将被输出。

实际上,当两个“约束扭转”的单元以一个尖锐的角度组合在一起的时候,你需要耦合他们的唯一合转角,但是它们平面外的自由度解藕。通过用两个节点在物理位置和运用合适的约束可以一般地实现。这个过程很容易的(自动的)实现,通过ENDRELEASE 命令,这个命令将两个临近横截面相交角度大于20 度的单元的平面外扭转解耦。

Beam188 允许改变横截面惯性属性来实现轴向伸长的功能。默认的,截面面积改变来使得单元的体积变形后不变化。这种默认的值对于弹塑性应用是适用的。通过运用KEYOPT(2),你可以选择使得横截面是恒定的或者刚性的。

单元的输出在单元积分位置和截面的积分点是可以用到的。

沿着梁长度的积分点(高丝点)如图Figure 188.3: "BEAM188 Element Integration Stations"所示:

Figure 188.3 BEAM188 Element Integration Stations

截面的应变和力(包括弯距)可以在这些积分点上得到。单元支持输出选项来外推这些数值到单元的节点。

Beam188/beam189 的在一些截面点的截面相关量(积分面积、位置、泊松比、函数倒数等)

通过用sectype 和secdata 命令自动计算得到。每个截面假定是由一系列预先决定的9 节点元组合而成。下面的图形描述了模型运用矩形截面亚类和槽型截面亚类。每个截面单元有4 个积分点,每个可能与独立的材料种类相关联。

Figure 188.4 Cross-Section Cells

Beam188/beam189 提供在积分点和界面节点输出的选项。你可以要求紧紧在截面的外表面输出。(PRSSOL 打印截面节点和截面积分点结果。应力和应变在截面的截面打印,塑性应变,塑性作用,蠕变应力在截面的积分点输出。

当与单元相关的材料有非弹性的行为或者当截面的温度在截面中有变化,基本计算在截面的积分点上运行。对于更多的普通的弹性的运用,单元运用预先计算好的单元积分点上的截面属性。无论如何,应力和应变通过截面的积分点输出来计算。

如果截面指定为ASEC 亚类,仅仅广义的应力和应变(轴力、弯距、横向剪切、弯曲、剪应力)能够输出。3-D 轮廓线和变形形状不能输出。ASEC 亚类紧紧可以作为细矩形来显示来定义梁的方向。

Beam188/beam189 能够对组合梁进行分析,(例如,那些由两种或者两个以上材料复合而成的简单的实体梁)。这些组件被假设为完全固接在一起的。因此,该梁表现为一单一的元件。

多材料截面能力仅仅在梁的行为假定(铁木辛哥或者伯努力欧拉梁理论)成立的时候能运用。

用其他的话说,支持简单的传统铁木辛哥梁理论的扩展。在这些地方可能应用到:

? 双层金属带

? 带金属加固的梁

? 位于不同材料组成的层上的传感器

Beam188/beam189 计算在截面刚度水平上的弯距和扭距的耦合。横向的剪切也作为一个独立的量来计算。这对于分层的组合物和夹层量可能会有很大的影响,如果街头处不平衡。

Beam188/189 没有用高阶理论来计算剪切应力的变更贡献,如果这些作用必须考虑的话,就需要运用ANSYS 实体单元。

要使beam188/beam189 用于特殊的应用,作试验或者其他的数值分析。在合适验证后使用对于组合截面的约束扭曲的选项

对于质量矩阵和一致荷载向量的赋值,比刚度矩阵使用的规则更高阶积分规则被使用到。单元支持一致质量矩阵和集中质量矩阵。用LUMPM,ON 命令来激活集中质量矩阵。一致质量矩阵时默认使用的。每单位长度的附加质量将用ADDMAS 截面控制来输入,参见"BEAM188 Input Summary"。

在节点(这些截面定义了单元的x 轴)上施加力,如果重心轴和单元的x 轴不是共线的,施加的轴力将产生弯距。如果质心和剪切中心不是重合的,施加的剪切力将导致扭转应力和弯曲。因而需要设置节点在那些你需要施加力的位置。可以适当的使用secoffset 命令中的offsety 和offsetz 自变量。默认的,ansys 会使用量单元的质心作为参考轴。

单元荷载在Node and Element Loads 被描述。压力可能被作为单元表面力被输入,就像Figure 188.1: "BEAM188 Geometry"中带圈的数字所示。正的压力指向单元内部。水平压力作为单元长度的力来输入。端部的压力作为力输入。

当keyopt(3)=0 的时候(默认),beam188 基于线性多项式,和其他的基于厄密多项式的单元(例如beam44)不同,一般来说要求网格划分要细化。

当keyopt(3)=2,ansys 增加了一个中间积分点在内插值图标,有效的使得单元成为基于二次型功能的铁木辛哥梁。这个选项迫切被要求,除非这个单元作为刚体使用,而且你必须维持和一阶shell 单元的兼容性。线性变化的弯距被经且的表现。二次选项和beam189 相似,有如下的不同:

?不论是否使用二次选项,beam188 单元最初始的几何总是直线。

?你不能读取中间节点,所以边界条件/荷载不能在那些节点描述。

均布荷载是不允许描述偏移的。不支持非节点的集中力。用二次选项(keyopt (3)=2 当单元大和契型截面相关。

温度可以作为单元的体力在梁的每个端部节点的三个位置输入,单元的温度在单元的x 轴被输入(T(0,0),和在离开x 轴一个单元长度的y 轴(T(1,0)),和在离开x 轴一个单元长度的z 方向(T(0,1))。第一坐标温度T(0,0)默认是TUNIF。如果所有的温度在第一次以后是没有指明的,那么它们默认的就为第一次输入的温度。如果所有i 节点的温度均输入了,j 节点的都没有指明,那么j 节点的温度默认的是等于i 节点的温度。对于其他的输入模式,没有指明的温度默认的是TUNIF。

你可以对该单元通过istress 和isfile 命令来定义初始应力状态。要获取更多的信息,可以参考ANSYS Basic Analysis Guide的Initial Stress Loading。可以替换的,你可以设置keyopt(10)=1 来从用户的子程序ustress 来读取出初始应力。关于用户子程序的详细资料,参见ANSYS User Programmable Features 的指南。

应力刚化作用在单元中没有自动计算,如果对应力刚化作用需要非对称矩阵,使用nropt,unsym。

在"BEAM188 Input Summary"给出单元的输入总结。

BEAM188 Input Summary

节点

I, J, K (K, 方向点,可选但被要求)

自由度

UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT(1) = 0 UX, UY, UZ, ROTX, ROTY, ROTZ, WARP if KEYOPT(1) = 1 Section Controls

截面控制

TXZ, TXY, ADDMAS (See SECCONTROLS) (TXZ and TXY default to A*GXZ and A*GXY, respectively, where A = cross-sectional area) TXZ 和TXY 默认分别是A×GXZ 和A×GXY,这里A 是截面面积Material Properties

材料属性

EX, (PRXY or NUXY), ALPX, DENS, GXY, GYZ, GXZ, DAMP

表面力

压力

face 1 (I-J) (-z normal direction),

face 2 (I-J) (-y normal direction),

face 3 (I-J) (+x tangential direction),

face 4 (J) (+x axial direction),

face 5 (I) (-x direction).

(用负数表示作用方向相反)

I 和j 是端节点

体力

温度

T(0,0), T(1,0), T(0,1) at each end node

特殊特征

Plasticity 塑性

Viscoelasticity 粘弹性

Viscoplasticity 粘弹性

Creep 蠕变

Stress stiffening 应力刚化

Large deflection 大挠曲

Large strain 大应变

Initial stress import 初始应力引入

Birth and death (requires KEYOPT(11) = 1) 单元的生死(要求keyopt(11)=1)Automatic selection of element technology 自动选择单元技术。支持下列用TB 命令相关的数据表种类: BISO,MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, RATE, CREEP, PRONY,SHIFT, CAST, and USER.

Note

对于材料模型细节可以参见ANSYS, Inc. Theory Reference 对于更多的关许单元技术选择的信息可以参见Automatic Selection of Element Technologies 和ETCONTROL

KEYOPT(1)

扭转自由度

0 --

默认;六个自由度,不限制扭转

1 --

7 个自由度(包括扭转),双力矩和双曲线被输出

KEYOPT(2)

截面缩放比例

0 --

默认;截面因为轴线拉伸效应被缩放;当大变形开关打开的时候被调用。

1 --

截面被认为是刚性的(经典梁理论)

KEYOPT(3)

插值数据

0 --

默认;线性多项式。要求划分细致。

2 --

二次型(对于铁木辛哥梁单元有效)运用中间节点(中点点用户无法修改)来提高单元的精度,能够精确的表示线性变化的弯距。

KEYOPT(4)

剪应力输出

0 --

默认;仅仅输出扭转相关的剪应力

1 --

仅仅输出弯曲相关的横向剪应力。

2 --

紧紧输出前两种方式的组合状态。

KEYOPT(6)

在单元积分点输出控制

0 --

默认;输出截面力、应变、和弯距

1 --

和keyopt(6)=0 相同,加上当前的截面单元

2 --

和keyopt(6)=1 相同加上单元基本方向(X、Y、Z)

3 --

输出截面力、弯距和应力、曲率,外推到单元节点。

Note

仅仅当outpr ,esol 是激活状态的时候,Keyopt(6)通过keyopt(9)来激活。当keyopt (6)、(7)、(8)和(9)都激活的时候,在单元输出中的应变是总应变。这个“总”包括温度应变。当单元材料是有塑性的时候,能够提供塑性应变和塑性作业。在/post1,可替换的运用prssol 命令。

KEYOPT(7)

输出控制在截面积分点(当截面的亚类为ASEC 的时候不可用)

0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(7)=1 相同,加上每个截面点山的应力和应变。

KEYOPT(8)

输出控制在截面节点(当截面亚类为ASEC 的时候不可用)

0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(8)=1 相同,加上沿着截面外表面的应力和应变。

3 --

和keyopt(8)=1 相同,加上每个截面节点的应力和应变。

KEYOPT(9)

在单元节点和截面节点外推数值用的输出控制(当节点亚类为ASEC 的时候不可用)

0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(9)=1 相同,加上沿着截面外边缘的应力应变

3 --

和keyopt(9)=1 相同,加上所有截面节点的应力和应变。

KEYOPT(10)

用户定义初始应力

0 --

无用户子程序来提供初始应力(默认)

1 --

从用于子程序ustress 来读取初始应力。

Note

参考Guide to ANSYS User Programmable Features帮助用户书写子程序。

KEYOPT(11)

设置截面属性

0 --

自动计算是否能够提前积分截面属性。(默认)

1 --

用户单元数值积分(在生/死功能的时候要求)

KEYOPT(12)

契型截面处理

0 --

线性变化的契型截面分析;截面属性在每个积分点计算(默认),这种方法更加精确,但是计算量大。

1 --

平均截面分析;对于契型截面单元,截面属性仅仅在中点计算。这是划分网格的阶数的估计,但是,速度快。

Beam188 的输出数据

这种单元用两种方式计算输出

?节点唯一和反应包括全部节点的计算。

?附加的单元输出在Table 188.1: "BEAM188 Element Output Definitions" 描述。

在需要的地点,ansys 要求keyopt(8)=2 和keyopt(9)=2,参考ANSYS Basic Analysis Guide来找到查看结果的方法。

要看beam188 的3-D 变形形状,运用OUTRES,MISC 或者OUTRES 命令,所有的静态和瞬态分析的命令。要观察模态分析和特征值屈曲分析的3-D 模态形状,必须用激活单元结果扩展模态(MXPAND 命令Elcalc=YES 的选项)

对于梁设计很常规的是使用轴力成分,轴力由轴向荷载和在各个端点的弯曲独立提供。因此,beam188 提供线性的应力输出作为它的SMISC 输出命令的一部分,由下面的定义来指示:SDIR 是轴力引起的应力分量。

SDIR=FX/A,这里FX 是轴力(SMISC 的数值为1 和14),A 表示截面面积。

SBYT 和SBYB 是弯曲应力分量。

SBYT = -MZ * ymax / Izz

SBYB = -MZ * ymin / Izz

SBZT = MY * zmax / Iyy

SBZB = MY * zmin / Iyy

这里MY、MZ 是弯距(SMISC 数值是2、15、3、16)。坐标y max, y min, z max, 和z min 是y 和z 坐标的最大和最小值。数值Iyy 和Izz 是截面惯性距。对于ASEC 梁截面,ANSYS 用最大和最小截面尺度,对于ASEC 种类的截面,最大最小的Y 和Z 方向直接分别假定在+0.5 到-0.5。单元应力的相应定义:

EPELDIR = EX EPELBYT = -KZ * y max

EPELBYB = -KZ * y min

EPELBZT = KY * z max

EPELBZB = KY * z min

这里EX、KY 和KZ 是总应力和曲率(SMISC 数值是7,8,9, 20,21 和22)

输出的应力仅仅对于单元的弹性行为严格有效。Beam188 总是组合应力来支持非线性材料的行为。当单元和非线性材料相关的时候,组合应力最好作为线性近似来对待,应该谨慎的说明。

单元运用以下符号输出定义表格:

在name 列的冒号表示该项目可以通过构成名字的方法来获得[ETABLE, ESOL]。第0 列表示该项有效的说明在文件Jobname.OUT 中。R 列表示该项的结果显示在results 文件中。

无论在0 还是R 列中,Y 表示该项一直是可用的。数值表示描述哪里该项是选择性提供的脚注,-表示该项不提供。

See KEYOPT(7), KEYOPT(8), KEYOPT(9) descriptions

See KEYOPT(1) description

Table 188.2: "BEAM188 Item and Sequence Numbers"列出了通过etable 命令用序列号方法提供的输出。参见ANSYS Basic Analysis Guide 中的Creating an Element Table 和The Item and Sequence Number Table 来获取更多的信息。

Table 188.2: "BEAM188 Item and Sequence Numbers" 用到了下列符号:

Name

在Table 188.1: "BEAM188 Element Output Definitions"中定义的输出量

Item

etable 提前定义的项目标签

I,J

在i 和j 节点数据的序列号

横向剪切应力的输出

Beam188/beam189 基于三应力成分的表述。

.单轴

.双向剪切成分

剪切应力由扭转和横向荷载引起。Beam188/beam189 基于一阶剪切变形理论,和广泛知道的铁木辛哥梁理论。横向剪切应变对于截面是常数,因此基于横向剪应力剪切能量。建立通过提前确定的梁横截面剪应力分布系数重新分布,可以用于输出的目的。默认的,ansys 将仅仅输出扭转荷载导致的剪应力,keyopt(4)用来激活由屈曲和横向荷载引起的剪切应力的输出。

横向剪应力的分布的精度和截面模型的单元划分精度直接成比例关系(为了定义翘曲、剪切重心和其他截面几何属性)。截面边缘的牵引自由状态仅仅在截面定义合适的模型适用。

默认的,ansys 运用划分网格的密度(对于截面模型),这个密度提供扭转硬化、翘曲硬化和惯性属性、剪切中心定义的精确结果。默认的网格划分运用对于非线性材料的计算也是合适的。然而,如果由横向力引起的剪应力分布如果要十分精确的捕捉的话需要更多的截面模型的定义。注意:增加截面网格划分的尺寸,并不是导致更大的计算量,如果相关的材料是线性的话。Sectype 和secdata 命令描述允许定义截面网格划分的密度。

横向剪应力分布计算忽略了泊松比的效应。泊松比对剪切修正因子和剪切应力分布有轻微的影响。BEAM188 Assumptions and Restrictions

Beam188 假定和约束

梁不能0 长度

默认的(keyopt(1)=0)翘曲约束效应假定为忽略的。

截面失效和折叠不计算。

转动自由度在集中质量矩阵时不计算,如果存在偏移的话。

对于土木工程建立框架模型和典型多层结构模型而言每个构件运用单一单元时一种普通的实践。因为横向位移的三次插值,beam4 和beam44 对于这样一种方法更合适。然而,如果beam188 需要有那样的需要,确定对于每个构件运用几种单元。Beam188 包括横向剪力的效应。

单元采用完整的牛顿-拉夫森方法计算最好(那是默认的计算控制选项)。对于非线性问题,那由大转动决定,要求不可以使用pred,on。

注意仅仅可以分析适当厚度的梁。参考"BEAM188 Input Data"来获取更多信息。

当一种截面有多种材料复合的时候,/eshape 用来提出应力等值线(和其他数值),单元平均通过材料边缘的应力。为了限制这样的行为,在材料周围运用小截面元。没有输入选项来通过这样的行为。

当用SSTIF,ON 定义应力强化时,在几何非线性分析(NLGEOM,ON)适用。在几何线性分析中是忽略的(NLGEOM,OFF)。预应力可以通过pstres 命令激活。

Beam188 产品的限制

当beam188 在如下情况被使用的时候,定期产品—对于该单元的特殊限制以及普遍的假设和限制在以前的部分被给出。

Ansys 专业版

仅仅专业特征允许应力强化和大变形。

RCS中文说明书

F0/23B(C)、H3/36B、C7030电气系列 F0/23B(C)、H3/36B、C7030Electrical series 使 用 说 明 书 成都久和传动机械有限责任公司 地址:成都市双流县彭镇燃灯社区5组 电话(Phone):(028)67028807 传真(FAX):(028)85847360 邮编(ZIP code):610203

一.使用环境 1.周围空气温度 周围空气温度不超过+40℃,周围空气温度的下限为-25℃。且在24h周期内平均温度不超过+30℃。 2.海拔高度 安装地点的海拔不超过2000m。 3.大气条件 空气清洁,而其相对湿度在最高温度为+40℃,不超过50%,在较低温度时,亦允许有较大的相对湿度,如最湿月平均温度为+20℃,月平均最大相对湿度不超过90%,并注意因温度变化产生在产品表面的凝露。 4.供电电网质量 供电电网容量应保证满足塔机功耗,进线电压波动范围须保证不超过额定电压值的±10%。起升电控柜(L柜)适用于交流50Hz/380V、60Hz/440V三相电源。 5.安装条件 垂直安装倾斜度不超过5°;安装牢固,在主机工作过程中不会发生相对于主机的平移和垂直跳动;安装部位最高震动条件为:5~13Hz时,位移为1.5mm;13~15Hz时,震动加速度为1.0g。 二.阅读电气原理图的方法 1. 符号表示 各个部分字母表示见下列表格: a)操作,检测,指示

b) Ⅰ部分 c)Ⅱ或Ⅲ部分

d)方向或速度 2 . 工作顺序、工作原理及符号 不同的工作阶段用下面两种不同的形式表示: 在开关转换顺序中 A)在工作顺序示意图中,采用下面符号: 接触器或继电器进入“工作状态”:PV 接触器或继电器进入“停止状态”:PV PV表示两种工作状态。 B)在开关转换顺序中,采用下面符号: 接触器或继电器进入“工作状态”并通过同一机械或电气连锁保持:● 接触器或继电器进入“停止状态”:○ 3. 动作特性和各机构功能 F0/23B(C)、H3/36B、C7030等塔式起重机电气控制柜可工作在交流50Hz/380V、60Hz/440V的额定电压条件下。电气控制柜分A、L、HF柜,分别有供电,吊钩升降,小车变幅、回转几大系统。供电系统(A柜)供电源给塔机各机构的用电、并起电路的短路、过载保护作用。吊钩升降(L柜)控制塔机的吊钩起升、下降;小车变幅系统(HF柜)控制塔机的小车变幅(前后);回转系统(HF柜)控制塔机的回转。

有限元单元的选择

单元类型的选择 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。通常情况下,shell63单元就够用了。 3.实体单元的选择。 实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92,solid185,solid187这几种。 其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。 实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢? 如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。 新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。

贴片机使用说明书中文版

11.6 疑难解答 危险: 严格遵守11.1章中“危险”一节的要求。 警告: 在(废料)切割器或者料盘分隔板附近工作时不论何时都必须戴厚度适度的保护手套。不论(废料)切割器及料盘分隔板刀片处于固定还是可动状态,甚至贴片机已经断电,都存在高风险的受伤可能性。 严禁从下方进入气压切割装置或者从上方进入空的皮带供料器,甚至是为了解决问题(如供料器卡住时)。 11.6.1 更换气压切割刀片 警告: 佩戴厚度适度的保护手套。 取出刀片时,只能捏住它的外面,左边和右边。 严禁将刀片放置身体上,例如,放到膝盖或者腿上。 不要将脚放到刀片上。你可能会重伤自己或者至少将衣服划破。 拆除刀片后确保没人会因踩到刀片伤到他们自己。 11.6.1.1 移除刀片 运行贴片机,开启压缩空气系统。 中断贴片机菜单中可动器件,然后将它取出。 停止运行贴片机,切断总电源,然后关闭压缩空气。开启位于压缩空气单元的针状阀以使压缩空气流动(查看11.1章中“危险”一节)。 松弛螺丝更换喷嘴,略微将它举起并保持它在这一位置。 拔下电缆和喷嘴气动软管 慢慢的拔出喷嘴。 拧下空供料器各个配件的螺丝(参考图11.4.1 -> 11, 9),然后将这些管道移出机器。 警告: 刀片的刀刃处始终可能伤到你自己。 基于这一原因,挡板、顶盖及保护罩(参见图11.4.3 -> 6,7, 2)必须安装到位。 打开连接电缆顶盖(见图11.6.6 -> 5) 拧下位于连接线缆(见图11.6.6 -> 5)处的气压连接阀(Y型插座:见图11.6.3 -> 9) 拔下电源和控制面板插头插座。(见图:see Fig. 11.6.5 -> 11, 10) 仔细解开外部控制面板箱内(见图11.6.5 -> 15)对应的接线头(向左或者向右)。在此期间不要损坏连线。 将顶盖放回控制面板及连接线缆处。 取出供料器斜槽(它只是扣住而已)。这使得取下刀片变得容易。 警告: 刀片下方必须保持干净。(例如,不要把脚放到下面) 在贴装元器件情况下松弛位于贴片机左右两个侧面的缓冲部件(2头M8六角头两边螺钉,见图 11.4.1 -> 15)。

DNAStar详细中文使用说明书

Sequence Analysis Software for Macintosh and Windows GETTING STARTED Introductory Tour of the LASERGENE System MAY 2001

DNASTAR, Inc. 1228 South Park Street Madison, Wisconsin 53715 (608) 258-7420 Copyright . 2001 by DNASTAR, Inc. All rights reserved. Reproduction, adaptation, or translation without prior written permission is prohibited,except as allowed under the copyright laws or with the permission of DNASTAR, Inc. Sixth Edition, May 2001 Printed in Madison, Wisconsin, USA Trademark Information DNASTAR, Lasergene, Lasergene99, SeqEasy, SeqMan, SeqMan II, EditSeq, MegAlign, GeneMan, Protean,MapDraw, PrimerSelect, GeneQuest, GeneFont , and the Method Curtain are trademarks or registered trademarks of DNASTAR, Inc. Macintosh is a trademark of Apple Computers, Inc. Windows is a trademark of Microsoft Corp. ABI Prism are registered trademarks of Pharmacopeia, Inc. Disclaimer & Liability DNASTAR, Inc. makes no warranties, expressed or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose, regarding the software. DNASTAR does not warrant, guaranty, or make any representation regarding the use or the results of the use of the software in terms of correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the software is assumed by you. The exclusion of implied warranties is not permitted by some states. The above exclusion may not apply to you. In no event will DNASTAR, Inc. and their directors, officers, employees, or agents (collectively DNASTAR) be liable to you for any consequential, incidental or indirect damages (including damages for loss of business profits, business interruption, loss of business information and the like) arising out of the use of, or the inability to use the software even if DNASTAR Inc. has been advised of the possibility of such damages. Because some states do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. DNASTAR, Inc. reserves the right to revise this publication and to make changes to it from time to time without obligation of DNASTAR, Inc. to notify any person or organization of such revision or changes. The screen and other illustrations in this publication are meant to be representative of those that appear on your monitor or printer.

Beam188-189用法

梁的概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元可以效率更高的求解。 两种新的有限元应变单元,BEAM188和BEAM189,提供了更强大的非线性分析能力,更出色的截面数据定义功能和可视化特性。参阅ANSYS Elements Reference中关于BEAM188和BEAM189的描述。 何为横截面? 横截面定义为垂直于梁的轴向的截面形状。ANSYS提供了有11种常用截面形状的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9结点的数值模型来确定梁的截面特性(lyy,lzz等),并求解泊松方程得到弯曲特征。横截面和用户自定义截面网格划分将存储在横截面库文件中。可以用LATT命令将梁横截面属性赋给线实体。这样,横截面的特性将在用BEAM188或BEAM189对该线划分网格时包含进去。 如何生成横截面 用下列步骤生成横截面: 1.定义截面并与代表相应截面形状的截面号关联。 2.定义截面的几何特性数值。 ANSYS中提供了下表列出的命令完成生成、查看、列表横截面和操作横截面库的功 能:参阅ANSYS Commands Reference可以得到横截面命令的完整集合。 定义截面并与截面号关联 使用SECTYPE命令定义截面。下面的命令将截面号2与定义号的横截面形状(圆 柱体)关联: 命令:SECTYPE,2,BEAM,CSOLID SECDATA,5,8 SECNUM,2 GUI: Main Menu>Preprocessor>Settings>-Beam-Common Sects Main Menu>Preprocessor>-Attributes-Define>Default Attribs 要定义自己的横截面,使用子形状(ANSYS提供的形状集合)MESH。要定义带特殊 特性如lyy和lzz的横截面,使用子形状ASEC。 定义横截面的几何特性数值 使用SECDATA命令定义横截面的几何数值。下面的命令将用SECTYPE命令定义的尺寸 赋值给横截面。CSOLID形状有两个尺寸:半径和周长上的格栅数目。 命令:SECDATA,4,6 GUI: Main Menu>Preprocessor>Sections>-Beam-Common Sects 用BEAM188/BEAM189单元划分线实体 在用BEAM188/BEAM189单元划分线实体前,要定义一些属性,包括: l 要划分线的梁单元类型 l 生成梁单元的横截面特性号 l 以梁单元轴向为基准的横截面定位 l 生成梁单元的材料特性号

数字音频处理器中文使用说明

MAXIDRIVER3.4数字音频处理器 ALTO MAXIDRIVER3.4数字处理器是集增益、噪声门、参数均衡、分频、压缩限 幅、延时为一体的全功能数字音频处理器,具有2个输入通道和6个输出通道,本机内设10种工厂预设的分频模式,64个用户程序数据库位置以及利用多媒体卡(MMC)进行128个用户程序外置储存的功能。MAXIDRIVER3.4是新一代全数字音 频处理器,采用分级菜单形式,操作非常方便。 功能键介绍 前面板 1、MODE---分级菜单选择,按动时循环选择PRESET(预设)、DELAY(延时)、EDIT(编辑)、UTILITY(系统设置)菜单功能。同时相对应的LED指示灯会被点亮。这时可以进入所选择的菜单进行参数编辑。 2、LED指示灯---当你用MODE键选择需要编辑的菜单时,相对应的LED指示 灯会被点亮。 3、2X16位LCD显示屏---显示正在编辑或查看的系统参数或系统状态。 4、数据轮---转动这个数据轮可以调节需要编辑的参数的数值,顺时针旋转提高数值,逆时针旋转减低数值。 5、PREV/NEXT---前翻/后翻键,每个主菜单下面都有若干个子菜单,通过按动这两个按键可以向前或向后选择所需要进行编辑的子菜单。 6、NAVIGATION CURSOR KEYS---光标移动键,每个子菜单中都有若干个可以 编辑的参数选择,按动这两个键,可以选择需要编辑的参数,选中的参数会闪烁。 7、CARD---储存卡插入口,在这个插口插入MMC储存卡,利用PRESET(预设) 菜单下,可以对该储存卡进行写入、读出等操作。 8、ENTER---确认键,按此键可以对所选择的菜单或编辑的参数数值进行确认。 9、ESC---取消键,按此键可以对所选择的菜单或编辑的参数数值进行取消操作,返回上一级菜单。 10、输入电平指示表,实时指示A/B两个输入通道输入电平的强弱数值。 11、MUTE---静音按键,按下后将关闭相应输出通道的输出信号,相对应的 红色LED指示灯将点亮。 12、输出电平指示表,显示每个输出通道输出电平大小数值,这里显示的数 值不是绝对的输出电平数值,而是与该列LED指示灯中的LIMIT(限幅)指示为基础相比较的数值。

有限元分析中常用单元类型与单位制

SOLID45 3-D结构实体单元 产品:MP ME ST <> <> PR <> <> <> PP ED SOLID45单元说明 solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度. 单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。有用于沙漏控制的缩减积分选项。有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。类似的单元有适用于各向异性材料的solid64单元。Solid45单元的更高阶单元是solid95。 图 45.1 SOLID45几何描述 SOLID45输入数据 该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。该单元可定义8个结点和正交各向异性材料。正交各向异性材料方向对应于单元坐标方向。单元坐标系方向参见坐标系部分。 单元荷载参见结点和单元荷载部分。压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。正压力指向单元内部。可以输入温度和流量作为单元节点处的体载荷。节点 I 处的温度 T(I) 默认为 TUNIF。如果不给出其它节点处的温度,则默认等于 T(I)。对于任何其它的输入方式,未给定的温度默认为 TUNIF。对于流量的输入与此类似,只是默认值用零代替了TUNIF。 KEYOPT(1)用于指定包括或不包括附加的位移形函数。KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。均匀缩减积分在进行非线性分析时有如下好处: ?相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。 ?当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。 ?非线性分析的收敛性通常远比采用额外位移形状的完全积分要好;即,KEYOPT(1) = 0, KEYOPT(2) = 0。 ?分析结果不会受(由塑性或其它不可压缩材性引起的)体积锁死的影响。 采用均匀缩减积分有以下缺点: ?当采用相同网格进行弹性分析时,结果显然不如完全积分方法精确。 ?采用单层单元时不能很好的得到结构的弯曲特性(例如,一根悬臂梁,受横向集中力,采用单层单元)。建议采用4层单元。 当采用均匀缩减积分选项时(KEYOPT(2) = 1 –这和SOLID185用KEYOPT(2) = 1是一样的),应对总能量 (ETABLE命令,SENE 标识符)和沙漏造成的伪能量 (ETABLE命令,AENE 标识符) 进行比较以检查结果的精度。如果沙漏能与总能量之比小于 5%,结果一般是可以接受的。如果该比值超过5%,则需细化网格。也可以在求解阶段用OUTPR,VENG 命令控制总能量和沙漏能。更多说明见ANSYS理论手册。 可用ISTRESS或者ISFILE命令给单元施加初始应力状态。更多信息参见ANSYS基础分析纸指南中的施加初始应力部分。你也可以用KEYOPT(9) = 1来从用户子程序中读取初应力USTRESS。关于用户子程序的细节,参见《ANSYS UPF 指南》。 在进行几何非线性分析时,可以使用SOLCONTROL,,,INCP 命令来包含压力的影响。在线性特征值屈曲分析中自动包括压力载荷刚度效应。如果需要非对称的压力载荷刚度效应矩阵,使用NROPT,UNSYM 命令。 该单元的输入概要参见"SOLID45 输入数据摘要". 单元输入数据的一般性描述参见单元输入部分。 SOLID45单元输入数据摘要 节点 I,J,K,L,M,N,O,P 自由度 UX,UY,UZ 实常数 HGSTF-沙漏控制因子,仅当KEYOPT(2) = 1时需要设置。 注: 有效值为任意正数,默认为1.0。建议值为1到10之间。 材料参数 EX, EY, EZ, PRXY, PRYZ, PRXZ (或NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (或CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP 表面载荷 压力—

免疫共沉淀中文使用说明书(Pierce26149)

Pierce? Co-Immunoprecipitation (Co-IP) Kit(26149) 中文说明书 介绍: Thermo 公司的Pierce?免疫共沉淀试剂盒,可通过将铆钉抗体固定在琼脂 糖支撑物上,从裂解液中或其他复杂混合物中,分离出天然蛋白复合物。Co-IP 是一种研究蛋白与蛋白相互作用通用的方法,该方法使用一种诱饵蛋白与抗原 进行免疫沉淀反应,然后可通过免疫共沉淀任何与诱饵蛋白具有相互作用的猎 物蛋白。传统的Co-IP方法使用蛋白A或G共同洗脱抗体的重链和轻链,这很 可能导致将相关的蛋白一起洗脱下来,掩盖一些重要的结果。Pierce?免疫共沉 淀试剂盒通过将共价结合抗体固定在一个胺类活性反应树脂上解决了这一问题。该试剂盒包含足够的用于蛋白结合和恢复的缓冲液,完成对照试验的高校离心 柱和收集管,这些产品进一步缩短了操作实验的时间。 重要产品信息: 略 Co-IP实验步骤: A.抗体固定 注意:以下试验步骤是针对用无胺和其他载体蛋白稀释的10-75μg亲和纯 化抗体(参考重要产品信息一节)。根据实际使用比例参考这一协议步骤。参 考重要产品信息节表1中的建议抗体用量和树脂体积用量。 1.室温平衡胺连接耦合树脂(AminoLink?Plus Coupling Resin)和试剂; 2.为每个Co-IP反应准备2ml 1×Coupling Buffer(超纯水稀释20×Coupling Buffer);

3.轻轻涡旋混匀装有AminoLink?Plus Coupling Resin的瓶子,使其处于悬浮状态。使用大口径(或剪掉一段枪头端),添加50μl树脂悬液到Pierce提供的离心柱中,将离心柱放入微量离心管中,1000g离心1min,弃滤液; 4.添加200μl 1×Coupling Buffer 清洗树脂2次,离心弃滤液; 5.将离心柱放于纸巾上,轻巧离心柱底部,去除剩余的液体,插上底塞; 6.准备10-75μg亲和纯化抗体用于结合蛋白,调整体积至200μl,使用足够的超纯水和20×Coupling Buffer来制备1×Coupling Buffer。例如:添加10μl 20×Coupling Buffer,180μl超纯水和10μl浓度为1μg/μl。可直接添加含有超纯水、20×Coupling Buffer、亲和纯化抗体的树脂在离心柱中。 7.在通风厨中,每200μl反应体系,添加3μl氰基硼氢化钠溶液; 注:氰基硼氢化钠属剧毒物质,操作时要小心并穿戴防护服。 8.拧紧离心柱上螺帽,室温涡旋孵育90-120min,确保浆体在孵育过程中处于悬浮状态; 9.握紧底塞,拧开并拿走螺帽,将离心柱置于收集管中离心,保存滤液以便验证抗体耦合; 10.打开螺帽,添加200μl 1×Coupling Buffer,离心弃滤液,重复此步骤1次; 11. 向离心柱中添加200μl Quenching Buffer,离心弃滤液; 12. 将离心柱放于纸巾上,轻巧离心柱底部,去除残留液体,插上底塞。在树脂上添加200μl Quenching Buffer; 13. 在通风厨中,添加3μl氰基硼氢化钠溶液,拧紧螺帽;轻轻摇动并孵育15min; 14.取出底塞,拧开螺帽,将离心柱置于一收集管中,离心弃滤液; 15.打开螺帽,采用200μl 1×Coupling Buffer洗脱树脂,离心。再次重复此步骤; 16.用150μl Wash Solution洗脱树脂6次,每次洗脱后离心; 17.不管是进行细胞裂解、Co-IP,还是储存树脂,都需要继续进行下列步骤; 18.用200μl 1×Coupling Buffer洗脱树脂2次,每次需离心;

上海耀华A27E中文使用说明书(最全版本)

XK3190-A27E型称重显示指示器 V1.02 上海耀华称重系统有限公司制造

目录 第一章技术参数........................................ - 2 - 第二章安装连接........................................ - 3 - 一、仪表示意图............................................ - 3 - 二、传感器的连接.......................................... - 3 - 三、串行通讯接口与大屏幕.................................. - 4 - 第三章操作说明........................................ - 5 - 一、开机.................................................. - 5 - 二、按键操作说明.......................................... - 5 - 三、称重操作.............................................. - 5 - 第四章标定说明........................................ - 7 - 第五章用户功能设置..................................... - 8 - 第六章信息提示出错说明 ............................... - 10 - 第七章蓄电池的使用 ................................... - 10 - 亲爱的用户: 在使用仪表前,敬请仔细阅读说明书!

ansys中的Beam188单元中文说明

BEAM188中文说明 BEAM188 — 3-D 线性有限应变梁 (基于Ansys 5.61的help) MP ME ST PR PP ED 元素描述 BEAM188 适用于分析细长的梁。元素是基于Timoshenko 梁理论的。具有扭切变形效果。 BEAM188 是一个二节点的三维线性梁。BEAM188 在每个节点上有6或7个自由度,(自由度)数目的变化是由KEYOPT(1)来控制的。当KEYOPT(1) = 0时(默认), 每节点有6个自由度。分别是沿x,y,z的位移及绕其的转动。当KEYOPT(1) = 1时,会添加第七个自由度(翘曲量) 。 此元素能很好的应用于线性(分析),大偏转,大应力的非线性(分析)。BEAM188包含应力刚度,在默认情况下,在某些分析中由NLGEOM来打开。在进行弯曲(flexural),侧向弯曲(lateral), 和扭转稳定性(torsional stability)分析时,应力刚度应该是被打开的。 BEAM188 能够采用SECTYPE, SECDATA, SECOFFSET, SECWRITE,和SECREAD来定义任何截面(形状)。. 弹性(elasticity),蠕变(creep),和塑性(plasticity)模型都是允许的(不考虑次截面形状)。 图1. BEAM188 3-D 线性有限应变梁 输入数据

(元素的)几何形状,节点为止,即元素坐标系图示于BEAM188。BEAM188在模型坐标系中是由节点I 和节点J 来定义的。节点K 是必需的元素方向点定义。有关方向点的相关信息详见Generating a Beam Mesh With Orientation Nodes在ANSYS Modeling and Meshing Guide中。于LMESH和LATT命令说明中可见节点K 的自动定义的详细说明。 在空间中这是一个没有量纲的元素。截面形状是用SECTYPE和SECDATA命令(详见ANSYS Commands Reference )来独立定宓摹C恳桓鼋孛嫘巫淳 囟ㄒ桓?ID 号(SECNUM)。截面号是特定的元素属性。 梁元素是基于Timoshenko 梁理论的,这是一个一阶切应变理论:横向切应变在截面中是常量;也就是说截面在变形后仍是平面。BEAM188是一阶Timoshenko 梁元素,它用一个点在长度上来(代替截面)。应此当在节点I 和J 上使用SMISC参数的话会显示每个端点节点的形心。BEAM188 能被用于细长(slender)或粗壮(stout???)的梁。因为一阶切应变理论的限制,自有适当厚度的梁能被分析。梁结构上的细长比(GAL2/(EI)) 能够用来判断是否采用此元素: G切变模数 A截面面积 L构件长度 EI弯曲刚度 在整体(偏移)距离而不是单个元素的情况下记录这个比值是重要的。悬臂梁受向下的负载提供了悬臂梁在受向下的负载的情况下横向切应变的一个估评。虽然这个结果不能外推到所有的情况,但可以作为一个指导。我们推荐细长比应大于30 。 图2. 悬臂梁受向下的负载 细长比(GAL2/(EI)>30)Timoshenko/

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

PerfectPro压力锅中文使用说明书-精简版

实用文档 Perfect Pro 压力锅 使 用 说 明 书 (本人用PDF格式的压力锅使用说明书的截图制作的Word文档的封面)

WMF压力锅主要部件示意图 1 烹饪指示器2烹饪指示器垫圈 3 主阀门 4 安全阀 5 锅盖手柄 6 锅身手柄 7 锅手柄橙色键 8 金属旋转按钮 9 锅身把手10 密封胶圈11 专利锅底13 残余压力安全装置垫圈14 排气孔径垫圈15 残余压力安全装置小孔

WMF Perfect Pro 压力锅使用说明书 1. 安全提示 1. 使用压力锅之前请仔细阅读本说明,不适当的操作会导致锅具损坏。 2. 建议未阅读本操作说明之前不要使用压力锅。 3. 锅具使用时请不要让小孩靠近,以免发生意外。 4. 禁止将压力锅放进烤箱中,烤箱的高温会使压力锅的把手、主阀门和安全阀受损。 5. 压力锅尚未完全排压前必须小心移动,不要触碰烫热的金属表面,必要时戴上隔热手套。 6. 压力锅只能用于所属用途上,不可用作其它目的。 7. 压力锅利用压力烹饪,不适当的操作会烧毀压力锅。加热之前,请确保锅盖全盖好。相关信息可在本使用说明中找到。 8. 不要强行打开压力锅,不要在锅压力没有完全排空前打开锅盖。相关信息可在本使用说明中找到。 9. 不要无水空锅加热,会造成锅具严重损坏。最低水位:1/4升。 重要提示:切记不要让食物中的水分完全蒸发。过分干烧会导致食物烧焦粘连在锅具上,塑胶柄或锅底铝块烧融以致损坏炉具。如果发生以上情 况请马上关闭热源,等压力锅完全冷却后 再移开。 10. 不要在压力锅加入超过容量2/3的食物。烹饪容易膨胀的食品,例如米饭或菜干等,请不要超过总容量的一半,并按照使用说明书相关的容操作。 11. 使用压力锅时请不要长时间走开,注意调节火力,确保烹饪指示器上升至相应橙色圈。如果加热温度过高,蒸汽会从主阀门排出,烹饪时间过长、大量水分蒸发,会影响锅具使用效果。 12. 请配套使用说明书中列明的炉具。 13. 如果烹饪带皮的肉类(如牛舌),请注意此类食品会在压力作用下发生膨胀,不要在表皮膨胀时刺穿肉块,否则容易引起烫伤。 14. 打开压力锅之前请均匀摇动锅身,以避免蒸汽泡飞溅发生烫伤,特别是使用快速排气或自来水冷却降压方法时。 15. 如果使用快速排气或自来水冷却降压的方法时,注意手、头部及身体远离蒸汽正面排出位置,避免烫伤。 16. 使用前请检查安全阀、主阀门和密封圈能是否正常。只有在功能正常的情况下能确保压力锅的安全,相关信息可在本使用说明中找到。 17. 禁止使用压力锅在加压的情况下油炸食品。 18. 除了进行使用说明中所列举的必要维护之外,不要尝试拆装任何安全部件。 19. 必须定期更换磨损的部件。特别是当其表面褪色,出现裂纹及其他破损现象,或者部件松动、不能与其他部位匹配时,请及时使用WMF原装配件更换。 20. 请使用WMF原装配件。使用相同型号的锅身与锅盖。 21. 千万不要在压力锅的任何一个部件损坏、变形或状况异常与说明书描述不符的情况下使用压力锅。当您遇到此类情况,请与附近的WMF零售商或WMF

Beam188

Beam188 3 维线性有限应变梁单元 Beam188 单元描述 Beam188 单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影响。 Beam188 是三维线性(2 节点)或者二次梁单元。每个节点有六个或者七个自由度,自由度的个数取决于KEYOPT(1)的值。当KEYOPT(1)=0(缺省)时,每个节点有六个自由度;节点坐标系的x、y、z 方向的平动和绕x、y、z 轴的转动。当KEYOPT(1)=1 时,每个节点有七个自由度,这时引入了第七个自由度(横截面的翘曲)。这个单元非常适合线性、大角度转动和/并非线性大应变问题。 当NLGEOM 打开的时候,beam188 的应力刚化,在任何分析中都是缺省项。应力强化选项使本单元能分析弯曲、横向及扭转稳定问题(用弧长法)分析特征值屈曲和塌陷)。 Beam188/beam189 可以采用sectype、secdata、secoffset、secwrite 及secread 定义横截面。本单元支持弹性、蠕变及素性模型(不考虑横截面子模型)。这种单元类型的截面可以是不同材料组成的组和截面。 Beam188 从 6.0 版本开始忽略任何实参数,参考seccontrols 命令来定义横向剪切刚度和附加质量。 单元坐标系统(/psymb,esys)与beam188 单元无

关。 下图是单元几何示意图: BEAM188 输入数据 该单元的几何形状、节点位置、坐标体系如图“BEAM Geometry”所示,beam188 由整体坐标系的节点i 和j 定义。 节点K 是定义单元方向的所选方式,有关方向节点和梁的网格划分的信息可以参见ANSYS Modeling and Meshing Guide中的Generating a Beam Mesh With Orientation Nodes。参考lmesh 和latt 命令描述可以得到k 节点自动生成的详细资料。 Beam188 可以在没有方向节点的情况下被定义。在这种情况下,单元的x 轴方向为i 节点指向j 节点。对于两节点的情况,默认的y 轴方向按平行x-y 平面自动计算。对于单元平行与z 轴的情况(或者斜度在0.01%以内),单元的y 轴的方向平行与整体坐标的y 轴(如图)。用第三个节点的选项,用户可以定义单元的x 轴方向。如果两者都定义了,那么第三节点的选项优先考虑。第三个节点(K),如果采用的话,将和i、j 节点一起定义包含单元x 轴和z 轴的平面(如图)。如果该单元采用大变形分析,需要注意这个第三号节点紧紧在定义初始单元方向的时候有效。 梁单元是一维空间线单元。横截面资料用sectype 和secdata 命令独立的提供,参见ANSYS Structural Analysis Guide 的Beam Analysis and Cross Sections 看详细资料。截面与单元用截面ID 号(SECNUM)来关联,截面号是独立的单元属性。除了等截面,还可以用sectype 命令中的锥形选项来定义锥形截面(参考Defining a Tapered Beam)。 单元基于铁木辛哥梁理论,这个理论是一阶剪切变形理论;横向剪切应力在横截面是不变的,也就是说变形后横截面保持平面不发生扭曲。Beam188 是一阶铁木辛哥梁单元,沿着长度用了一个积分点,用默认的KEYOPT(3)设置。因此,在i 和j 节点要求SMISC 数值的时候,中间数值在两端节点均输出。当KEYOPT(1)设置为2,两个积分点作为延长的线性变量被运用。 Beam188/beam189 单元可以用在细长或者短粗的梁。由于一阶剪切变形的限制,只有适度的“粗”梁可以分析。梁的长细比(GAL2/(EI))可以用来判定单元的适用性,这里: G 剪切模量 A

科隆PH计PAC050中文使用说明书

安装使用说明OPTISENS PAC 050 测量pH及ORP的仪表 科隆测量仪器(上海)有限公司如有变更,恕不通知

1.机械安装 墙挂式仪表防护等级:IP65 (在接线盒密封的前提下) 按下图的顺序和尺寸,在墙面钻孔后将仪表固定在墙面上。

2.电气连接 墙挂式仪表接线图: 连接端子说明 pH电极1+2 1为参比电极,接屏蔽线 2为测量电极,接芯线 ORP电极1+2 1为测量电极,接芯线 2为参比电极,接屏蔽线 Pt100 6+7 6为Pt100,接白色 7为Pt100,接绿色 显示屏对比度Display 通过电压表来调节屏幕对比度 电流输出11+12 11接正,12接负,最大负载500欧姆 继电器1 14+15 继电器2 16+17 继电器3 18+19 报警继电器 电源20+21+ 22 电源电压请见铭牌标示 RS485(可选) 23+24 23=1,24=+ 数字输入26+27 28 26为正,27为负,接外部控制器或缺水指示 28接24VDC,用于感应接近开关 不同的供应商电缆颜色会有所不同,如使用非科隆提供的电缆,请参考供应商对电缆的说明。 科隆的带温度补偿的电缆接线说明如下: 1号接黑色屏蔽线 2号接黑色芯线 6号接白色 7号接绿色 5号接黄绿花线,一般来说不接也没有关系

3. 仪表操作 开机时会显示测量值和温度值,同时控制器状态为手动状态(MAN ),继电器S1和S2的状态为关(□的图标) 通过五个按键可以操作菜单 z 通过↓键,可以进入主菜单 z 通过↑和↓键,可以在菜单中上下选择 z 通过→键,可以进入这个菜单或这个参数 z 通过←键,可以离开这个菜单,而不保存 z 通过确认键,保存更改 3.1 调节参数 选择性参数:通过↑和↓键选择需要的参数,无需按确认键,即可保存设置 数值型参数,通过↑和↓键调整到需要的数值,按确认键后保存数值 1 测量值 2 状态继电器 1 3 状态继电器 2 □ 图标表示继电器关 OFF ■ 图标表示继电器开 ON 4 温度 5 控制器状态 AUTO: 控制器开 ON MAN : 控制器关 OFF (手动操作继电器) 6 操作导向 7 向左键 (→) 8 向上键 (↑) 9 向下键 (↓) 10 向右键 (→) 11 回车键(确认)

相关主题
文本预览
相关文档 最新文档