青岛版数学七年级上册全册月考测试题及答案(共3套)
- 格式:docx
- 大小:1.79 MB
- 文档页数:16
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、选择题1.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23bB .若a =b ,则a +1=b ﹣1C .若a =b ,则2﹣3a =2﹣3bD .若23a b =,则2a =3b 2.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .36.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 7.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .78.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .19.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511 C .﹣1023 D .1025二、填空题11.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.12.把53°30′用度表示为_____.13.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.14.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、压轴题1.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
(2)求运动几秒后甲到A 、B 、C 三点的距离和为40个单位长度?2.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?3.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB .(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.4.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.5.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.6.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?7.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.8.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).9.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t为何值时,1PQ AB=?2()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.10.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?11.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.12.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.13.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.14.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.15.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?16.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.17.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数18.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.19.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?20.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、压轴题1.探究:3;5;直接应用:∣a-2∣,∣a+4∣;灵活应用(1)2或-4;(2)6;(3)-6或4;实际应用:(1)甲、乙数轴上相遇时的点表示的数是-10.4;(2)运动2秒或5秒后甲到A、B、C三点的距离和为40个单位长度.【解析】【分析】利用数轴上两点间的距离公式、绝对值的意义、行程问题的基本数量关系,以及数轴直观解决问题即可.【详解】探究:4-1=3;2-(-3)=5.直接应用:∣a-2∣,∣a+4∣;灵活应用:(1)a+1=±3,a=3-1=2或a=-3-1=-4,∴a=2或-4;(2)∵数轴上表示数a的点位于-4与2之间,∴a-2<0,a+4>0,∴原式=2-a+a+4=6;(3)由(2)可知,a<-4或a>2.分两种情况讨论:①当a<-4时,方程变为:2-a-(a+4)=10,解得:a=-6;②当a>2时,方程变为:a-2+(a+4)=10,解得:a=4;综上所述:a的值为-6或4.实际应用:(1)设x秒后甲与乙相遇,则:4x+6x=34解得:x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙数轴上相遇时的点表示的数是﹣10.4;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得:y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40解得:y=5.答:运动2秒或5秒后甲到A、B、C三点的距离和为40个单位长度.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.3.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】 【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制. 【详解】 (1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(), 解得:t =3,当AD=2,点A 在点D 的左边时, 由题意得:16--22AD t t ==, 解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=,解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,,-3BD PA PC =,∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.4.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11 【解析】 【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可. 【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=22, ∴点B 表示的数是8-22=-14,∵动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8-4t . 故答案为-14,8-4t ;(2)设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x , ∵AC-BC=AB , ∴4x-2x=22, 解得:x=11,∴点P 运动11秒时追上点Q ; (3) ①点P 、Q 相遇之前,4t+2+2t =22,t=103, ②点P 、Q 相遇之后,4t+2t -2=22,t=4, 故答案为103或4 (4)线段MN 的长度不发生变化,都等于11;理由如下: ①当点P 在点A 、B 两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP )=12AB=12×22=11 ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11. 【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论. 5.(1)图1中∠AOD=60°;图2中∠AOD=10°; (2)图1中∠AOD=n m 2+;图2中∠AOD=n m2-. 【解析】 【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m2+,故∠AOD=∠BOD ﹣∠AOB=n m2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°, ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=10°,∴∠AOD=∠AOB+∠BOD=50°+10°=60°; 图2中∠BOC=∠AOC+∠AOB=120°, ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°; (2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m , ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=n m2﹣, ∴∠AOD=∠AOB+∠BOD=n m2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n , ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m2-. 【点睛】本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.6.(1)x=1;(2) x =-3或x =5;(3) 30. 【解析】 【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可. 【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度. 【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 7.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠. 【解析】 【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论. 【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°, ∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出; 故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=. 因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2120α-=-. 解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=. 【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键. 8.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】 【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解. 【详解】(1)①∵∠AOC =30°, ∴∠BOC =180°﹣30°=150°, ∵OP 平分∠BOC , ∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°, t =15÷3=5; ②是,理由如下:∵∠COQ =15°,∠AOQ =15°, ∴OQ 平分∠AOC ; (2)∵OC 平分∠POQ , ∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45, 解得:t =5,当30+6t ﹣3t =225,也符合条件, 解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB , ∵OC 平分∠POB , ∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°, ∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t , ∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 9.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析. 【解析】 【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t. (3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2=()43t 162t 10∴-+--=答:t 2=或6时,1PQ AB 2=()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.10.(1)﹣4,6;(2)①4;②1319,22或 【解析】 【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可. 【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b , ∴a =﹣4,b =6. 如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10, ∴PB =AB ﹣PA =10﹣2t . ∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4; ②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192.本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.11.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.12.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;。
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°B .40°C .50°D .90°2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1073.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 4.3的倒数是( ) A .3B .3-C .13D .13-5.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥6.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45° 7.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒C .115︒D .95︒8.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=29.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( )①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米二、填空题11.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.12.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、压轴题1.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.2.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.3.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4.(1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?4.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.5.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值6.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)7.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.8.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?9.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)10.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.11.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).12.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ...(1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.13.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.14.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.15.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.16.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.17.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.18.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .2063.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9 B .327- C .3- D .(3)--4.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .15.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .6.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠47.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 8.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm9.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离10.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题11.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 12.若212-m y x 与5x 3y 2n 是同类项,则m +n =_____. 13.已知23,9n m n a a -==,则m a =___________.14.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.15.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.16.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.17.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.已知二元一次方程2x-3y=5的一组解为x a y b =⎧⎨=⎩,则2a-3b+3=______. 20.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题21.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?22.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示).(2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?23.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-. 24.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表: 垃圾种类纸类 塑料类 金属类 玻璃类 回收单价(元/吨) 500 800 500 200据了解,可回收垃圾占垃圾总量的60%,现有,,A B C 三个小区12月份产生的垃圾总量分别为100吨,100吨和m 吨.(1)已知A 小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.设塑料类的质量为x 吨,则A 小区可回收垃圾有______吨,其中玻璃类垃圾有_____吨(用含x 的代数式表示)(2)B 小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元.求12月份该小区可回收垃圾中塑料类垃圾的质量.(3)C 小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元.设该小区塑料类垃圾质量为a 吨,求a 与m 的数量关系.25.解方程(组):(1)2512432x y x y -=⎧⎨+=-⎩ (2)12233x x x --=--. 26.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值. 27.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?28.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时. ()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?29.计算题(1)()()()7410-+---(2)11312344⎛⎫⎛⎫-÷-⨯ ⎪ ⎪⎝⎭⎝⎭(3)()()()()75901531-⨯--÷-+⨯-(4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭30.解方程:(1)3723x x --=+ (2)123126x x +--=-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =, 12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C;D. (3)--=3,故排除D.故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x =1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.5.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.6.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.8.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.9.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题11.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.12.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.14.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.15.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.16.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.17.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.18.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.20.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题21.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【解析】【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.22.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y ﹣240(y ﹣12)=450,解得:y =27;③当良马追上驽马时,240(y ﹣12)﹣150y =450,解得:y =37;④当良马到达B 站时,7500﹣150y =450,解得:y =47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x 的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.23.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +-- =22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.24.(1)60,608x -;(2)B 小区12月份可回收垃圾中塑料垃圾质量是5吨;(3)340m a -=.【解析】【分析】(1)用A 小区的垃圾总量乘以可回收垃圾所占百分比即可求出可回收垃圾的数量,用x 表示出金属类垃圾和纸类垃圾的质量,即可求出玻璃类垃圾数量;(2)设12月份B 小区塑料类垃圾质量为x 吨,可用x 表示出玻璃类垃圾的质量,根据当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元列方程求出x 的值即可; (3)根据塑料类与玻璃类垃圾的回收总额恰好相等可用a 表示出玻璃类垃圾的质量,即可求出纸类与金属类垃圾总质量,根据所有可回收垃圾的回收总金额为12000元即可得出a 与m 的数量关系.【详解】(1)∵可回收垃圾占垃圾总量的60%,A 小区产生的垃圾总量100吨,∴可回收垃圾占垃圾总量为:100×60%=60(吨),∵金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.塑料类的质量为x 吨, ∴金属类垃圾质量是5x ,纸类垃圾质量是2x ,∴玻璃类垃圾有:60-5x-2x-x=(60-8x)吨,故答案为:60,608x -(2)设12月份B 小区塑料类垃圾质量为x 吨,∴玻璃类垃圾质量为(6035)x --吨,即(25)x -吨,∴50035800200(25)1650010090x x ⨯++-=+⨯解得:5x =答:B 小区12月份可回收垃圾中塑料垃圾质量是5吨.(3)设玻璃类垃圾质量为y 吨,∵塑料类垃圾质量为a 吨,塑料类与玻璃类垃圾的回收总额相等,∴200y=800a ,解得:y=4a ,∴玻璃类垃圾质量为4a 吨,∴纸类与金属类垃圾总质量为(0.65)m a -吨,∵所有可回收垃圾的回收总金额为12000元,∴500(0.65)280012000m a a -+⨯=,化简得:340m a -=.【点睛】本题考查一元一次方程的应用,正确得出题中的等量关系是解题关键.25.(1)12x y =⎧⎨=-⎩;(2)原方程无解. 【解析】【分析】(1)利用加减消元法即可解答(2)先去分母,再移项合并同类项即可【详解】(1)2512432x y x y -=⎧⎨+=-⎩①② 由2①×,得41024x y -=③由-③②,并化简,得2y =-把2y =-代入①,并化简,得1x =∴12x y =⎧⎨=-⎩(2)解:原式两边同时乘以3x -,得12(3)2x x --=-∴3x =经检验:3x =是增根,舍去∴原方程无解.【点睛】此题考查解二元一次方程组和解分式方程,解题关键在于掌握运算法则26.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±= 【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.27.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.28.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米【解析】【分析】(1) 设后队追上前队需要x小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米. 【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)-1;(2)49;(3)38;(4)7 【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.【详解】(1) 解:原式=7410--+=1-(2) 解:原式=443394⨯⨯ =49(3) 解:原式=3563+-=38(4) 解:原式=1141642-⨯+⨯ =18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.30.(1)2x =-;(2)76- 【解析】【分析】(1)按照移项,合并同类项,系数化为1的步骤解答即可;(2)先去分母,然后去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)-3x -2x =3+7-5x =10x =-2;(2)3(x +1)-(2-3x )=-63x +3-2+3x =-63x +3x =-6-3+26x =-7x =76-. 【点睛】本题考查了一元一次方程的解法,熟记解法的一般步骤是解决此题的关键.。
青岛版七年级上册1月月考质量测试试卷(带答案)模拟数学模拟试题一、压轴题1.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.2.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 3.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.4.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.5.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).6.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.已知∠AOB和∠AOC是同一个平面内的两个角,OD是∠BOC的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.8.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度. 9.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 10.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 11.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.12.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.13.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.14.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
1.1我们身边的图形世界一、选择题1.下列几何图形是立体图形的是()A.扇形B.长方形C.正方体D.圆2.在下列立体图形中,只需要一个面就能围成的是()A.正方体B.圆锥C.圆柱D.球3.下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4.下列几何图形中,属于圆锥的是()A.B.C.D.5.按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥6.下列物体的形状属于圆柱体的是()A.B.C.D.二、填空题7.若一个棱柱的底面是一个七边形,则它的侧面必须有个长方形,它一共有个面.8.圆锥是由个面围成.9.正方体与长方体的相同点是,不同点是.10.圆柱体的底面形状是.三、解答题11.将下列物体与相应的几何体用线连接起来.12.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?答案一、1.C 【解析】A、扇形是平面图形,故A错误;B、长方形是平面图形,故B错误;C、长方体是立体图形,故C正确;D、圆是平面图形,故D错误.故选C.2.D 【解析】A、正方体需要六个面,故A不符合题意;B、圆锥需要两个面,故B不符合题意;C、圆柱需要三个面,故C不符合题意;D、球只需一个面,故D符合题意.故选D.3.A 【解析】A、乒乓球的形状类似于球,故A正确;B、羽毛球类似于圆锥,故B错误;C、茶杯类似于圆柱,故C错误;D、白炽灯类似于圆锥加球,故D错误.故选A.4.D 【解析】A、该图形是立方体,故本题选项错误;B、该图形是四棱锥,故本选项错误;C、该图形是球体,故本选项错误;D、该图形是圆锥.故本选项正确.故选D.5.D 【解析】圆柱由平面和曲面组成,长方体由平面组成;正方体由平面组成;棱柱由平面组成,圆锥由平面和曲面组成.故选D.6.C【解析】A、正方体;B、球体;C、圆柱体;D、圆锥体.故选C.二、7.7,9 【解析】一个棱柱的底面是一个七边形,则它的侧面必须有7个长方形,它一共有9个面.8.2 【解析】解:圆锥的侧面为曲面,底面为平面.∴圆锥由2个面围成,其中1个平面,1个曲面.三、9.长方体和正方体都由6个面组成,都有8个顶点、12条棱;长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等【解析】由长方体和正方体的特征可知:长方体和正方体都由6个面组成,都有8个顶点、12条棱;不同点:长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等.10.圆【解析】圆柱的上下底面为圆.11.【解】如图所示:12.【解】球的表面、圆柱和圆锥的侧面部是曲面.其余的面都是平面.1.2 几何图形一、选择题1.下列图形:①正方形;②圆;③球;④棱柱;⑤圆锥;⑥六边形.属于立体图形的有()A、①③④B、②④⑤C、③④⑤D、③④⑤⑥2. 将如图的直角三角形ABC绕直角边AB所在的直线旋转一周得到一个几何体,从上面看这个几何体得到的平面图形是()(第2题图)A B C D3. 下列图形中,不是正方体平面展开图的是()A B C D4. 将如图的几何图形,绕直线l旋转一周得到的立体图形是()(第4题图)5. 正方形的顶点数、面数和棱数分别是()A、8,6,12B、6,8,12C、8,12,6D、6,8,106. 将下列的平面图形绕轴旋转一周,可得到圆锥的是()A B C D7. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A. 点动成线B. 线动成面C. 面动成体D. 以上答案都不对8.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A、和B、谐C、凉D、山二、填空题9. 几何图形是由_______、_______、_______、_______组成的。
班级:__________________姓名:__________________考号:__________________☆☆☆☆☆☆☆☆☆☆○密☆☆☆☆☆☆☆☆☆☆☆☆○封☆☆☆☆☆☆☆☆☆☆☆○线☆☆☆☆☆☆七年级数学第一次月考试卷一.选择题(每小题3分,共36分)1.下列说法中,正确的是( )A.有理数就是正数和负数的统称B. 零不是自然数,但是正数C.一个有理数不是整数就是分数D. 正分数、零、负分数统称分数 2.下列各式中正确的是( )A.4-<0B.4-<9-C.160.-<660.-D.21-<1- 3.下列各组数中,互为相反数的是( )A.)(2121+--和 B.33-++-和)(C.)()(33++--和D.)(44+--和 4.有理数中绝对值等于它本身的数是( )A.0B.正数C.负数D.非负数 5. 下列各图中,不是正方体的展开图的是( )A .第一个 B.第二个 C.第三个 D.第四个6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ).A .CD=AC-BDB .CD=21BCC .CD=21AB-BD D .CD=AD-BC 7.下列说法不正确的是( )A.最小的整数是0B.最小的非负整数是0C.相反数是它本身的数是0D.任何数的绝对值都不小于0 8.绝对值小于3的整数的个数是( )A.2B.3C.4D.59.-6的相反数与比5的相反数小1的数的和是( )A .1 B. 0 C. 2 D. 1110.在23, 4.01-, 3-- , ()2--,中,负数共有( )个。
A .1个 B.3个 C.4个 D.2个11.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 12.有理数a 、b 在数轴上的表示如图所示,那么( )A.-b >aB.-a <bC.b >aD.∣a ∣>∣b ∣ 二.填空题(每小题3分,共15分)13.如果收入50元记作50元,那么支出20元记作 。
青岛版七年级第一次月考数学试题(时间:100分钟分值120分)一、选择题(每题3分,共36分)1、-2的绝对值是()A、-2B、2C、−12D、122、六棱柱由几个面围成()A、6个B、7个C、8个D、9个3、如图,直线AB、CD相交于点O,在这两条直线上,与点O 的距离为3cm的点有()A、2个B、3个C、4个D、5个4、如图所示,图中共有几个线段()A、4B、5C、10D、155、绝对值等于本身的有理数共有()A、1个B、2个C、0个D、无数个6、在数轴上-2与2之间的有理数有()A、5个B、4个C、3个D、无数个7、下列说法错误的是()A、0的相反数是0B、正数的相反数是负数C、一个数的相反数必是正数D、互为相反数的两个数到原点的距离相等8、下列说法错误的是()A、若AP=BP,则点P是线段AB的中点B、若点C在线段AB上,则AB=AC+BCC、若AC+BC>AB,则点C一定在线段AB外D、两点之间,线段最短9、已知AB=21cm,BC=9cm,A、B、C三点在同一条直线上,那么AC等于()A、30cmB、15cmC、30cm或15cmD、30cm或12cm10、绝对值最小的有理数是()A、1B、0C、-1D、不存在11、若|a|=5,则a()A、等于5B、等于-5C、等于±5D、无法确定12、若|a|+|b|=0,则a、b的关系是()A、a=b=0B、a=-bC、-a=bD、a=±b二、填空题(每题3分,共24分)13、最大的负整数是_________,最小的正整数是___________.14、-2在原点_______边,距原点_______个单位长度,数5在数轴上距原点_______个单位,-5距5_______个单位.15、绝对值不大于2的整数是_________.16、如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是________.17、如图,从甲地到乙地有4条路,其中最近的是_________,这是因为________________.18、点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动3个单位,终点恰好是-3,则点A表示的数是________.19、小红家买了一套住房,她想在房间的墙上钉一根细木条,挂上自己喜欢的装饰物,小红用了两根钉子就把细木条固定住了这是因为_________________________________。
七年级数学阶段检测姓名________ 班级_________ 等级________一、选择题1、月球、西瓜、易拉罐、篮球、水杯、书本等物体中,形状类似圆柱的有( ) A 、1个B 、2个C 、3个D 、4个2、如右图,折叠成一个正方体后和A 面相对的是()A 、B 面B 、D 面C 、E 面D 、F 面3、下列各图中,是数轴的是( )4、经过任意三点中的两点共可以画出的直线条数是()A 、三条B 、一条或三条C 、两条D 、一条5、如图所示,下列说法正确的有()①直线AB 和直线BA 是同一条直线。
②射线AB 和射线BA 是同一条射线。
③线段AB 和线段BA 是同一条线段。
④图中有两条射线。
A 、0个B 、1个C 、2个D 、3个6、济南到青岛的列车,途中停靠三个站点,若任意两站间的票价都不同,不同的票价有( )种。
A 、6种B 、10种C 、12种D 、14种7、C为线段AB延长线上的一点,且AC=23AB,则BC为AB的()A.32B.31C.21D.238、如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.-5吨B. +5吨C.-3吨D.+3吨9、下列说法中正确的是()①π的相反数为-π; ②符号相反的数为相反数; ③--(.)38的相反数为3.8;④一个数与它的相反数不可能相等; ⑤两个互为相反数的绝对值相等.A. ①②B. ①⑤C. ②③D. ①④10、把4个数-0.01、-2、0、0.01从大到小用“>”连接,正确的是()A、-0.01>-2>0>0.01B、-0.01>0>-0.02>0.01C、0.01>0>-0.01>-2D、0.01>-0.01>0>-211、如图所示,点M表示的数的相反数是()A.2.5B. -15.C. -25.D. 1.512、数轴上到数—2所表示的点的距离为4的点所表示的数是()(A)—6 (B)6 (C)2 (D)—6或2二、填空题1、O是线段AB的中点,OB=6厘米,那么AB=______厘米。
青岛版数学七年级上册第一次月考测试题(时间:120分钟分值:100分)一、精心选一选(每小题3分,共30分)1.﹣的绝对值为()A. -2B. -C.D. 12.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣23.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g4.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分5.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米6.六棱柱由几个面围成()A.6个B.7个C.8个D.9个7.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()8.下列说法错误的是()A.若AP=BP,则点P是线段的中点B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.两点之间,线段最短9.一个五棱锥的面数、棱数和顶点数分别是()A.6,10,5B.6,10,6C.5,10,6D.5,6,510.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()二、细心填一填(每小题3分,共30分)11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.如图,在正方形ABCD中,点P在对角线BD上运动,当点P运动到何处时,PA+PC最小,在图中画出此时点P的位置。
16.已知点B在线段AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC中点,则线段PQ= __________cm17.在直线上顺次取A、B、C三点,使得AB=9cm,BC=4cm,若点O是线段AC的中点,则线段OB的长是18.如图,观察图形后,小明得出下列结论:①直线AB与直线BA是同一条直线;②射线AC与射线AD是同一条射线;③AC+BC>AB;④三条直线两两相交时,一定有三个交点。
其中正确的结论有(填序号)19.一个正方体的每个面都有一个汉字,其平面展开图如图所示,则该正方体中与“美”字相对的面上的字是20.一个正方体小木块,六个面上依次刻有1~6的点数,其中1点对6点,2点对5点,3点对4点。
如果按图示那样放置,并按箭头方向翻滚,每滚一格,木块向上面的点数就变换一次,到达A格时,木块正上面的点数三、用心做一做(共60分)21.(6分)小强拿一张正方形纸片(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀在图(3)中剪去如图中的两个小长方形,请你画出再打开后的图形。
22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1)100,﹣22.23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?25.(10)如图,A、B、C依次为直线L上的三个点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长。
26.(10分)推理猜测:(1)三棱柱有条棱,个面;四棱柱有条棱,个面。
(2)棱柱有30条棱,棱锥有101个面;(3)有没有一个多棱锥,其棱数是2008,若有,求出它有多少个面;若没有,说明为什么?27.(10分)小明爱好手工制作,星期天小明纸板制作了一个正五棱柱的笔筒,它的底面边长是5厘米,侧棱长是6厘米,回答下列问题:(1)这个笔筒一共有多少个面?多少条棱?(2)制作侧面共用去多少材料?参考答案:1.C2.C3.D4.B5.A6.C7.C8.A9.B10.B11.112.7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、113.<14.±315.连接AC,交BD于点P,点P就是所要画的点 16.8 17.2.5cm 18.①②③ 19.钦20.5 21.22.解:∵﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1)100=﹣1,﹣22=﹣4,∴如图所示:∴用“<”连接各数为:﹣22<﹣|﹣2.5|<﹣(﹣1)100<0<112<﹣(﹣212).23.解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元24.解:售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元 25.因为M为AB的中点,所以MN=NC=8cm,所以BN=MN-BM=8-3=5(cm),所以BC=BN+NC=5+8=13(cm)26.(1)6;4;8;5 (2)15;100 (3)有;100527.(1)6个面,15条棱(2)5×5×6=150(c㎡)青岛版数学七年级上册第二次月考测试题(适用于三四单元)(时间:120分钟分值:100分)一、选择题(每小题3分,共30分)1. 下列说法中,正确的个数是( )①一个有理数不是正数就是负数;②一个有理数不是整数就是分数;③0既不是正数也不是负数;④0是最小的自然数;⑤0是最小的整数;⑥0既不是奇数,也不是偶数;⑦0是最小的非负数;⑧自然数就是正整数.A. 4B. 5C. 6D. 72. 下列说法:①所有的整数都是正数;②在有理数中,除了正数就是负数;③0是非负数;④0.5既不是整数,也不是分数;⑤有理数包括整数、0和分数.其中正确的有( )A. 0个B. 1个C. 2个D. 3个3. 下列选项中正确的是( )A.B. -2<-3<0C. -3.142>-3.141>-3.14D.4. 下列说法正确的是( )A. 有理数的绝对值一定是正数B. 一个负数的绝对值是它的相反数C. 如果两个数的绝对值相等,那么这两个数一定相等D. 如果一个数的绝对值是它本身,那么这个数一定是正数5. 计算(-2)+(-3)的结果等于( )A. -5B. -1C. 1D. 56.学校以年级为单位开展广播操比赛,全年级有个班级,每个班级有名学生,规定每班抽名学生参加比赛,这时样本容量是()A.13B.50C.650D.3257.某市有名学生参加考试,为了了解考试情况,从中抽取名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①名考生是总体的一个样本;②名考生是总体;③样本容量是其中正确的说法有()A.0种B.1种C.2种D.3种8.①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③9.在选取样本时,下列说法不正确的是( )A.所选样本必须足够大B.所选样本要具有普遍代表性C.所选样本可按自己的爱好抽取D.仅仅增加调查人数不一定能提高调查质量10.下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重二、填空题(每小题3分,共24分)11. 从1开始,将连续的奇数相加,得到的情况如下:;;;;….按此规律,请你猜想从1开始,将15个连续奇数相加的和是______.12. (1)距离原点5个单位长度的点有______个,它们表示的数分别是______和______; (2)如图,与点A距离个单位长度的点有______个,它们对应的数分别是______.13.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98 102 97 103 105这棵果树的平均产量为kg,估计这棵果树的总产量约为kg.14.学校团委会为了举办“庆祝五·四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.15.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(℃)10 14 18 22 26 30 32天数 3 5 5 7 6 2 2则可估计该城市一年中日平均气温为26℃的约有天.16.某住宅小区6月份随机抽查了该小区6天的用水量(单位:t),结果分别是:30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是t.17.统计年份2008 2009 2010 2011 2012图书册数14 600 15 080 16 930 18 665 21 760根据统计表,2009年该校图书有______册,从2008年到2012年该校图书增加了_____册.18.为了预防“禽流感”的传播,检疫人员对某养殖场的家禽进行检验,任意抽取了其中的100只,此种方式属于______调查,样本容量是______.三、解答题(共46分)19. 下列各数中,哪些数是正数?哪些数是负数?+12,0.15,,-2.05,0,-7,3.14.20. 一名足球守门员在一条直线上练习往返跑,从守门员最初的位置出发向前记为正数,返回记为负数,他练习的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.守门员是否回到了起点的位置?21. 将数-2,+1,0,,在数轴上表示出来,并用“<”连接各数.22.(6分)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l95 180 250 270 455 170请你估算一下小亮家平均每年(每年按52周计算)的日常生活消费总费用.23.(6分)某班有学生50人,根据全班学生的课外活动情况绘制的统计图(如图),求参加其他活动的人数.24.(8分)为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有名学生,请估计该校参加“美术”活动项目的人数.25.(8分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有______人达标;(3)若该校学生有人,请你估计此次测试中,全校达标的学生有多少人?参考答案:1. A2. B3. A4. B5. A6.D7.B8.A9.C 10.D 11. 22512. (1)2 +5 -5 (2)2 -5和213.14.250 15.73 16.960 17.18.抽样 100 19. 正数有+12,0.15,3.14;负数有,-2.05,-7.20. ,故守门员又回到了起点位置.21. 如图所示.由图可知,.22.解:由题中7周的数据,可知小亮家平均每周日常生活消费的费用为答:小亮家平均每年的日常生活消费总费用约为元.23.解:由扇形图,知参加其他活动的人数占全班总人数的百分比为,又知该班有学生50人,所以参加其他活动的人数为. 24.解:(1)因为,所以在这次调查中,一共抽查了名学生.(2)因为.所以参加“音乐”活动项目在扇形统计图中所对扇形的圆心角为.(3)因为,所以该校参加“美术”活动项目的人数约为.25.解:(1)成绩一般的学生占的百分比为,测试的学生总人数为,成绩优秀的人数为,所补充图形如下所示:(2)该校被抽取的学生中达标的人数为.(3).答:估计全校达标的学生有人.青岛版数学七年级上册第三次月考测试题(适用于五六七单元)(时间:120分钟分值:100分)一.单选题(共10题;共30分)1.已知a﹣b=3,c﹣d=2,则(b+c)﹣(a+d)的值是()A. -1B. 1C. -5D. 152.下列各组单项式中,不是同类项的是()A. 3x2y与﹣2yx2B. 2ab2与﹣ba2C. 与5xyD. 23a与32a3.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 14.下列变形属于移项的是()A. 由-x=2,得x=-6B. 由-x=-2,得x=-6C. 由-x=2,得x=6D. 由5x+6=3,得5-x+6=3-65.某种商品若按标价的八折出售,可获利20%,若按原价出售可获利( )A. 25%B. 40%C. 50%D. 66.7%6.如图,为做一个试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A. cmB. cmC. cmD. cm7.若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A. -25B. 25C. -32D. 328.如果四个互不相同的正整数m,n,p,q满足(6-m)(6-n)(6-p)(6-q)=4,那么m+n+p+q=( )A. 24B. 25C. 26D. 289.若2a﹣b=3,则9﹣4a+2b的值为()A. 3B. 6C. 12D. 010.用代数式表示“a的3倍与b的差的平方”,正确的是()A. 3(a﹣b)2B. (3a﹣b)2C. 3a﹣b2D. (a﹣3b)2二.填空题(共8题;共24分)11.在等式2x-1=4两边同时________得2x=5;12.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________元.13.若a m b3与﹣3a2b n是同类项,则m+n=________14.单项式﹣的系数是________.15.若16x2y4和x m y n+3是同类项,那么n﹣m2的值是________.16.若a2﹣3b=4,则6b﹣2a2+2017=________.17.一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s(千米)与所用的时间t(时)的关系表达式为________.18.在方程4x-2y=7中,如果用含x的式子表示y,则y=________.三.解答题(共6题;共42分)19.一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工。