风光储互补发电系统
- 格式:docx
- 大小:802.35 KB
- 文档页数:43
风光互补发电系统的应用及优化设计摘要:随着我国经济不断发展,对能源的需求也在不断增加,而传统的矿物能源存量有限且不能再生,因此研究和开发新能源技术是趋势所在。
风光互补发电系统是利用风能和太阳能互补性强的特点,由风力发电机、太阳能电池、控制器、蓄电池组、逆变器等组成的一个发电系统,可将电力供给负载使用。
风电互补发电系统的应用主要是因为太阳能及风能之间的天然互补优势,使得该系统成为有着资源条件较好及能源匹配度较高的独立电源系统。
风电互补发电系统具备可再生能源、绿色能源、设备安装简单、性价比高以及维护方面等优点,使得其具备了更大的竞争优势,在各个行业中的推广程度也在大范围的增加。
关键词:风光互补发电系统;问题;优化;应用1、风光互补发电系统控制风光互补发电系统中风力发电与光伏发电起到核心的作用,准确实现风光互补,分析如下:1.1风力发电控制风力发电控制较为复杂,由于其在互补发电系统中较容易受到外界因素的干扰,所以稳定性偏弱,产生耦合干扰,需着重控制风力发电的过程,才可保障其在风光互补发电系统中的控制性。
例如:风力发电机组的功率控制,如果实际风速大于额定设置,此时需要严谨控制机组功率,确保风力发电控制在额定状态,保障风力发电的功率稳定,才可确保风光互补发电系统处于高效控制的状态中,相反风速小于额定设置时,需要启动机组功率控制的变桨距,以此来对比输出与额定数值,调节并控制风力发电的功率,通过变桨距的角度控制,提供适度的功率需求。
1.2光伏发电控制光伏发电子系统是风光互补发电的另外一部分,共同控制风光发电的系统功率。
分析风光互补发电系统的功率可以得出,维持系统最大的功率状态,必须实现负载阻抗与光伏发电的电阻相等,由此保障光伏发电的功率处于最大化[2]。
如果光伏发电的功率最大,就需要适当的控制方法,调控系统的发电功率。
光伏发电的系统利用了跟踪控制的方法,分析外界环境因素对光伏发电系统的影响,随时跟踪光伏发电功率的变化,通过控制负载阻抗,提高系统功率输出的能力,满足系统控制的需求,即使光伏发电系统未处于适当的天气环境中,也可以在跟踪控制的作用下,保持最大功率的效益。
《风光互补发电系统的建模与仿真研究》篇一一、引言随着人类对可再生能源的日益重视,风光互补发电系统因其独特的优势,如清洁、可持续、资源丰富等,正逐渐成为电力供应的重要来源。
本文将就风光互补发电系统的建模与仿真进行深入探讨,分析其系统组成、模型建立以及仿真应用等关键领域,旨在为未来风能与光能协同供电的研究与实践提供参考依据。
二、风光互补发电系统的基本构成与原理1. 太阳能光伏系统太阳能光伏系统是利用光生电效应将太阳能转换为电能。
它主要由太阳能电池板、支架、汇流箱、逆变器等部分组成。
当阳光照射在太阳能电池板上时,产生直流电,经逆变器转换成交流电供负载使用。
2. 风力发电系统风力发电系统则通过风车叶片捕捉风能,转化为机械能,再由发电机转换为电能。
它主要由风车叶片、齿轮箱、发电机和控制器等部分组成。
三、风光互补发电系统的建模方法建模是研究和模拟复杂系统行为的关键过程,对风光互补发电系统来说同样如此。
该系统的建模主要包括以下几个步骤:1. 确定模型目标与范围:明确模型需要解决的问题和所涉及的组件。
2. 收集数据:收集风速、光照强度、环境温度等数据,为建模提供基础数据支持。
3. 构建模型:根据系统组成和工作原理,建立数学模型或物理模型。
4. 参数设置与校验:为模型设定参数并进行仿真验证,确保模型的准确性和可靠性。
四、风光互补发电系统的仿真研究仿真研究是评估风光互补发电系统性能的重要手段。
通过仿真软件模拟实际运行环境,可以分析系统的输出功率、效率、稳定性等关键指标。
此外,仿真研究还可以帮助优化系统配置,提高能源利用效率。
五、仿真结果分析与应用通过仿真研究,我们可以得到以下结论:1. 风光互补发电系统在资源丰富地区具有较高的发电效率,能有效提高能源利用率。
2. 系统稳定性好,即使在风速和光照强度波动较大的情况下,仍能保持较高的输出功率。
3. 通过优化系统配置,如调整太阳能电池板和风车叶片的安装角度、数量等,可以进一步提高系统的发电效率。
风光互补发电系统原理
风光互补发电系统原理是指通过利用风力发电与光伏发电相结合,实现能源的互补和互补利用,以提高发电效率和稳定性。
在风光互补发电系统中,风力发电和光伏发电是独立而又相互协调的两种方式。
风力发电利用风能驱动风力发电机转动,产生电能。
光伏发电则是通过光能将太阳光转化为电能。
两者都属于可再生能源,具有环保、清洁的特点。
风光互补发电系统的运行需要充分考虑风力和光照的变化因素。
一般情况下,当风力较强时,风力发电系统将主导能源的生产;而在风力较弱或没有风的情况下,光伏发电系统则发挥主要作用。
通过这种互补方式,可以最大程度地充分利用两种能源,提高系统的发电效率。
此外,风光互补发电系统还需要具备适当的能量储存装置,以便在能源生产过剩时储存多余的电能,在风力或光照不足时释放储存的电能。
能量储存装置可以采用电池组、储热装置等形式。
风光互补发电系统的优势在于能够有效弥补风力发电和光伏发电各自的不足之处,提高了系统的稳定性和可靠性。
同时,风光互补发电系统也能够减少能源依赖、降低碳排放,实现可持续发展。
总之,风光互补发电系统利用风力发电和光伏发电相结合,通
过互补和互补利用的方式提高发电效率和稳定性,具有重要的应用前景和环境保护意义。
风光互补发电系统总体结构风光互补发电系统由控制器、永磁发电机、蓄电池、太阳能电池和风力机等组件共同构 成 。
其结构图如下图所示。
风光互补发电系统总体结构图将逆变器用于风光互补发电系统中,其原理为通过对半导体通断状态的控制使直流电转 换为交流电 。
其中主逆变电路控制着开关管的通断,并且所输出的电压为三相交流电压, 以 满足用户的用电需要[30] 。
在风光互补发电系统中,储能系统中的蓄电池在工作状态时所输出 的电压很不稳定,所以逆变器必须具备抗干扰能力,进而输出稳定的交流电压。
加入整流器就是为了完成电流从交流变为直流的转换,按照系统容量大小可以将整流器 分为两类,一类是可控型整流器,另一类是不可控型整流器。
其中不可控型整流器能够有效 预防电池向发电机反向输送电能[31]。
将系统中各个部分有效结合在一起的元件是控制器,其在系统中有着无法被取代的作用。
控制器可以在其他元件产生波动或者变化时做出与其相对应的控制策略,进而保证系统的稳 定输出[32] 。
控制器的采样电路,用于采集当前的电压信号并检测,依据系统电压、 电流变化 情况,判断其是否在最大功率点处工作。
对两处功率值进行取样,并将取样作差进行多次对 比,不停地变化脉冲改变占空比,以改变输出电压,电流,直至跟踪至两处功率之差等于零, 这时,输出功率就是系统最大的输出功率[33] 。
合理控制蓄电池可以在多变的天气稳定发电系 统的工作状态,所以这一步骤至关重要。
在蓄电池进入浮充状态后,控制器将不再对蓄电池 持续充电,负载所需供电量超过实时发电量的情况下,控制器将高效地进行探测并使蓄电池 对系统充电。
太阳能电池受到光照后将会产生电流,DC/DC 变换器会将产生的一部分电流输送给用户, 并将产生的其余电流在电池中储存起来[34]。
DC/DC 变换器可以完成对光伏发电最大功率点的19永磁发电机 DC/DC 变换器用户太阳能电池 DC/DC 变换器 控制器 蓄电池 逆 整流器风力机追踪。
风光互补发电系统简介风光互补发电系统是一种结合风能和太阳能的发电系统,旨在最大程度地利用可再生能源并减少对传统能源的依赖。
这个系统通过将风力发电机和光伏发电板相结合,同时利用风能和太阳能来发电,从而实现能源的互补和增强。
组成部分风光互补发电系统主要由以下几个组成部分组成:1.风力发电机:风力发电机是利用风的动力转化为电能的装置。
它通常由风轮、发电机、传动系统和控制系统等组成。
风力发电机的特点是能够在风能资源丰富的地区高效发电。
2.太阳能光伏发电板:太阳能光伏发电板是利用太阳辐射转化为电能的装置。
它通常由太阳能电池芯片、保护玻璃、背板和支架组成。
太阳能光伏发电板的特点是能够在阳光充足的地区高效发电。
3.逆变器:逆变器是将直流电转换为交流电的装置。
在风光互补发电系统中,逆变器起着将风力发电机和光伏发电板产生的直流电转换为交流电的重要作用。
逆变器还可以将系统产生的电能注入电网,从而实现对电网的支持和供应。
4.电池储能系统:电池储能系统可以将系统产生的过剩电能储存起来,并在需要时释放出来供电。
在风光互补发电系统中,电池储能系统可以用来储存风力发电机和光伏发电板产生的电能,以补充不稳定的发电能力。
5.控制系统:控制系统对整个风光互补发电系统进行监控和控制。
它可以实现对风力发电机和光伏发电板的启动、停止和调整输出功率等功能。
控制系统还可以监测系统运行状态,并在发生故障时进行报警和保护。
工作原理风光互补发电系统的工作原理如下:1.风力发电机利用风的动力将转子旋转,通过发电机将机械能转化为电能。
同时,光伏发电板也会将太阳辐射转化为电能。
2.风力发电机和光伏发电板产生的电能通过逆变器转换为交流电。
逆变器根据电网的要求,控制系统将电能注入电网,供电给电网使用。
3.如果系统产生的电能超过电网需求,多余的电能会被电池储能系统存储起来。
当电网需求超过系统产生的电能时,电池储能系统会释放电能供电给电网,以满足需求。
4.控制系统对整个发电系统进行监控和控制,确保系统的稳定运行。
风光互补供电系统的经验总结与成果展望随着能源需求的不断增长和环境问题的日益凸显,可再生能源已成为全球范围内的热门话题。
在可再生能源中,太阳能和风能被广泛认可为最具潜力和可持续利用的能源之一。
为了有效利用这些资源并提供可靠的电力供应,风光互补供电系统应运而生。
本文将对风光互补供电系统的经验进行总结,并展望其未来可能的成果。
一、风光互补供电系统的概念风光互补供电系统是一种将太阳能光伏和风能发电系统结合起来的可再生能源系统。
它能够在不同的气象条件下,利用风能和太阳能光照来发电,从而提供稳定可靠的电力供应。
二、风光互补供电系统的运行原理风光互补供电系统的运行原理基于太阳能光伏和风能发电系统的互补性。
当阳光充足时,太阳能光伏系统会优先发电并储存电能;而在夜晚或天气阴暗时,风能发电系统则可补充电力不足。
通过这种方式,风光互补供电系统能够实现全天候的电力供应。
三、风光互补供电系统的经验总结1. 高效利用可再生能源资源风光互补供电系统充分利用了风能和太阳能光伏资源,提高了能源的利用效率。
通过在不同的气象条件下进行能源选择和转换,系统能够灵活地提供电力,并减少对传统能源的依赖。
2. 稳定可靠的电力供应由于风能和太阳能光伏的资源具有一定的波动性,对于单独的风能发电系统或光伏发电系统而言,电力供应的稳定性有一定的挑战。
然而,通过风光互补供电系统的结合运行,可以有效平衡电力输出,提供更稳定可靠的电力供应,从而满足用户的需求。
3. 减少环境污染和碳排放与传统的燃煤发电和化石能源相比,风光互补供电系统具有明显的环境优势。
可再生能源的利用不会产生显著的二氧化碳排放和污染物,能够有效降低大气污染和温室气体排放,保护生态环境。
4. 降低能源成本尽管建立风光互补供电系统的初期投资相对较高,但是长期来看,它可以降低电力生产的成本。
太阳能光伏和风能发电系统的运行成本相对较低,并且可再生能源的价格趋于稳定。
因此,风光互补供电系统有望降低能源成本,提升能源可持续性。
《风光互补发电系统的建模与仿真研究》篇一一、引言随着能源需求日益增长,清洁可再生能源已成为世界范围内的研究热点。
风光互补发电系统作为一种重要的清洁能源技术,将风能和太阳能有效结合,可有效提高可再生能源的利用效率及供电的稳定性。
本文将就风光互补发电系统的建模与仿真进行研究,为后续的优化设计和实际应用提供理论支持。
二、风光互补发电系统概述风光互补发电系统是指利用风能和太阳能进行发电的系统。
该系统主要由风力发电机、太阳能光伏板、储能装置(如蓄电池)以及控制系统等组成。
通过合理的配置和优化,该系统能够在不同气候条件下,最大限度地利用可再生能源。
三、风光互补发电系统建模1. 系统构成模型建立风光互补发电系统的构成模型是分析其性能的基础。
模型中包括风力发电机模型、太阳能光伏板模型、储能装置模型以及控制系统模型等。
每个部分均根据其工作原理和性能特点进行数学化描述。
2. 能量转换模型能量转换模型描述了风能和太阳能如何被转换为电能的物理过程。
该模型需考虑风速、光照强度、温度等环境因素对发电效率的影响,并建立相应的数学关系。
3. 控制系统模型控制系统模型负责协调风力发电机和太阳能光伏板的运行,确保系统在各种环境条件下均能高效运行。
该模型需考虑控制策略的制定和实施,以及与储能装置的协同工作。
四、风光互补发电系统仿真研究基于建立的模型,利用仿真软件对风光互补发电系统进行仿真研究。
仿真过程中需考虑不同环境条件(如风速、光照强度、温度等)对系统性能的影响,以及系统的运行策略和优化配置。
1. 仿真环境设置根据实际环境条件,设置仿真环境中的风速、光照强度、温度等参数,模拟不同气候条件下的系统运行情况。
2. 仿真结果分析通过对仿真结果的分析,可以得出系统在不同环境条件下的发电效率、供电稳定性以及储能装置的充放电情况等。
同时,还可以对系统的运行策略和优化配置进行评估和优化。
五、结论与展望通过建模与仿真研究,我们可以得出以下结论:1. 风光互补发电系统能够有效地利用风能和太阳能,提高可再生能源的利用效率。
图1 并网型风光储互补发电系统的主要结构
2 并网风光储互补发电系统的配置优化
光伏发电单元的运行模型。
风光互补发电技术涉及太阳能发电技术、风力发电技术、互补发电技术、PLC控制技术、系统的施工维护,以及远程监控等,由于风力发电和太阳能发电系统均受到外部自然条件的影响,难以独立保证系统供电的连续性和稳定性,因此,有必要采用风光互补的混合发电系统来实现连续、稳定的供电。
对风光储互补发电系统容量的配置优化,需要提前对发电系统的配置进行重组,如此才能够保证发电系统容量组与控制
通过新的计算模型建立,对原有的电能系统运行逻辑进行重新计算,明确其变量与定量之间的关系。
其关系如下:(1)风能(E)的大小与风速的立方(υ3)成正比。
也就是说,影响风能的
3 并网风光储互补发电系统容量的优化
设备优化。
风光储互补发电系统容量的设备优化,要从太阳能板、工频叛变器、蓄电池组、风机、光伏线、太阳能发电机、控制器等设备着手。
其中,蓄电池拟采用200AH×4,5
波逆变器,360W×6的太阳能板,1
阳能发电系统,400W的风力发电机,备用8m的电源线若干根、灯泡若干颗。
逆变器的外壳采用新型4 结语
合理配置风光储互补发电系统容量的配置,对蓄电池组、控制器、接收器等元件进行重新组合,使其符合并网型网络结构的特点,是保证风光储互补发电系统功能发挥的前提。
参考文献
[1] 侯慧,徐焘,肖振锋,伍也凡,刘浩田,陈仲伟.基
于重力储能的风光储联合发电系统容量规划与
评价[J].电力系统保护与控制,2021,49(17):
图2 风电输出功率特性曲线
图3 储能电池荷电状态的计算流程。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。