当前位置:文档之家› Matlab求解方程和函数极值

Matlab求解方程和函数极值

Matlab求解方程和函数极值
Matlab求解方程和函数极值

Matlab求解方程和函数极值

第五章22010-03-31 22:50

二.Matlab求解方程和函数极值

一.线性方程组求解

1.直接解法

①利用左除运算符的直接解法

对于线性方程组Ax=b,可以利用左除运算符“\”求解:x=A\b

例用直接解法求解下列线性方程组。

命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];

b=[13,-9,6,0]';

x=A\b

②利用矩阵的分解求解线性方程组

矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个

矩阵的乘积。常见的矩阵分解有LU分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。

(1) LU分解

矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。

MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:

[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。

[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩

阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。

实现LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提高运算速度。

例用LU分解求解例7-1中的线性方程组。

命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];

b=[13,-9,6,0]';

[L,U]=lu(A);

x=U\(L\b)

或采用LU分解的第2种格式,命令如下:

[L,U ,P]=lu(A);

x=U\(L\P*b)

(2) QR分解

对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr 可用于对矩阵进行QR分解,其调用格式为:

[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。

[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。

实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或x=E(R\(Q\b))。

例用QR分解求解例7-1中的线性方程组。

命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];

b=[13,-9,6,0]';

[Q,R]=qr(A);

x=R\(Q\b)

或采用QR分解的第2种格式,命令如下:

[Q,R,E]=qr(A);

x=E*(R\(Q\b))

(3) Cholesky分解

如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:

R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。

[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,

则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足

R'R=X(1:q,1:q)。

实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\(R’\b)。

例4 用Cholesky分解求解例7-1中的线性方程组。

命令如下:

A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];

b=[13,-9,6,0]';

R=chol(A)

??? Error using ==> chol

Matrix must be positive definite

命令执行时,出现错误信息,说明A为非正定矩阵。

2.迭代解法

迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。

①Jacobi迭代法

对于线性方程组Ax=b,如果A为非奇异方阵,即(i=1,2,…,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L 与U为A的下三角阵和上三角阵,于是Ax=b化为:

与之对应的迭代公式为:

这就是Jacobi迭代公式。如果序列收敛于x,则x必是方程Ax=b的解。

Jacobi迭代法的MATLAB函数文件Jacobi.m如下:

function [y,n]=jacobi(A,b,x0,eps)

if nargin==3

eps=1.0e-6;

elseif nargin<3

error

return

end

D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵B=D\(L+U);

f=D\b;

y=B*x0+f;

n=1; %迭代次数

while norm(y-x0)>=eps

x0=y;

y=B*x0+f;

n=n+1;

end

例5 用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。

在命令中调用函数文件Jacobi.m,命令如下:

A=[10,-1,0;-1,10,-2;0,-2,10];

b=[9,7,6]';

[x,n]=jacobi(A,b,[0,0,0]',1.0e-6)

②Gauss-Serdel迭代法

在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到:

x(k+1)=(D-L)-1Ux(k)+(D-L)-1b

该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel 迭代用新分量代替旧分量,精度会高些。

Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function [y,n]=gauseidel(A,b,x0,eps)

if nargin==3

eps=1.0e-6;

elseif nargin<3

error

return

end

D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵G=(D-L)\U;

f=(D-L)\b;

y=G*x0+f;

n=1; %迭代次数

while norm(y-x0)>=eps

x0=y;

y=G*x0+f;

n=n+1;

end

例6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。

在命令中调用函数文件gauseidel.m,命令如下:

A=[10,-1,0;-1,10,-2;0,-2,10];

b=[9,7,6]';

[x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)

例7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性方程组,看是否收敛。

命令如下:

a=[1,2,-2;1,1,1;2,2,1];

b=[9;7;6];

[x,n]=jacobi(a,b,[0;0;0])

[x,n]=gauseidel(a,b,[0;0;0])

二.非线性方程数值求解

1 单变量非线性方程求解

在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程

的根。该函数的调用格式为:z=fzero('fname',x0,tol,trace)

其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace 指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。

例8 求在附近的根。

步骤如下:

(1) 建立函数文件funx.m。

function fx=funx(x)

fx=x-10.^x+2;

(2) 调用fzero函数求根。

z=fzero('funx',0.5)

z =

0.3758

2.非线性方程组的求解

对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:

X=fsolve('fun',X0,option)

其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。

例9 求下列非线性方程组在(0.5,0.5) 附近的数值解。

(1) 建立函数文件myfun.m。

function q=myfun(p)

x=p(1);

y=p(2);

q(1)=x-0.6*sin(x)-0.3*cos(y);

q(2)=y-0.6*cos(x)+0.3*sin(y);

(2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))

x =

0.6354

0.3734

将求得的解代回原方程,可以检验结果是否正确,命令如下:

q=myfun(x)

q =

1.0e-009 *

0.2375 0.2957

可见得到了较高精度的结果。

三.常微分方程初值问题的数值解法

1.龙格-库塔法简介

2.龙格-库塔法的实现

基于龙格-库塔法,MATLAB提供了求常微分方程数值解的函数,一般调用格式为:

[t,y]=ode23('fname',tspan,y0)

[t,y]=ode45('fname',tspan,y0)

其中fname是定义f(t,y)的函数文件名,该函数文件必须返回一个列向量。tspan形式为[t0,tf],表示求解区间。y0是初始状态列向量。t和y分别给出时间向量和相应的状态向量。

例10 设有初值问题,

试求其数值解,并与精确解相比较(精确解为y(t)= )。

(1) 建立函数文件funt.m。

function yp=funt(t,y)

yp=(y^2-t-2)/4/(t+1);

(2) 求解微分方程。

t0=0;tf=10;

y0=2;

[t,y]=ode23('funt',[t0,tf],y0); %求数值解

y1=sqrt(t+1)+1; %求精确解

plot(t,y,’b.’,t,y1,’r-‘) % 通过图形来比较

数值解图形用蓝色圆点表示,精确解图形用红色实线表示。如图所示。可以看出两种结果近似。相近

四.函数极值

MATLAB提供了基于单纯形算法求解函数极值的函数fmin和fmins,它们分别用于单变量函数和多变量函数的最小值,其调用格式为:

x=fmin('fname',x1,x2)

x=fmins('fname',x0)

这两个函数的调用格式相似。其中fmin函数用于求单变量函数的最小值点。fname是被最小化的目标函数名,x1和x2限定自变量的取值范围。fmins函数用于求多变量函数的最小值点,x0是求解的初始值向量。

MATLAB没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间(a,b)上的最小值就是f(x)在(a,b)的最大值,所以fmin(f,x1,x2)返回函数f(x)在区间(x1,x2)上的最大值。

例13 求在[0,5]内的最小值点。

(1) 建立函数文件mymin.m。

function fx=mymin(x)

fx=x.^3-2*x-5;

(2) 调用fmin函数求最小值点。

x=fminbnd('mymin',0,5) 177页

x=

实验五 用matlab求二元函数的极值

实验五 用matlab 求二元函数的极值 1.计算二元函数的极值 对于二元函数的极值问题,根据二元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义二元函数),(y x f z =. 步骤2.求解方程组0),(,0),(==y x f y x f y x ,得到驻点. 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数 22222,,.z z z A B C x x y y ???===???? 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02>-B AC ,则该驻点是 极值点,当0>A 为极小值, 0>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y

用Matlab解微分方程

用Matlab 软件求解微分方程 1.解析解 (1)一阶微分方程 求21y dx dy +=的通解:dsolve('Dy=1+y^2','x') 求y x dx dy -+=21的通解:dsolve('Dy=1+x^2-y','x') 求?????=+=1 )0(12y y dx dy 的特解:dsolve('Dy=1+y^2',’y(0)=1’,'x') (2)高阶微分方程 求解???-='==-+'+''. 2)2(,2)2(,0)(222πππy y y n x y x y x 其中,21=n ,命令为: dsolve('x^2*D2y+x*Dy+(x^2-0.5^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x') 求042=-+'-'''x y y y 的通解,命令为: dsolve('D3y-2*Dy+y-4*x=0','x') 输出为: ans=8+4*x+C1*exp(x)+C2*exp(-1/2*(5^(1/2)+1)*x)+C3*exp(1/2*(5^(1/2)-1)*x) (3)一阶微分方程组 求???+-='+='). (3)(4)(),(4)(3)(x g x f x g x g x f x f 的通解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','x') 输出为: f =exp(3*x)*(cos(4*x)*C1+sin(4*x)*C2) g =-exp(3*x)*(sin(4*x)*C1-cos(4*x)*C2) 若再加上初始条件1)0(,0)0(==g f ,则求特解: [f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','f(0)=0,g(0)=1','x') 输出为: f =exp(3*x)*sin(4*x) g =exp(3*x)*cos(4*x) 2.数值解 (1)一阶微分方程

用MATLAB求极值

用MATLAB求极值 灵活的运用MATLAB的计算功能,可以很容易地求得函数的极值。 例3.6.1 求 2 2 344 1 x x y x x ++ = ++ 的极值 解首先建立函数关系: s yms s y=(3*x^2+4*x+4)/( x^2+x+1); ↙然后求函数的驻点: dy=diff(y); ↙ xz=solve(dy) ↙ xz= [0] [-2] 知道函数有两个驻点x 1=0和x 2 =-2,考察函数在驻点处二阶导数的正负情况: d2y=diff(y,2); ↙ z1=limit(d2y,x,0) ↙z1= -2 z2=limit(d2y,x,-2) ↙z2= 2/9 于是知在x 1=0处二阶导数的值为z 1 =-2,小于0,函数有极大值;在x 2 =-2处二阶导数的值 为z 2 =2/9,大于0,函数有极小值。如果需要,可顺便求出极值点处的函数值: y 1 =limit(y,x,0) ↙ y 1 = 4 y 2 =limit(y,x,-2) ↙ y 2 = 8/3 事实上,如果知道了一个函数的图形,则它的极值情况和许多其它特性是一目了然的。而借助MA TLAB的作图功能,我们很容易做到这一点。 例3.6.2画出上例中函数的图形 解syms x ↙ y=(3*x^2+4*x+4)/( x^2+x+1); ↙得到如下图形 ezplot(y) ↙

如何用MATLAB求函数的极值点和最大值 比如说y=x^3+x^2+1,怎样用matlab来算它的极值和最大值? 求极值: syms x y >> y=x^3+x^2+1 >> diff(y) %求导 ans = 3*x^2 + 2*x >> solve(ans)%求导函数为零的点 ans = -2/3 极值有两点。 求最大值,既求-y的最小值: >> f=@(x)(-x^3-x^2-1)

Matlab求解微分方程(组)及偏微分方程(组)

第四讲Matlab求解微分方程(组) 理论介绍:Matlab求解微分方程(组)命令 求解实例:Matlab求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到得方程,绝大多数都就是微分方程,真正能得到代数方程得机会很少、另一方面,能够求解得微分方程也就是十分有限得,特别就是高阶方程与偏微分方程(组)、这就要求我们必须研究微分方程(组)得解法:解析解法与数值解法、 一.相关函数、命令及简介 1、在Matlab中,用大写字母D表示导数,Dy表示y关于自变量得一阶导数,D2y 表示y关于自变量得二阶导数,依此类推、函数dsolve用来解决常微分方程(组)得求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解、 注意,系统缺省得自变量为t 2、函数dsolve求解得就是常微分方程得精确解法,也称为常微分方程得符号解、但就是,有大量得常微分方程虽然从理论上讲,其解就是存在得,但我们却无法求出其解析解,此时,我们需要寻求方程得数值解,在求常微分方程数值解方 面,MATLAB具有丰富得函数,我们将其统称为solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver为命令ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i之一、 (2)odefun就是显示微分方程在积分区间tspan上从到用初始条件求解、 (3)如果要获得微分方程问题在其她指定时间点上得解,则令tspan(要求就是单调得)、 (4)因为没有一种算法可以有效得解决所有得ODE问题,为此,Matlab提供了多种求解器solver,对于不同得ODE问题,采用不同得solver、 表1 Matlab中文本文件读写函数

实验3 Matlab 符号运算及求函数极值

实验3 Matlab 符号运算及求函数极值一、实验目的和要求 掌握用Matlab软件进行符号运算以及求函数的极值。 二、实验环境 Windows系列操作系统,Matlab软件。 三、实验内容 1.用MATLAB进行符号运算; 2.编程求函数的极值。 四、实验步骤 3.开启软件平台——Matlab,开启Matlab编辑窗口; 4.根据求解步骤编写M文件; 5.保存文件并运行; 6.观察运行结果(数值或图形); 7.根据观察到的结果和体会写出实验报告。 五、示例 1.计算一元函数的极值 例1求 2 2 344 1 x x y x x ++ = ++ 的极值 解首先建立函数关系: s yms x y=(3*x^2+4*x+4)/( x^2+x+1); 然后求函数的驻点: dy=diff(y); xz=solve(dy) xz= [0] [-2] 知道函数有两个驻点x 1=0和x 2 =-2, 接下来我们通过考察函数的图形,则它的极值情况和许多其它特性是一目了然的。而借助MATLAB的作图功能,我们很容易做到这一点。 例2 画出上例中函数的图形

解 syms x y=(3*x^2+4*x+4)/( x^2+x+1); 得到如下图形 ezplot(y) 2.计算二元函数的极值 MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 例1 求函数42823z x xy y =-+-的极值点和极值. 首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即348,84z z x y x y x y ??=-=-+??再求解方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解方程的MA TLAB 代码为:

matlab自定义函数与极值求法

实验5 matlab 自定义函数与导数应用 实验目的 1.学习matlab 自定义函数. 2.加深理解罗必塔法则、极值、最值、单调性. 实验内容 1.学习matlab 自定义函数及求函数最小值命令. 函数关系是指变量之间的对应法则,这种对应法则需要我们告诉计算机,这样,当我们输入自变量时,计算机才会给出函数值,matlab 软件包含了大量的函数,比如常用的正弦、余弦函数等.matlab 允许用户自定义函数,即允许用户将自己的新函数加到已存在的matlab 函数库中,显然这为matlab 提供了扩展的功能,无庸置疑,这也正是matlab 的精髓所在.因为matlab 的强大功能就源于这种为解决用户特殊问题的需要而创建新函数的能力.matlab 自定义函数是一个指令集合,第一行必须以单词function 作为引导词,存为具有扩展名“.m ”的文件,故称之为函数M -文件. 函数M -文件的定义格式为: function 输出参数=函数名(输入参数) 函数体 …… 函数体 一旦函数被定义,就必须将其存为M -文件,以便今后可随时调用.比如我们希望建立函数12)(2++=x x x f ,在matlab 工作区中输入命令: syms x ;y=x^2+2*x+1; 不能建立函数关系,只建立了一个变量名为y 的符号表达式,当我们调用y 时,将返回这一表达式. y ? y=x^2+2*x+1 当给出x 的值时,matlab 不能给出相应的函数值来. x=3;y ? y=x^2+2*x+1 如果我们先给x 赋值. x=3;y=x^2+2*x+1 得结果:y=16 若希望得出2|=x y 的值,输入: x=2;y ? 得结果:y=16,不是2=x 时的值.读者从这里已经领悟到在matlab 工作区中输入命令:y=x^2+2*x+1不能建立函数关系,如何建立函数关系呢?我们可以点选菜单Fill\New\M-fill 打开matlab 文本编辑器,输入: function y=f1(x) y=x^2+2*x+1; 存为f1.m .调用该函数时,输入: syms x ;y=f1(x)?

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

matlab实验六 多元函数的极值

实验六多元函数的极值 【实验目的】 1.了解多元函数偏导数的求法。 2.了解多元函数极值的求法。 3.了解多元函数条件极值的求法。 4.学习、掌握MATLAB软件有关的命令。 【实验内容】 求函数42 =-+-的极值点和极值。 823 z x xy y 【实验准备】 1.计算多元函数的极值 2.计算二元函数在区域D内的最大值和最小值 3.求函数偏导数的MATLAB命令 MATLAB中主要用diff求函数的偏导数,用jacobian求Jacobian 矩阵。 diff(f,x,n)求函数f关于自变量x的n阶导数。 jacobian(f,x)求向量函数f关于自变量x(x也为向量)的jacobian 矩阵。 【实验重点】 1、多元函数的偏导数计算 2、多元函数极值的计算 【实验难点】 1、多元函数极值的计算

【实验方法与步骤】 练习1 求函数42823z x xy y =-+-的极值点和极值。首先用diff 命令求z 关于x,y 的偏导数 >>clear;syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans=4*x^3-8*y ans=-8*x+4*y 即348,84z z x y x y x y ??=-=-+??再求解正规方程,得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为 >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4)。下面再求判别式中的二阶偏导数: >>clear;syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff((z,x),y)) >>C=diff(z,y,2)

数学应用软件作业6-用Matlab求解微分方程(组)的解析解和数值解

数学应用软件作业6-用Matlab 求解微分方程(组)的解析解和数值解

注:上机作业文件夹以自己的班级姓名学号命名,文件夹包括如下上机报告和Matlab程序。 上机报告模板如下: 佛山科学技术学院 上机报告 课程名称数学应用软件 上机项目用Matlab求解微分方程(组)的解析解和数值解 专业班级姓名学号 一. 上机目的 1.了解求微分方程(组)的解的知识。 2.学习Matlab中求微分方程的各种解的函数,如 dsolve命令、ode45函数等等,其中注意把方程化为新的方程的形式。 3.掌握用matlab编写程序解决求解微分方程的问 题。 二. 上机内容 1、求高阶线性齐次方程:y’’’-y’’-3y’+2y=0。 2、求常微分方程组

2 210cos,2 24,0 t t t dx dy x t x dt dt dx dy y e y dt dt = - = ? +-== ?? ? ?++== ?? 3、求解 分别用函数ode45和ode15s计算求解,分别画出图形,图形分别标注标题。 4、求解微分方程 ,1 )0( ,1 '= + + - =y t y y 先求解析解,在[0,1]上作图; 再用ode45求数值解(作图的图形用“o”表示),在同一副图中作图进行比较,用不同的颜色表示。 三. 上机方法与步骤 给出相应的问题分析及求解方法,并写出Matlab 程序,并有上机程序显示截图。 题1:直接用命令dsolve求解出微分方程的通解。 Matlab程序:

dsolve('D3y-D2y-3*Dy+2*y','x') 题2:将微分方程组改写为 5cos2exp(2) 5cos2exp(2) (0)2,(0)0 dx t t x y xt dy t t x y dt x y ? =+--- ? ? ? =-+-+- ? ? == ? ? ? , 再用命令dsolve求解微分方程的通解。 Matlab程序: 建立timu2.m如下: [x,y]=dsolve('Dx=5*cos(t)+2*exp(-2*t)-x-y','Dy=-5*cos(t)+2*exp(-2*t)+x-y ','x(0)=2,y(0)=0','t') x=simple(x) y=simple(y)

利用matlab编写S函数求解微分方程

利用matlab编写S函数求解微分方程自动化专业综合设计报告 自动化专业综合设计报告

函数求解微S编写设计题目:利用 matlab 分方程 自动化系统仿真实验室所在 实验室: 郭卫平 指导教师: 律迪迪学生姓名 200990519114 班级文自0921 学号 成绩评定: 自动化专业综合设计报告

一、设计目的 了解使用simulink的扩展工具——S-函数,s函数可以利用matlab的丰富资源,而不仅仅局限于simulink提供的模块,而用c或c++等语言写的s函数还可以实现对硬件端口的操作,还可以操作windows API 等的,它的魅力在于完美结合了simulink 框图简洁明快的特点和编程灵活方便的优点,提供了增强和扩展sinulink能力的强大机制,同时也是使用RTW实现实时仿真的关键。 二、设计要求 求解解微分方程 y'=y-2x/y 自动化专业综合设计报告 y(0)=1 要求利用matlab编写S函数求解 三、设计内容(可加附页) 【步骤1】获取状态空间表达式。

在matlab中输入 dsolve(‘Dy=y-2*x/y','y(0)=1', 'x') 得到 y=(2*x+1).^(1/2); 【步骤2】建立s函数的m文件。 利用21·用S函数模板文件。 以下是修改之后的模板文件sfuntmpl.m 的内容。 function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag) %SFUNTMPL S-function M-file General template define you can With % M-file S-functions, you own ordinary differential system equations (ODEs), discrete % equations, and/or just about any type of algorithm to be used within a %

Matlab优化(求极值)

第七讲 Matlab 优化(求极值) 理论介绍:算法介绍、软件求解. 一.线性规划问题 1.线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小值的问题,Matlab 中规定线性规划的标准形式为 min s.t.T x c x Ax b Aeq x beq lb x ub ≤?? ?=??≤≤? 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向量。注意:线性规划问题化为Matlab 规定中的标准形式。 求解线性规划问题的Matlab 函数形式为linprog(c,A,b),它返回向量x 的值,它的具体调用形式为: [x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,x0,OPTIONS) 这里fval 返回目标函数的值,LB 、UB 分别是变量x 的下界和上界,x0是x 的初始值,OPTIONS 是控制参数。 例1 求解线性规划问题 1231231 23123123max 23572510s.t.312,,0 z x x x x x x x x x x x x x x x =+-++=??-+≥??++≤??≥? 程序:c=[2;3;5]; >> A=[-2,5,-1;1,3,1];b=[-10;12]; >> Aeq=[1,1,1];beq=[7]; >> LB=[0;0;0];(zeros(3,1)) >> [x,fval]=linprog(c,A,b,Aeq,beq,LB,[]) 练习与思考:求解线性规划问题

12312312123 min 23+428 s.t.3+26,,0z x x x x x x x x x x x =+++≥?? ≥??≥? 注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ]. 2.可以转化为线性规划的问题 规划问题12min||+||++||s.t.,n x x x Ax b ≤L 其中1=[],T n x x x L ,A b 为相应维数的矩阵和向量。注意到对任意的i x 存在,>0i i u v 满足=-,||=+i i i i i i x u v x u v ,事实上只要取 +||||-= ,=22 i i i i i i x x x x u v 就可以满足上面的条件。 这样,记11=[],=[],T T n n u u u v v v L L 从而可以把问题变成 =1min (+) (-)s.t.,0 n i i i u v A u v b u v ≤?? ≥?∑ 例2 求解规划问题min{max||}i i i x y ε,其中=-.i i i x y ε 对于这个问题,如果取0=lim||i i y x ε,这样,上面的问题就变换成 01100min s.t.-,,-n n x x y x x y x ≤≤L 这是我们通常的线性规划问题。 练习与思考:规划问题 1234123412341234min ||2||+3||+4||--+=0s.t.-+-3=11--2+3=-2 z x x x x x x x x x x x x x x x x =+? ?? ???? 二.非线性一元函数的最小值 对于求一元函数的最小值问题,Matlab 提供了一个命令函数fminbnd ,

数学模型之微分方程及其MATLAB求解

数学模型之微分方程及其MATLAB求解 ---卫星轨迹等经典例题求解分析1. 考虑初值问题画图 y'''?3y ''?y 'y = 0 y(0) = 0 y '(0) =1 y ' '(0) = ?1 2、 3、 【实验步骤与程序】 1. M -文件建立m函数文件

function y=f(t,x) y=[x(2);x(3);9*x(3)^2+x(1)*x(2)]; 求解微分方程,命令如下: x0=[0;1;-1]; [t,y]=ode45(@mm,[0,2.5],x0); plot(y(:,1),y(:,2)); figure(2); plot3(y(:,1),y(:,2),y(:,3))

2、M -文件建立m函数文件 function dx=appollo(t,x) mu=1/82.45; mustar=1-mu; r1=sqrt((x(1)+mu)^2+x(3)^2); r2=sqrt((x(1)-mustar)^2+x(3)^2); dx=[x(2) 2*x(4)+x(1)-mustar*(x(1)+mu)/r1^3-mu*(x(1)-mustar)/r2^3 x(4) -2*x(2)+x(3)-mustar*x(3)/r1^3-mu*x(3)/r2^3];

求解微分方程,命令如下: x0=[1.2;0;0;-1.04935751]; options=odeset('reltol',1e-8); [t,y]=ode45(@appollo,[0,20],x0,options); plot(y(:,1),y(:,3)) title('Appollo卫星运动轨迹') xlabel('x') ylabel('y')

Matlab求函数最值

MATLAB 求函數極小(大)值

函數的極值 n函數的極值(極大值或極小值)可從兩個角度來談,一為絕對的極值(absolute or global extreme value),另一為相對的極值(relative or local extreme value) n絕對的極值:在所有定義域內中的極大值或極小值 n相對的極值:在定義域內某一區間中的極大值或極小值

n 單一變數函數 n 多變數函數 n y = f (x 1, x 2, …, x n )為一函數。若f 在x*上有極值,則 函數極值的發生處 0x y = f (x ) 0x y = f (x )極小值 極大值***12()0,()0,,()0n f f f x x x x x x ???===???L

求單變數函數之極小值n 在特定區間尋找單一變數之函數f(x) 之極小值 n 方法一:在區間內取點,計算這些點的函數值,然後利用min 指令找出其極小值 Ex. 求之極小值,其中>> x=linspace(0,8,100);>> y=cos(x).*exp(-2*x);>> [ymin index]=min(y)>> xmin=x(index) ()* min (),=££l u x f x f x x x x 08 ££x 2()cos()-=x f x x e ymin =-0.0076index =26xmin =2.0202f(x) 稱為目標函數(objective function)

求單變數函數之極小值n 方法二:利用MATLAB 內建函數fminbnd Ex.求之極小值,其中*step 1. edit fun.m function F=fun(x) F=cos(x)*exp(-2*x); *step 2. 求解(回到Matlab Command Window )>> [x, fval]=fminbnd(@fun, 0, 8)[x, fval] = fminbnd(@fun, x1, x2) x: 使函數值最小之x 值fval: 函數之極小值fun: 定義目標函數的function m-file 檔名x1: 區間下限, x2: 區間上限 2()cos()-=x f x x e 08 ££x x =2.0344fval =-0.0076

用matlab求解常微分方程

实验六 用matlab 求解常微分方程 1.微分方程的概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为 0),,",',,()(=n y y y y t F 如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++-- 若上式中的系数n i t a i ,,2,1),( =均与t 无关,称之为常系数。 2.常微分方程的解析解 有些微分方程可直接通过积分求解.例如,一解常系数常微分方程1+=y dt dy 可化为 dt y dy =+1,两边积分可得通解为 1-=t ce y .其中c 为任意常数.有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解. 线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解.一阶变系数线性微分方程总可用这一思路求得显式解。高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。 一阶常微分方程与高阶微分方程可以互化,已给一个n 阶方程 ),,",',()1()(-=n n y y y t f y 设)1(21,,',-===n n y y y y y y ,可将上式化为一阶方程组 ?????????====-),,,,(''''2113221n n n n y y y t f y y y y y y y 反过来,在许多情况下,一阶微分方程组也可化为高阶方程。所以一阶微分方程组与高阶常微分方程的理论与方法在许多方面是相通的,一阶常系数线性微分方程组也可用特征根法求解。 3.微分方程的数值解法 除常系数线性微分方程可用特征根法求解,少数特殊方程可用初等积分法求解外,大部分微分方程无限世界,应用中主要依靠数值解法。考虑一阶常微分方程初值问题 ???=<<=000)()),(,()('y t y t t t t y t f t y f

基于MATLAB的可行方向法求极值问题讲解

基于MATLAB 可行方向法求极值的实现 姓名:xxx 学号:xxx (北京理工大学机械与车辆学院车辆工程,北京 100081) 摘要:在工程实际的优化设计中,随着设计变量数和约束条件数的增加,随机方向搜索法和复合形法等直接优化解法的求解效率会偏低。可行方向法,顾名思义,一种始终在可行域内寻找下降方向的搜索法,以其收敛速度快、效果好的优点已成为求解约束非线性问题的一种有代表性的直接解法,同时也是求解大型约束优化问题的主要方法之一。本文将简单介绍可行方向法的数学思想,采用线性规划法和约束最优步长法编写MATLAB 程序,最后通过算例完成对优化问题的求解。 关键字:可行方向法;MATLAB ;优化方法。 1. 可行方向法的基本数学思想 1.1可行方向法的搜索策略 可行方向法迭代的第一步都是从可行域的某一初始点(0)X 出发,沿负梯度 (0)()f X -?方向移至某一个或J 个起作用约束面的交集()k X 上。以后的搜索路线和迭代计算可根据约束函数和目标函数的不同性状,分别采用以下三种不同策略继续搜索。 1) 由点()k X 出发,沿可行方向作一维最优化搜索,若所得新点(1)k X +在可行域内,则再沿(1)()k f X +-?方向作一维最优化搜索;若所得的新点不在可行域内,则将它移至约束面上再反复重复上述步骤,若 (1)()k f X ε+?≤,则停止迭代,如图1.1所示。 2) 由点()k X 出发,沿可行方向作一维最优化搜索,若所得新点(1)k X +在可行域外,则沿可行方向以最大步长到达另一个约束面上一点,将该点作为迭代点(1)k X +进行反复搜索,直至满足给出的K-T 条件,如图1.2所示。

Matlab解微分方程(ODE+PDE)

常微分方程: 1 ODE解算器简介(ode**) 2 微分方程转换 3 刚性/非刚性问题(Stiff/Nonstiff) 4 隐式微分方程(IDE) 5 微分代数方程(DAE) 6 延迟微分方程(DDE) 7 边值问题(BVP) 偏微分方程(PDEs)Matlab解法 偏微分方程: 1 一般偏微分方程组(PDEs)的命令行求解 2 特殊偏微分方程(PDEs)的PDEtool求解 3 陆君安《偏微分方程的MATLAB解法 先来认识下常微分方程(ODE)初值问题解算器(solver) [T,Y,TE,YE,IE] = odesolver(odefun,tspan,y0,options) sxint = deval(sol,xint) Matlab中提供了以下解算器: 输入参数: odefun:微分方程的Matlab语言描述函数,必须是函数句柄或者字符串,必须写成Matlab

规范格式(也就是一阶显示微分方程组),这个具体在后面讲解 tspan=[t0 tf]或者[t0,t1,…tf]:微分变量的范围,两者都是根据t0和tf的值自动选择步长,只是前者返回所有计算点的微分值,而后者只返回指定的点的微分值,一定要注意对于后者tspan必须严格单调,还有就是两者数据存储时使用的内存不同(明显前者多),其它没有任何本质的区别 y0=[y(0),y’(0),y’’(0)…]:微分方程初值,依次输入所有状态变量的初值,什么是状态变量在后面有介绍 options:微分优化参数,是一个结构体,使用odeset可以设置具体参数,详细内容查看帮助 输出参数: T:时间列向量,也就是ode**计算微分方程的值的点 Y:二维数组,第i列表示第i个状态变量的值,行数与T一致 在求解ODE时,我们还会用到deval()函数,deval的作用就是通过结构体solution计算t 对应x值,和polyval之类的很相似! 参数格式如下: sol:就是上次调用ode**函数得道的结构体解 xint:需要计算的点,可以是标量或者向量,但是必须在tspan范围内 该函数的好处就是如果我想知道t=t0时的y值,不需要重新使用ode计算,而直接使用上次计算的得道solution就可以 [教程] 微分方程转换为一阶显示微分方程组方法 好,上面我们把Matlab中的常微分方程(ODE)的解算器讲解的差不多了,下面我们就具体开始介绍如何使用上面的知识吧! 现实总是残酷的,要得到就必须先付出,不可能所有的ODE一拿来就可以直接使用,因此,在使用ODE解算器之前,我们需要做的第一步,也是最重要的一步,借助状态变量将微分

遗传算法求函数极大值matlab实现

遗传算法求函数最大值(matlab实现) 一、题目: 2,,当x在0~31区间的最大值。寻找f(x)=x 二、源程序: %遗传算法求解函数最大值 %本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些 Close all; Clear all; figure(1); fplot('variable*variable',[0,31]); %画出函数曲线 %以下定义遗传算法参数 GTSM=40; %定义个体数目 ZDYCDS=20; %定义最大遗传代数 EJZWS=5; %定义变量的二进制位数 DG=0.9; %定义代沟 最优结果的初始值% trace=zeros(2, ZDYCDS);

FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异 Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定规模的二进制种群和结构 gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换 2 f(x)=x计算目标函数值% ObjV=variable*variable; while gen

MATLAB多元函数导数求极值或最优值

实验六 多元函数的极值 【实验目的】 1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法、 4. 学习掌握MATLAB 软件有关的命令。 【实验内容】 求函数3282 4-+-=y xy x z 的极值点与极值 【实验准备】 1.计算多元函数的自由极值 对于多元函数的自由极值问题,根据多元函数极值的必要与充分条件,可分为以下几个步骤: 步骤1、定义多元函数),(y x f z = 步骤2、求解正规方程0),(,0),(==y x f y x f y x ,得到驻点 步骤3、对于每一个驻点),(00y x ,求出二阶偏导数,,,22222y z C y x z B x z A ??=???=??= 步骤4、 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02>-B AC ,则该驻点就是极值点,当0>A 为极小值, 0

可以用help diff, help jacobian 查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 求函数3282 4-+-=y xy x z 的极值点与极值、首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x y z y x x z +-=??-=??再求解正规方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MA TLAB 代码为: >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别就是P(-2,-4),Q(0,0),R(2,4)、下面再求判别式中的二阶偏导数: >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2) 结果为 A=2*x^2 B =-8 C =4 由判别法可知)2,4(--P 与)2,4(Q 都就是函数的极小值点,而点Q(0,0)不就是极值点,实际上,)2,4(--P 与)2,4(Q 就是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。 >>clear; >>x=-5:0、2:5; y=-5:0、2:5; >>[X,Y]=meshgrid(x,y);

MATLAB多元函数极值

多元函数的极值 【实验目的】 1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法. 4. 学习掌握MATLAB 软件有关的命令。 【实验内容】 求函数3282 4 -+-=y xy x z 的极值点和极值 【实验准备】 1.计算多元函数的自由极值 对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义多元函数),(y x f z = 步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,2222 2y z C y x z B x z A ??=???=??= 步骤4. 对于每一个驻点),(00y x ,计算判别式2 B A C -,如果02 >-B AC ,则该驻点是极值点,当0>A 为极小值, 0

MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 可以用help diff, help jacobian 查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 求函数3282 4 -+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即 .48,843y x y z y x x z +-=??-=??再求解正规方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为: >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数: >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2) 结果为 A=2*x^2 B =-8 C =4 由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上, )2,4(--P 和)2,4(Q 是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍 点。 >>clear; >>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);

相关主题
文本预览
相关文档 最新文档