当前位置:文档之家› 迭代法

迭代法

迭代法
迭代法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值,迭代法又分为精确迭代和近似迭代。比较典型的迭代法如“二分法”和"牛顿迭代法”属于近似迭代法。

方法介绍

迭代法是一类利用递推公式或循环算法通过构造序列来求问题

近似解的方法。例如,对非线性方程,利用递推关系式

,从开始依次计算,来逼

近方程的根的方法,若仅与有关,即,则

称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组

,由关系

从开始依次计算来过近方程的解的方法。若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。称所构

造的序列为迭代序列。

迭代法应用

迭代法的主要研究课题是对所论问题构造收敛的迭代格式,分析它们的收敛速度及收敛范围。迭代法的收敛性定理可分成下列三类:

①局部收敛性定理:假设问题解存在,断定当初始近似与解充分接近时迭代法收敛;

②半局部收敛性定理:在不假定解存在的情况下,根据迭代法在初始近似处满足的条件,断定迭代法收敛于问题的解;

③大范围收敛性定理:在不假定初始近似与解充分接近的条件下,断定迭代法收敛于问题的解。

迭代法在线性和非线性方程组求解,最优化计算及特征值计算等问题中被广泛应用。

迭代法算法

迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。

一般可以做如下定义:对于给定的线性方程组

(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式

(代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。如果存在,记为

x*,称此迭代法收敛。显然x*就是此方程组的解,否则称为迭代法发散。

跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。一般如果可能,直接解法总是优先考虑的。但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。

最常见的迭代法是牛顿法。其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。

利用迭代算法解决问题,需要做好以下三个方面的工作:

确定迭代变量

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

建立迭代关系式

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以顺推或倒推的方法来完成。

对迭代过程进行控制

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常

可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

举例

例1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只?

分析:这是一个典型的递推问题。我们不妨假设第1 个月时兔子的只数为u 1 ,第2 个月时兔子的只数为u 2 ,第3 个月时兔子的只数为u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有

u 1 = 1 ,u 2 = u 1 + u 1 × 1 = 2 ,u 3 = u 2 + u 2 × 1 = 4 ,……

根据这个规律,可以归纳出下面的递推公式:

u n = u(n -1)× 2 (n ≥ 2)

对应u n 和u(n - 1),定义两个迭代变量y 和x ,可将上面的递推公式转换成如下迭代关系:

y=x*2

x=y

让计算机对这个迭代关系重复执行11 次,就可以算出第12 个月时的兔子数。参考程序如下:

cls

x=1

for i=2 to 12

y=x*2

x=y

next i

print y

end

例2 :阿米巴用简单分裂的方式繁殖,它每分裂一次要用3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内,45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴220,220个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。

分析:根据题意,阿米巴每3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到45 分钟后充满容器,需要分裂

45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂15 次以后得到的个数是2^20。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第15 次分裂之后的2^20 个,倒推出第15 次分裂之前(即第14 次分裂之后)的个数,再进一步倒推出第13 次分裂之后、第12 次分裂之后、……第1 次分裂之前的个数。

设第1 次分裂之前的个数为x 0 、第1 次分裂之后的个数为x 1 、第2 次分裂之后的个数为x 2 、……第15 次分裂之后的个数为x 15 ,则有

x 14 =x 15 /2 、x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)

因为第15 次分裂之后的个数x 15 是已知的,如果定义迭代变量为x ,则可以将上面的倒推公式转换成如下的迭代公式:x=x/2 (x 的初值为第15 次分裂之后的个数2^20)

让这个迭代公式重复执行15 次,就可以倒推出第1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:cls

x=2^20

for i=1 to 15

x=x/2

next i

print x

end

ps:java中幂的算法是Math.pow(2,20);返回double,稍微注意一下

例3 :验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数n ,若n 为偶数,则将

其除以2 ;若n 为奇数,则将其乘以3 ,然后再加1。如此经过有限次运算后,总可以得到自然数1。人们把谷角静夫的这一发现叫做“谷角猜想”。

要求:编写一个程序,由键盘输入一个自然数n ,把n 经过有限次运算后,最终变成自然数1 的全过程打印出来。

分析:定义迭代变量为n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当n 为偶数时,n=n/2 ;当n 为奇数时,n=n*3+1。用QBASIC 语言把它描述出来就是:if n 为偶数then

n=n/2

else

n=n*3+1

end if

这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量n 最终变成自然数1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数n ,只要经过有限次运算后,能够得到自然数1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为:n=1。参考程序如下:

cls

input "Please input n=";n

do until n=1

if n mod 2=0 then

rem 如果n 为偶数,则调用迭代公式n=n/2

n=n/2

print "—";n;

else

n=n*3+1

print "—";n;

end if

loop

end

迭代法开平方:

#include

#include

void main()

{

double a,x0,x1;

printf("Input a:\n");

scanf("%lf",&a);//因为a是double型数据,所以要用%lf,而不是%f

if(a<0)

printf("Error!\n");

else

{

x0=a/2;

x1=(x0+a/x0)/2;

do

{

x0=x1;

x1=(x0+a/x0)/2;

}while(fabs(x0-x1)>=1e-6);

}

printf("Result:\n");

printf("sqrt(%g)=%g\n",a,x1);

}

求平方根的迭代公式:x1=1/2*(x0+a/x0)。

算法:1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为x0的初值;利用迭代公式求出一个x1。此值与真正的a的平方根值相比,误差很大。

⒉把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1.

⒊利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。

⒋比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:

⑴选一个方程的近似根,赋给变量x0;

⑵将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;

⑶当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤⑵的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:

【算法】迭代法求方程的根

{ x0=初始近似根;

do {

x1=x0;

x0=g(x1);/*按特定的方程计算新的近似根*/

} while (fabs(x0-x1)>Epsilon);

printf(“方程的近似根是%f\n”,x0);

}

迭代算法也常用于求方程组的根,令

X=(x0,x1,…,xn-1)

设方程组为:

xi=gi(X) (I=0,1,…,n-1)

则求方程组根的迭代算法可描述如下:

【算法】迭代法求方程组的根

{ for (i=0;i

x=初始近似根;

do {

for (i=0;i

y=x;

for (i=0;i

x=gi(X);

for (delta=0.0,i=0;i

if (fabs(y-x)>delta) delta=fabs(y-x);

} while (delta>Epsilon);

for (i=0;i

printf(“变量x[%d]的近似根是%f”,I,x);printf(“\n”);

}

具体使用迭代法求根时应注意以下两种可能发生的情况:

⑴如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;

⑵方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。

递归

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。

能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。

【问题】编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。

斐波那契数列为:0、1、1、2、3、……,即:

fib(0)=0;

fib⑴=1;

fib(n)=fib(n-1)+fib(n-2)(当n>1时)。

写成递归函数有:

int fib(int n)

{ if (n==0) return 0;

if (n==1)return 1;

if (n>1)return fib(n-1)+fib(n-2);

}

递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib⑴和

fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。

在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib⑴和fib(0)后,返回得到fib⑵的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到

fib(n)的结果。

在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。

由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地

转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

【问题】组合问题

问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为:⑴5、4、3 ⑵5、4、2 ⑶5、

4、1

⑷5、3、2 ⑸5、3、1 ⑹5、2、1

⑺4、3、2 ⑻4、3、1 ⑼4、2、1

⑽3、2、1

分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已

确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。

【程序】

# include

# define MAXN 100

int a[MAXN];

void comb(int m,int k)

{ int i,j;

for (i=m;i>=k;i--)

{ a[k]=i;

if (k>1)

comb(i-1,k-1);

else

{ for (j=a[0];j>0;j--)

printf(“%4d”,a[j]);

printf(“\n”);

}

}

}

void main()

{ a[0]=3;

comb(5,3);

}

【问题】背包问题

问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。

对于第i件物品的选择考虑有两种可能:

⑴考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。

⑵考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。

按以上思想写出递归算法如下:

try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)

{ /*考虑物品i包含在当前方案中的可能性*/

if(包含物品i是可以接受的)

{ 将物品i包含在当前方案中;

if (i

try(i+1,tw+物品i的重量,tv);

else

/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/

以当前方案作为临时最佳方案保存;

恢复物品i不包含状态;

}

/*考虑物品i不包含在当前方案中的可能性*/

if (不包含物品i仅是可男考虑的)

if (i

try(i+1,tw,tv-物品i的价值);

else

/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/

以当前方案作为临时最佳方案保存;

}

为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:

物品0 1 2 3

重量5 3 2 1

价值4 4 3 1

并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。

按上述算法编写函数和程序如下:

【程序】

# include

# define N 100

double limitW,totV,maxV;

int option[N],cop[N];

struct { double weight;

double value;

}a[N];

int n;

void find(int i,double tw,double tv)

/*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW)

{ cop=1;

if (i

else

{ for (k=0;k

option[k]=cop[k];

maxv=tv;

}

cop=0;

}

/*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV)

if (i

else

{ for (k=0;k

option[k]=cop[k];

maxv=tv-a.value;

}

}

void main()

double w,v;

printf(“输入物品种数\n”);

scanf((“%d”,&n);

printf(“输入各物品的重量和价值\n”);

for (totv=0.0,k=0;k

{ scanf(“%1f%1f”,&w,&v);

a[k].weight=w;

a[k].value=v;

totV+=V;

}

printf(“输入限制重量\n”);

scanf(“%1f”,&limitV);

maxv=0.0;

for (k=0;k find(0,0.0,totV);

for (k=0;k

if (option[k]) printf(“%4d”,k+1);

printf(“\n总价值为%.2f\n”,maxv);

}

作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选

第二章 迭代法的一般原理

第二章 迭代法的一般原理 非线性方程组无论从理论上还是计算方法上,都比线性方程组复杂得多。一般的非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。本章我们将讨论迭代法的一般原理、迭代法的一般构造及迭代收敛速度的衡量标准。 2-1 迭代法与不动点定理 设n n R R D →?:f ,考虑方程 ()0=x f (2-1) 若存在D *∈x ,使()0=*x f ,则称*x 为方程(2-1) 的解。 用迭代法求解(2-1) ,先将(2-1)化为等价的方程 ()x g x = (2-2) 这里映象n n R R D →?:g 。 方程(2-2)的解*x (即()**x g x =)称为映象g 的不动点。因此用迭代法解方程(2-1),就是求(2-2)中映象g 的不动点。这样以及g 是否存在不动点自然就是我们关心的问题。 定理2-1 若n n R R D →?:g 为有界闭集D D ?0上的严格非膨胀映象,()00D D ?g ,则g 在0D 内有唯一不动点。 证 唯一性 设g 在0D 内至少有两个不动点1x ,2x ,则 ()() 2121x x x g x g x x 21-≤-=-α 因1<α,所以由上式推得21x x =。唯一性得证。 记()()x g x x -=?,由g 及泛数的连续性可知1:R R D n →??连续。因0D 为有界闭集,故?在0D 上有最小值。设0D *∈x 为最小点,即

()()x g x x -=∈min 0 D x *? 则*x 为g 的不动点。因为若不然,则有()**x g x ≠,再由g 严格非膨胀,可得 ()()()()()***x g g x g x g -=?()()***x x g x ?=-< 这与*x 为?的最小点相矛盾,故*x 为g 的不动点。 注 定理中0D 的有界闭性、g 的压缩性和g 映0D 入自身,此3个条件缺一不可。例如,()x x x g 1+=在[)+∞=,D 10上严格非膨胀,但它在0D 中却没有不动点。 下面我们介绍在应用上非常广泛的不动点定理。 定理2-2 (Brouwer 不动点定理) 设n n R R D →?:g 在有解闭凸集D D ?0上连续,且()00D D G ?,则g 在0D 至少有一个不动点。 本定理在一维情形下叙述为:[]b a f ,: []b a ,→则f 在[]b a ,中至少有一个不动点。几何解释见图2-1。 x b a 图2-1 一维Brouwer 定理

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

迭代法与D值法使用

迭代法 对于两端固定的单跨超静定粱,有转角位移方程如下: F AB AB AB B A AB AB M L i i i M +?-+=6 24?? (F AB M 为A 端的固端弯矩,如在均布荷载作用下2 12 1ql M F AB -=) 令' =AB A AB M i ?2,'=BA B AB M i ?2,L i M AB AB AB ?-="6 所以:F AB AB BA AB AB M M M M M +"+'+'=2 ('AB M 近端转角弯矩,' BA M 远端转角弯矩) 对于框架横梁,AB ?=0,所以0=" AB M , F AB BA AB AB M M M M +'+'=2 即('++?? ? ??'+'=AB F AB BA AB AB M M M M M ) (1) 对于一点A ,AB M +AC M +AD M =0,有02,,,,,,=+ ' + ' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,可以得 到: ??? ? ??+'-=' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,,,,,,21,

其中: ???? ??+'- =' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,2 1 (2) (2)式得到的' Ai M 为近似值,需要经过多次的迭代才满足精度,迭代的同时, 'iA M 也进行了迭代。这两个值趋近于准确解。 最后:根据(1)式,F Ai iA Ai Ai M M M M +'+'=2。 (3) 迭代法的步骤: 1. 计算固端弯矩F Ai M 和结点不平衡弯矩 ∑=D C B i F Ai M ,,,并设1=-2ik ik ik i i i μ' ∑初始值为 零。 2. 计算分配系数:∑=- D C B i Ai Ai i i ,,2 1,算出与结点相关杆件的弯矩分配系数。 3. 计算结点各杆件的近端转角弯矩:公式(2) ??? ? ??+'-='∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,21 4. 多次迭代,保证精度。 5. 得到杆端最后弯矩:公式(3),F Ai iA Ai Ai M M M M +'+'=2 举例:

Newton迭代法实例

基于牛顿迭代法的圆形断面临界水深直接计算 学院:建筑工程学院学号:2111206052 姓名:王瑞峰 一、问题来源 圆形断面由于具有受力条件好、适应地形能力强、水力条件好等优点,已成为农田灌溉、城市给水排水等工程较常采用的断面形式。而临界水深的计算则是进行圆形断面水力计算的关键,但其计算较繁杂,要求解高次隐函数方程,且未知量包含在三角函数中,求解难度大。自20世纪90年代,对圆形断面临界水深的计算进行了大量研究,获得了较多成果。鉴此,本文应用牛顿迭代算法,得到一种较简洁且可提供高精度算法程序的近似计算公式。 二、数学模型 相应于断面单位能量最小值的水深称为临界水深,其计算公式为: 需满足的临界流方程为: 其中 式中,d为洞径;为临界水深对应的圆心角,rad;n为流速分布不均匀系数(不特殊说明时取1.0);Q为流量,m3Is;g为重力加速度(通常取9.81 m/s2);分别为临界流对应的过水断面面积和水面宽度。 无压流圆形断面的水力要素见图1 将式(1)、(3)、(4)代入式(2)得: 将式(5)整理即得临界水深的非线形方程: 由此可知.式(6)为临界水深h。的高次隐函数方程,且未知量包含在三角函数中。 即圆形断面临界水深的求解即为式(6)的求根问题。在现行工程实际中计算临界水深时均采用近似公式或试算法,所得结果精度不高且效率较低。 三、方法选择 牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点

附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x- x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 在对式(6)的求解方法中,应首选牛顿迭代法,因为牛顿迭代法可快速求解出其他方法求不出或难以求出的解。 引入无量纲参数k: 将式(7)代入式(6)得: 的一阶、二阶导函数分别为: 由牛顿迭代法可得: 式中,=0,1,2…为迭代次数;为的初值。 将式(8)、(9)代入式(10),可得相应于式(6)临界水深对应中心角的牛顿迭代公式: 由式(11)迭代计算出临界水深对应的中心角后,代入式(1)即可得临界水深。 根据文献,为避免渡状水面有可能接触洞顶引起水流封顶现象。洞内水面线以上的空间不宜小于隧洞断面面积的15%,且高度不小于0.4m。可得临界水深对应的中心角的最大值一般不超过4.692,相应可得无量纲参数值的上限为0.5044。故取值范围为[O.000 0,0.504 4]。 查阅文献与的近似公式: 若将式(12)视为初值函数,代入式(11)进行一次迭代计算,不仅得到了直接计算的公式,且提高了计算结果的精度。 其中 将式(13)代入式(1)即得圆形断面临界水深。 计算实例: 某引水式电站输水隧洞为圆形断面,已知洞径d=3.0 m,试确定设计流量Q=8.0m3/s时的临界水深。 四、编程实现 本文采用Fortran软件求解,程序的代码如下:

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

08-课件:55.2 迭代法

大连理工大学 罗晓芳

算法思想:利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,每次执行这组指令(或步骤)时,都从变量原值推出一个新值。 关键步骤: 1、确定迭代变量:也就是直接或间接地不断由旧值递推出新值的变量。 2、建立迭代关系式: 指如何从变量的前一个值推出其下一个值的公式(或关系)。 3、对迭代过程进行控制。在什么时候结束迭代过程?

迭代算法一般结构

小猴在一天内摘了若干个桃子,当天吃掉一半多一个;第二天吃掉剩下的一半桃子多一个;以后每天都吃尚存桃子的一半零一个。直到第7天早上要吃时,只剩下一个了,问小猴共摘了多少个桃子? 例4:小猴吃桃子问题 问题分析:先从最后一天推出倒数第二天的桃子,再从倒数第二天推出倒数第三天的桃子,…… 设第n天的桃子为x,它是前一天的桃子数的一半少一个 x n = x n-1 /2-1 前一天的桃子数为:x n-1=(x n +1)×2 (递推公式)设迭代变量x x=(x+1)*2

#include "stdio.h" int main() { int i, x;x=1;printf("第7 天的桃子数为:1只\n");for(i=6; i>=1; i--){ x=(x+1)*2; printf("第%d 天的桃子数为:%d 只", i , x);printf("\n");} return 0;小猴吃桃子问题 迭代关系,迭代:原值推出新值//迭代变量赋初值思考: 小猴在一天内摘了94个桃子, 当天吃掉一半多一个;以后每天都吃尚存桃子的一半多一个,问小猴直到第几天早上要吃时只剩下一个了?

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

C语言迭代法详细讲解

迭代法 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。 迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只? 分析:这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为u 1 ,第 2 个月时兔子的只数为u 2 ,第 3 个月时兔子的只数为u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 ,u 2 =u 1 +u 1 × 1 = 2 ,u 3 =u 2 +u 2 × 1 =4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n =u n - 1 × 2 (n ≥ 2) 对应u n 和u n - 1 ,定义两个迭代变量y 和x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行11 次,就可以算出第12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

迭代法

迭代方法(也称为“折返”方法)是一个过程,在该过程中,不断使用变量的旧值来递归推导新值。与迭代方法相对应的是直接方法(或称为第一求解方法),即问题已解决一次。迭代算法是使用计算机来解决问题的一种基本方式,它利用计算机的运行速度,适合于重复操作的特性,让计算机对一组指令(或步骤)必须每次都重复执行在执行的这组指令(或这些步骤)中,由于变量的原始值是新值,因此迭代方法分为精确迭代和近似迭代。典型的迭代方法(例如“二分法”和“牛顿迭代”)属于近似迭代方法。 迭代方法的主要研究主题是构造收敛的迭代方案,并分析问题的收敛速度和收敛范围。迭代方法的收敛定理可以分为以下三类:(1)局部收敛定理:假设问题的解存在,则得出结论:当初始逼近足够接近解时,迭代法收敛。 (2)半局部收敛定理:结论是,迭代方法根据迭代方法在初始逼近时所满足的条件收敛到问题的解,而不假定解的存在。 (3)大范围收敛定理:得出的结论是,迭代方法收敛到问题的解,而无需假设初始近似值足够接近解。 迭代法广泛用于求解线性和非线性方程,优化计算和特征值计算。 迭代法是一种迭代法,用于数值分析中,它从初始估计值开始寻找一系列解决问题的迭代解法(通常为迭代法),以解决问题(迭代法)。 通常,可以做出以下定义:对于给定的线性方程组(x,B和F

都是矩阵,任何线性方程组都可以转换为这种形式),公式(表示通过迭代获得的x k次,并且初始时间k = 0)逐渐替换为该方法以找到近似解,这称为迭代方法(或一阶时间不变迭代方法)。如果存在,则将其表示为x *,并称迭代方法收敛。显然,x *是该系统的解,否则称为迭代散度。 迭代方法的对应方法是直接方法(或第一种解决方法),它是对问题的快速一次性解决方案,例如通过求平方根来求解方程x + 3 = 4。通常,如果可能,直接解决方案始终是首选。但是,当我们遇到复杂的问题时,尤其是当未知数很多并且方程是非线性的时,我们无法找到直接解(例如,第五和更高阶代数方程没有解析解,请参见Abelian 定理)。时候,我们可以通过迭代的方法寻求方程(组)的近似解。 最常见的迭代方法是牛顿法。其他方法包括最速下降法,共轭迭代法,可变尺度迭代法,最小二乘法,线性规划,非线性规划,单纯形法,罚函数法,斜率投影法,遗传算法,模拟退火等。

牛顿迭代法及其应用教学提纲

编号 毕业设计(论文)题目 Newton Raphson 算法及其应用 二级学院数学与统计学院 专业信息与计算科学 班级108010101

学生姓名侯杰学号10801010106 指导教师职称 时间 目录 摘要 (3) Abstract (3) 一、绪论 (4) 1.1 选题的背景和意义 (4) 1.2 牛顿迭代法的优点及缺点 (4) 二、Newton Raphson 算法的基本原理 (5) 2.1 Newton Raphsn算法 (5) 2.2 一种修正的Newton Raphsn算法 (7) 2.3 另外一种Newton Raphsn算法的修正 (11) 三、Newton Raphson 算法在计算方程中的应用 (18) 四、利用牛顿迭代法计算附息国债的实时收益率 (21) 4.1附息国债实时收益率的理论计算公式 (22) 4.2附息国债实时收益率的实际计算方法 (22)

4.3利用牛顿迭代法计算 (23) 五、结论 (26) 致谢 (27) 参考文献 (28) 摘要 牛顿在17世纪提出的一种近似求解方程的方法,即牛顿拉夫森迭代法.迭代法是一种不断的用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或被称为一次解法,即一次性解决的问题.迭代法又分为精确迭代以及近似迭代.“牛顿迭代法”就属于近似迭代法,本文主要讨论的就是牛顿迭代法,方法本身的发现到演变到修正的过程,避免二阶导数计算的Newton迭代法的一个改进,以及用牛顿迭代法解方程,利用牛顿迭代法计算国债的实时收益率。 关键词:Newton Raphson迭代算法;近似解;收益率; Abstract In the 17th century,Newton raised by an approximate method of solving equations,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the iterative method is a direct method or as a solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" are approximate iterative method. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; Newton Raphson iterative method of solving equations and Calculating the real-time yield of government bonds. Keywords: Newton Iterative Algorithm; approximate solution; Yield;

迭代法及其在数值求解线性方程组中的应用

郑州师范学院 毕业论文 题目迭代法及其在数值求解 线性方程组中的应用 姓名陈丹丹 学号124103052041 院系数学与统计学院 专业数学与应用数学 年级班级B12数应2班 指导教师王明建 2016年5月20 日

毕业论文作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:迭代法及其在数值求解线性方程组中的应用 作者单位:郑州师范学院 作者签名:

目录 摘要 (1) 引言 (3) 1.预备知识 (3) 1.1迭代法的基本形式 (3) 1.2Jocabi迭代法 (4) 1.2.1分量形式的Jacobi迭代法 (4) 1.2.2矩阵形式的Jacobi迭代法 (5) 1.2.3Jacobi迭代法的算法实现步骤 (6) 1.3Gauss-Seidel迭代法 (6) 1.3.1分量形式的Gauss-seidel迭代法 (6) 1.3.2矩阵形式的Gauss-seidel迭代法 (6) 1.3.3Gauss-Seidel迭代法的算法实现步骤 (7) 1.4超松弛迭代法(SOR迭代法) (7) 1.4.1分量形式的SOR方法 (7) 1.4.2矩阵形式的SOR方法 (8) 1.4.3SOR迭代法的算法实现步骤 (9) 1.5迭代法的收敛性 (9) 2. 数值求解线性方程组 (10) 2.1用Jacobi迭代法求解 (10)

第二章 迭代法得一般原理

第二章迭代法得一般原理 非线性方程组无论从理论上还就是计算方法上,都比线性方程组复杂得多。一般得非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。本章我们将讨论迭代法得一般原理、迭代法得一般构造及迭代收敛速度得衡量标准。 2-1 迭代法与不动点定理 设,考虑方程 (2-1) 若存在,使,则称为方程(2-1) 得解。 用迭代法求解(2-1) ,先将(2-1)化为等价得方程 (2-2) 这里映象。 方程(2-2)得解(即)称为映象g得不动点。因此用迭代法解方程(2-1),就就是求(2-2)中映象g得不动点。这样以及g就是否存在不动点自然就就是我们关心得问题。 定理2-1若为有界闭集上得严格非膨胀映象,,则g在内有唯一不动点。 证唯一性设g在内至少有两个不动点,,则 因,所以由上式推得。唯一性得证。 记,由g及泛数得连续性可知连续。因为有界闭集,故?在上有最小值。设为最小点,即 则为g得不动点。因为若不然,则有,再由g严格非膨胀,可得 这与为?得最小点相矛盾,故为g得不动点。 注定理中得有界闭性、g得压缩性与g映入自身,此3个条件缺一不可。例如,在上严格非膨胀,但它在中却没有不动点。 下面我们介绍在应用上非常广泛得不动点定理。 定理2-2 (Brouwer不动点定理)设在有解闭凸集上连续,且,则g在至少有一个不动点。 本定理在一维情形下叙述为: 则f在中至少有一个不动点。几何解释见图2-1。

2-2 迭代格式得构造 前一节我们谈到,用迭代法求解方程(2-1),就是先将这个方程化为等价得方程(2-2),然后求映象g 得不动点,通常(也就是最简单得情形)构造如下迭代序列: , (2-3) 我们希望这个迭代序列收敛到g 得不动点,亦即方程得解。如果g 就是压缩得,可望迭代序列收敛。图2-2展示了一维迭代收敛得一种情形。 对于(2-3) f 与。如果 g 不依赖于迭代步k 只依赖于,k ,则迭代形式可表示为 (2-4) 并称之为,这时得迭代为多步迭代。例如,则迭代可写为 (2-5) 称这种迭代为m 步迭代。类似地有m 步非定常迭代。 通常称g 或为迭代函数。用不同得方法构造得迭代函数可得到不同得得到法。设,如果一个迭代法得到得序列则称得到序列就是适定得,适定性就是迭代法得起码要求。 若就是方程(2-1)得解,且序列满足 则称迭代序列收敛于。 定义2-1 设,就是方程得一个解。若存在得一个邻域,使对任何初始值(对于m 步迭代法,初值为 ),迭代序列总就是适定得且收敛于,则称就是迭代序列得吸引点。 不少迭代法都就是设法使迭代函数g 就是压缩得,这时迭代序列得吸引点恰就是g 得不动点。有时候也可使g 具有某种单调性,构成单调单调法。 2-3 迭代法得收敛性与收敛阶 前面谈到,一个迭代法,当其产生得迭代序列在适定与收敛时才有意义。单步迭代格式(2-3)在实际中被采用得最多,这里,我们不加证明地给出三个与(2-3)格式有关得收敛性定理。 定理2-4 设就是方程得解,。若存在一个开球S = 与常数,使得对一切,有 x 021(x ) 图2-2 迭代序列收敛

迭代法

题目:Newton-Raphson 迭代法 (1)计算原理 (2)编出计算机程序 (3)给出算例(任意题型) (1)计算原理: 牛顿-拉夫森(Newton-Raphson)迭代法也称为牛顿迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设()[]2,f x C a b ∈,对()f x 在点[]0,x a b ∈,作泰勒展开: 略去二次项,得到()f x 的线性近似式:()()()()000f x f x f x x x '≈+- 由此得到方程()0f x =的近似根(假定()00f x '≠),() () 000f x x x f x =-' 即可构造出迭代格式(假定()00f x '≠):() () 1k k k k f x x x f x +=- ' 这就是牛顿迭代公式,若得到的序列{}k x 收敛于α,则α就是非线性方程的根。 2 牛顿迭代法 牛顿切线法,这是由于()f x 的线性化近似函数()()()()000l x f x f x x x '≈+-是曲线()y f x =过点()()00,x f x 的切线而得名的,求()f x 的零点代之以求() l x !2))((''))((')()(2 0000x x f x x x f x f x f -+ -+= ξ

的零点,即切线与x 轴交点的横坐标,如左图所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法也可以从几何意义上推出。利用牛顿迭代公式,由 k x 得到1k x +,从几何图形上看,就是过点()(),k k x f x 作函数()f x 的切线k l ,切线k l 与x 轴的交点就是1k x +,所以有()() 1 k k k k f x f x x x +'=-,整理后也能得出牛顿迭 代公式: 3 要保证迭代法收敛,不管非线性方程()0f x =的形式如何,总可以构造: 作为方程求解的迭代函数。因为: 而且 在根附近越小,其局部收敛速度越快,故可令: 若0(即根不是0的重根),则由得: , 因此可令 ,则也可以得出迭代公式: 。 4 迭代法的基本思想是将方程改写成等价的迭代形式,但随之而来的问题却是迭代公式不一定收敛,或者收敛的速度较慢。运用前述加速技巧,对于简单迭代过程 ,其加速公式具有形式: ,其中 记,上面两式可以合并写成: 这种迭代公式称作简单的牛顿公式,其相应的迭代函数是: 。 需要注意的是,由于是的估计值,若取,则实际上便是的估计值。假设,则可以用代替上式中的, 就可得到牛顿法的迭代公式: 。 )(')(1k k k k x f x f x x - =+)()()(x f x k x x x -==?)0)((≠x k )(')()()('1)('x f x k x f x k x --=?) ('x ?α0)('=α?≠)('αf α=)(x f 0)('=α?)('1 )(ααf k = )('1 )(x f x k = )(')(1k k k k x f x f x x - =+0)(=x f )(x x ?=)(1n n n x f x x +=+θθ?--= +1)(1n n n x x x ) (111n n n x x x --+=++θθ )(1 n n x x ?=+1-=θL L x f x x n n n )(1- =+L x f x x )()(- =?L )('x ?)()(x f x x +=?)('x ?)('x f 0)('≠x f )('x f L )(')(1n n n n x f x f x x - =+

雅克比迭代法VB操作

雅克比迭代法VB操作 Private Sub Form_Click() Dim a%(3, 3), b%(3), x#(3), y#(3), k#(3), s#, e# e = Val(InputBox("请输入精度e")) For i = 1 To 3 x(i) = Val(InputBox("请任意输入一个数X")) Next i For i = 1 To 3 For j = 1 To 3 a(i, j) = Val(InputBox("请输入A")) Next j b(i) = Val(InputBox("请输入B")) Next i Do For i = 1 To 3 For j = 1 To 3 s = s + a(i, j) * x(j) Next j y(i) = (b(i) - s) / a(i, i) Next i For i = 1 To 3 k(i) = Abs(x(i) - y(i)) Next i Max = k(1) For i = 2 To 3 If Max < k(i) Then Max = k(i) Next i 丁洋(1035170842) 17:53:00 For i = 1 To 3 k(i) = Abs(x(i) - y(i)) Next i Max = k(1) For i = 2 To 3 If Max < k(i) Then Max = k(i) Next i For i = 1 To 3 x(i) = y(i) Next i s = 0 Loop Until Max < e For i = 1 To 3 Print y(i); Next i End Sub

相关主题
文本预览
相关文档 最新文档