一般迭代法
- 格式:ppt
- 大小:667.50 KB
- 文档页数:16
第二次上机实验报告实验一:.用不动点迭代法求的根发散的迭代格式:,其中k=0,1,2……收敛的迭代格式:,其中k=0,1,2……当使用第二种格式迭代,且精度为10^(-12)时,程序如下:#include <iostream>#include <iomanip>#include <math.h>using namespace std;#define h 0.000000000001double f(double x) {double f1 = pow(x + 1, 1.0 / 3);return f1;}int main() {double x1, x2;int n=0;cout<< "input first data:" <<endl; cin>> x1;x2 = f(x1);while (fabs(x2 - x1) > h) {n++;x1 = x2;cout<<setprecision(14) << x2 <<endl; x2 = f(x1);}cout<< "result:"<<endl<<setprecision(14) << x2<<endl;cout<< n<<endl;return 0;}输入初值为3的时候,结果如下:对迭代格式使用Aitken加速,观察其收敛散性质变化对迭代格式一使用Aitken加速,收敛对迭代格式二使用Aitken加速,收敛速度变快程序如下:#include<iostream>#include<iomanip>#include<math.h>#defineh 0.000000000001usingnamespacestd;double f(doublex) {double f1 = pow(x,3)-1;return f1;}int main() {double x0,x1, x2;int n = 0;cout<<"please input the first number:"<<endl; cin>> x0;x1 = f(x0);while (fabs(x0-f(x0))>h) {n++;x2 = f(x1);x0 = x2 - (x2 - x1)*(x2 - x1) / (x2 - 2 * x1 + x0); x1 = x2;cout<<setprecision(14) << x0 <<endl;}cout<<"result:"<<endl<<setprecision(14)<<x0<<endl;cout<< n <<endl;return 0;}对迭代格式二作Aikten加速迭代时,只需将函数f(x)替换为。
迭代法
迭代法也叫辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。
若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。
称所构造的序列为迭代序列。
求通项公式的方法(用迭代法)已知数列{An},a1=2,an=2a(n-1)-1(n>或=2)求通项公式
an=2a(n-1)-1 an-1=2(a(n-1)-1 ) n>或=2
所以an-1 为等比数列
an-1=(a1-1)*2^(n-1)
an-1=2^(n-1)
an=2^(n-1)+1
牛顿迭代法求开方
数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收
敛。
另外该方法广泛用于计算机编程中。
用迭代法求平方根
对于A>1,求其平方根可构造用如下公式迭代:
f(x)=(1/a)(x+a/x),a=A/(A-1),迭代初值x0=[√A]+1,[x]为x的取整.如想求70的平方根,可令初值x0=9.
对于A1,用如上方法求出平方根后,在成10^(-n),即得结果.。
数值球根试验报告《数值计算方法》专业班级软件08-1姓名熊文成学号08083117时间2010年10月24日星期天一、 实验目的熟悉二分法以及牛顿迭代法求方程近似根的数值方法,掌握各种迭代方法,自己扩张研究迭代法的效率与收敛性和初始值的关系。
二、 实验内容1.已知0104)(23=-+=x x x f 在[]21,上有一个实根*x ,14)2(5)1(=-=f f ,,用二分法和牛顿迭代法求该实根,要求精度满足条件:321*1021-+⨯≤-k x x 。
2.条件允许的话,扩展研究各种迭代法的效率,以及迭代的效率和收敛性与初始值的关系,并通过比较采用两点加速的方法与普通的方法的效率体验加速迭代的优点。
总而言之,本实验中的用到的求根方法有①二分法,②牛顿迭代法,③迭代函数为213)10(21)(x x -=ϕ的迭代方法,以及④对函数213)10(21)(x x -=ϕ采用两点加速迭代的方法。
三、 主函数流程程序是按顺序运行的,流程图如下图所示:四、源程序#include <stdio.h>#include <conio.h>#include <math.h>//根据x的值计算函数值//函数f(x)=x*x*x+4*x*x-10double func(double x){double value;value=x*x*x+4*x*x-10;return value;}//根据参数x的值计算函数f(x)的导数值double divFunc(double x){return 3*x*x+8*x;}//二分法计算方程f(x)=0在[1,2]上的跟//二份迭代结束条件由参数precision精度给出void biSectionMethod(double precision){int k=0; //均分次数double x1=1.0,x2=2.0; //区间[1.0,2.0]double midx; //二分之后的值printf("\n\t k 有根区间k+1 f(x(k+1)) ");do{printf("\n\t%3d",k);printf(" [%.3f,%.3f]",x1,x2);midx=(x1+x2)/2;printf(" %f",midx);printf(" %.6f",func(midx));if (func(midx)<0)x1=midx;else x2=midx;k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>=precision); //区间的长度超过5e-3就一直迭代printf("\n\t二分法分区间的次数:%d,所求的根是:%lf",k-1,x2);}//牛顿迭代法//根据初值值x0,在区间[1.0,2.0]上迭代求根//迭代次数由参数precision精度决定void NewTonMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=x2-func(x1)/divFunc(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t牛顿迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//迭代函数g(x)=(sqrt(10-x*x*x))/2;double funcTwo(double x){return (sqrt(10-x*x*x))/2;}//普通迭代函数void ordinaMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=funcTwo(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t普通迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//使用两个跌代值的组合加速跌代//对迭代函数f(x)=(sqrt(10-x*x*x))/2的加速void twoValue(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=(funcTwo(x1)+x1)/2;if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t两点加速迭代初值:%lf,次数:%d,根:%lf",x0,k,x2);}void main(){double orgin=1.5; //初始值double precision=5e-6; //精度char sel=0; //操作符while(1){printf("\n\t选择:");printf("\n\t1.二分法\n\t2.迭代法\n\t");sel=getch();printf("\n\n\t注:程序停止处按任意键继续");if (sel=='1'){printf("\n\n\t ************二分法求解过程***********");biSectionMethod(precision); //测试函数}else{printf("\n\t输入迭代的初值:");scanf("%lf",&orgin);//if (orgin>2.0||orgin<1.0) //限制迭代初值范围,根据情况决定//orgin=1.5; //如果输入非法,则按1.5计算printf("\n\n\t ************牛顿迭代法求解过程************");NewTonMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t *******普通迭代g(x)=(sqrt(10-x*x*x))/2*****");ordinaMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t ************两个值组合加速迭代x=(g(x)+x)/2***********");twoValue(orgin,precision);}printf("\n\t任何键继续:");getch();}}五、运行结果1、选择求根方法2、 选择二分法下面给出二分法的结果:3、 选择迭代法查看结果:首先显示的是牛顿迭代法的结果:然后是普通迭代法函数是:213)10(21)(x x -=ϕ,结果如下:接着可以看到的是用两点加速法对函数213)10(21)(x x -=ϕ的加速:下面采用不同的初值查看普通迭代函数的收敛性与效率: 各个结果如下:上图对应的是收敛性:收敛的。
一、Newton法:#include<math.h>#include<stdio.h>double f(double x){return (3*x*x-exp(x));}double f1(double x){return (6*x-exp(x));}void main(){double x1=1,x;do{x=x1;x1=x-f(x)/f1(x);printf("x=%.9lf\n",x1);}while(fabs(x1-x)>0.000005);}说明:f 为原函数,f1为f的导函数,x1为初始值,通过"x=%.9lf“控制输入输出格式二、一般迭代法#include <stdio.h>#include <math.h>int main(){double x=1,x1;while(1){x1=pow(3*x+1,0.2);printf("x=%.6lf\n",x1);if(fabs(x1-x)<0.000005 )break;x=x1;}return 0;}说明:x1为初始值,x1=pow(3*x+1,0.2);为迭代格式,0.000005为允许误差,通过"x=%.6lf“控制输入输出格式三、Steffensen法:#include"stdio.h"#include"math.h"#define phi(x) pow(3*(x)+1,0.2);void main(){double x,x0,del,y,z;printf("x0="); scanf("%lf",&x0);printf("\ndel=:"); scanf("%lf",&del);while(1){y=phi(x0); z=phi(y);x=x0-(y-x0)*(y-x0)/(z-2*y+x0);printf("\n%.6lf",x);if(fabs(x-x0)<del) break;x0=x;}}说明:x0为初始值,pow(3*(x)+1,0.2);为φ(x)的格式,del为允许误差,通过"x=%.6lf“控制输入输出格式四、弦截法:#include<math.h>#include<stdio.h>double f(double x){ //计算f(x)的值return pow(2,x)+pow(3,x)-pow(4,x);}double point(double x1,double x2){//计算与x轴交点的x值printf("x=%.5f\n",(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)));return (x1*f(x2)-x2*f(x1))/(f(x2)-f(x1));}int main(){//输入两个数x1,x2double x1,x2,x;do{printf("输入两个数x1,x2:");scanf("%lf%lf",&x1,&x2);}while (f(x1)*f(x2)>= 0); // 当输入两个数大于0为真时,继续重新输入//关键循环步骤:do{x=point(x1,x2);//得到交点的值if(f(x)*f(x1)>0)x1=x;//新的x1elsex2=x;}while (fabs(f(x)) > 0.000005); }。
迭代法求解方程1 什么是迭代法?迭代法是一种求解方程的方法,通常用于在数值计算中。
迭代法的基本思想是通过不断重复一个固定的计算过程来逼近目标解,直到精度满足要求为止。
迭代法在理论研究和实际应用中都有广泛应用,例如在数学、物理、工程学等领域。
2 迭代法的例子在数学中,迭代法最常用于求解方程。
例如,我们有一个方程f(x) = 0,我们希望找到它的一个解x。
迭代法的一般形式是从一个初始值x0开始,通过重复应用某个公式,得到序列{x0, x1, x2, …, xn},使得xn逐步逼近解。
具体而言,每一次迭代都利用前一次的计算结果,求出新的解,即:xn+1 = g(xn)其中g(x)是某个函数,也被称为迭代函数。
当序列{x0, x1,x2, …, xn}满足一定条件时,我们称其为收敛序列,此时xn就是方程f(x) = 0的解。
3 迭代法的实现迭代法需要满足一定的收敛条件,才能有效地找到解。
在迭代函数的选择中,一般应满足以下要求:1. 迭代函数必须是连续的。
2. 选取的初值必须接近解。
3. 迭代函数的值域必须包含自变量的定义域。
4. 迭代函数的导数要通常利于计算。
基于以上原则,我们可以通过编写程序来实现迭代法求解方程。
代码示例如下:```python定义迭代函数def g(x):return (x**2 + 2) / 3定义初始值x0 = 1设置迭代次数n = 20进行迭代for i in range(n):x1 = g(x0)print("x{} = {}".format(i+1, x1))x0 = x1```这段代码中,我们定义了一个迭代函数g(x) = (x² + 2) / 3,初始值为x0 = 1,迭代次数为20次。
通过重复调用迭代函数g(x),我们依次求得了序列{x1, x2, …, x20},并输出每一次迭代的结果。
4 迭代法的优缺点迭代法的优点主要包括:1. 迭代法适用于求解各种类型的方程,具有较高的通用性。
第二章迭代法的一般原理知识分享迭代法是一种解决问题的常用方法,其基本原理是将问题分解为一系列子问题,并通过逐步逼近的方式逐步求解,直到达到预期的解决方案。
迭代法通常由以下几个步骤组成:初始化、迭代、判断停止条件、更新和输出结果。
迭代法的一般原理可以总结为以下几点:1.初始化:迭代法通常需要一个初始解,该解可能是问题的近似解或一个具有特定条件的解。
这个初始解将作为迭代的起点,进而逐步逼近最终的解。
2.迭代:在每一次迭代中,通过使用前一次迭代的结果作为输入来计算下一次迭代的结果。
迭代过程可以使用数学公式、算法或其他适当的方法来进行计算。
3.判断停止条件:在每一次迭代中,需要判断是否满足停止条件。
停止条件通常与所求解的问题有关,可以根据预先设定的要求来判断是否已经达到了足够的精度或满足了特定的条件。
4.更新:根据迭代的结果,需要更新迭代变量的值。
这个更新可以是简单的赋值操作,也可以是需要进行复杂计算或使用迭代公式来进行计算。
5.输出结果:当满足停止条件时,迭代过程结束,并输出最终的解。
这个解可能是问题的数值解、近似解或其他形式的解决方案。
迭代法的优点在于它可以通过逐步逼近的方式不断提高解的精度,不需要一次性找到完美的解决方案。
这使得迭代法在处理复杂问题时非常有用,因为往往很难找到问题的精确解。
迭代法的应用非常广泛,可以用于解决数值计算、优化问题、图像处理、机器学习等领域的问题。
例如,在求解非线性方程时,可以使用牛顿迭代法来逼近方程的根;在求解线性方程组时,可以使用雅可比迭代法或高斯-赛德尔迭代法来逼近方程的解。
需要注意的是,迭代法并不是万能的,不是所有问题都适合使用迭代法来解决。
在选择是否使用迭代法时,需要考虑问题的特性和求解方法的适用性。
总结起来,迭代法是一种通过逐步逼近的方式来解决问题的方法。
它的基本原理是通过初始化、迭代、判断停止条件、更新和输出结果等步骤来逼近最终的解决方案。
迭代法广泛应用于各个领域,是解决复杂问题的常用手段之一。