•24.3正多边形和圆.ppt
【例题】【例2】有一个亭子,它的地基是半径为4m的正六
边形,求地基的周长和面积(精确到0.1m2).
【解析】如图,正六边形ABCDEF的中心角为60°,△OBC 是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m).
在Rt△OPC中,OC=4,PC=2.利用勾股定理, F
QR=RS=ST=TP=2PA, ∵五边形PQRST的各边都与⊙O相切, ∴五边形PQRST是⊙O的外切正五边形.
•24.3正多边形和圆.ppt
【定理】
把圆分成n(n≥3)等份: 依次连接各分点所得的多边形是这个圆的内接正n边 形;经过各分点作圆的切线,以相邻切线的交点为 顶点的多边形是这个圆的外切正n边形. 一个正多边形是否一定有外接圆和内切圆?
•24.3正多边形和圆.ppt
5.正多边形都是轴对称图形,如果边数是偶数那么 它还是中心对称图形. 6.正n边形的中心角和它的每个外角都等于360°/n, 每个内角都等于(n-2)·180°/n . 7.边数相同的正多边形相似,周长比、边长比、半 径比、边心距比、对应对角线比都等于相似比,面 积比等于相似比的平方.
6.正n边形的一个外角度数与它的__中__心__角的度数相等.
7.将一个正五边形绕它的中心旋转,至少要旋转 72 度, 才能与原来的图形位置重合.
•24.3正多边形和圆.ppt
五、课堂小结
通过本课时的学习,需要我们掌握: 1.正多边形和圆的有关概念:正多边形的中心,正多 边形的半径, 正多边形的中心角,正多边形的边心 距. 2.正多边形的半径、正多边形的中心角、边长,正多 边形的边心距之间的等量关系.
(2)连接OA,OB,OC,则 ∠OAB=∠OBA=∠OBC=∠OCB. ∵TP,PQ,QR分别是以A,B,C 为切点的⊙O的切线, ∴∠OAP=∠OBP=∠OBQ=∠OCQ. ∴∠PAB=∠PBA=∠QBC=∠QCB.