当前位置:文档之家› 带通采样定理知识讲解

带通采样定理知识讲解

带通采样定理知识讲解
带通采样定理知识讲解

带通采样定理

3.1.3 带通抽样定理

实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。

[定理3-2] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。如果抽样频率s f 满足条件

m

f f m f L s H 212≤≤+,10-≤≤N m (3.1-9) 则可以由抽样序列无失真的重建原始信号)(t x 。

对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。

由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。

在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。为了避免混叠,延拓后的频带分量应满足

L s L f mf f ≤+- (3.1-10)

H s H f f m f ≥++-)1( (3.1-11)

综合式(3.1-10)和式(3.1-11)并整理得到

m

f f m f L s H 212≤≤+ (3.1-12) 这里m 是大于等于零的一个正数。如果m 取零,则上述条件化为

H s f f 2≥ (3.1-13)

这时实际上是把带通信号看作低通信号进行采样。

m 取得越大,则符合式(3.1-12)的采样频率会越低。但是m 有一个上限,因为m

f f L s 2≤,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。

因此

B

f B f f f m L L s L =≤≤222 (3.1-14) 由于N 为不大于B f H /的最大正整数,因此不大于B f L /的最大正整数为1-N ,故有10-≤≤N m

综上所述,要无失真的恢复原始信号)(t x ,采样频率s f 应满足

m

f f m f L s H 212≤≤+,10-≤≤N m (3.1-15)

f

f L f H

f H f -L f -L f H f H f -L f -图

3-3 带通采样信号的频谱 带通抽样定理在频分多路信号的编码、数字接收机的中频采样数字化中有重要的应用。

作为一个特例,我们考虑NB f H =(1>N )的情况,即上截止频率为带宽的整数倍。若按低通抽样定理,则要求抽样频率

NB f s 2

≥,抽样后信号各段频谱间不重叠,采用低通滤波器或带通滤波器均能无失真的恢复原始信号。根据带通抽样,若将抽样频率取为B

f s 2=(m 值取为1-N ),抽样后信号各段频谱之间仍不会发生混叠。采用带通滤波器仍可无失真地恢复原始信号,但此时抽样频率远低于低通抽样定理NB f s 2=的要求。图3-4所示为B f H

3=,B f s 2=时抽样信号的频谱。

f

f

f

f

图3-4 B f H 3=,B f s 2=时的抽样频谱

在带通抽样定理中,由于10<≤M ,带通抽样信号的抽样频率在B 2到B 4之间变化,如图3-5所示。

f H

f B

2350

图3-5 带通抽样定理

由以上讨论可知,低通信号的抽样和恢复比起带通信号来要简单。通常,当带通信号的带宽B 大于信号的最低频率L f 时,在抽样时把信号当作低通信号处理,使用低通抽样定理,而在不满足上述条件时则使用带通抽样定理。模拟电话信号经限带后的频率范围为300Hz ~3400Hz ,在抽样时按低通抽样定理,抽样频率至少为6800Hz 。由于在实际实现时滤波器均有一定宽度的过渡带,抽样前的限带滤波器不能对3400Hz 以上频率分量完全予以抑制,在恢复信号时也不可能使用理想的低通滤波器,所以对语音信号的抽样频率取为8kHz 。这样,在抽样信号的频谱之间便可形成一定间隔的保护带,既防止频谱的混叠,又放松了对低通滤波器的要求。这种以适当高于奈奎斯特频率进行抽样的方法在实际应用中是很常见的。

垂径定理—知识讲解(提高).

垂径定理—知识讲解(提高) 【学习目标】 1.理解圆的对称性; 2.掌握垂径定理及其推论; 3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】 知识点一、垂径定理 1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点诠释: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展 根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等. 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是.

【答案】5. 【解析】作OM⊥AB于M、ON⊥CD于N,连结OA, ∵AB=CD,CE=1,ED=3, ∴OM=EN=1,AM=2, ∴ 【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题. 举一反三: 【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径. 【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB, ∴ 1 2 MO HN CN CH CD CH ==-=- 11 ()(38)3 2.5 22 CH DH CH =+-=+-=, 111 ()(46)5 222 BM AB BH AH ==+=+=, ∴在Rt△BOM中,OB== 【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】 【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

香农采样定理

香农采样定理 采样定理,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。 采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出, 如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。 带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样简介 从信号处理的角度来看,此采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。 连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T即为采样频率,fs,其单位为样本/秒,即赫兹(hertz)。 信号的重建是对样本进行插值的过程,即,从离散的样本x[n]中,用数学的方法确定连续信号x(t)。 从采样定理中,我们可以得出以下结论: 如果已知信号的最高频率f H,采样定理给出了保证完全重建信号的最低采样频率。这一最低采样频率称为临界频率或奈奎斯特频率,通常表

2020年八年级数学 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; 2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数); 3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂勾股定理知识要点】 要点一、勾股定理 直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222 a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长 可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的 目的. (3)理解勾股定理的一些变式:222a c b =-,222b c a =-,()2 22c a b ab =+-.要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以 . 要点三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3.与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C=90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C=90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)已知b =6,c =10,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C=90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴a =8. (2)设3a k =,5c k =, ∵∠C=90°,b =32, ∴222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴33824a k ==?=,55840c k ==?=. 类型二、与勾股定理有关的证明

带通抽样定理

《信号与系统A(2)》课程自学报告 实施报告 题目:带通采样定理与软件无线电

带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。 [定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。如果抽样频率f ,10-≤≤N m (3.1-9) )(t x 。 对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。为了避免混叠,延 ) 3.1-11) 综合式( 3.1-12) 这里m m 取零,则上述条件化为 H s f f 2≥(3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 m 取得越大,则符合式(3.1-12)的采样频率会越低。但是m 有一个上限,因为m f f L s 2≤ ,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。 因此

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习 (1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。若直径AB ⊥弦CD 于点E ,则CE=DE , ⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 若CE=DE ,AB 是直径,则⌒ AC=⌒ AD ;⌒ BC=⌒ BD ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD ③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒ BD ④圆的两条平行弦所夹的弧相等。若CD ∥FG ,CD 、FG 为弦,则⌒ FC=⌒ GD 特别提示:①垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 ②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”. (3)垂径定理及推论的应用: 它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。 ①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”; ②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题; 例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题 意得,∵⌒ AB= ×360o=120o3 1∴∠AOB=120o,∴∠AOC=60o,在Rt △AOC 中,∵∠AOC=60o,OA=2,∴OC = OA=1,∴AB=2AC=2=22 122OC AO 3故AB 的长为23练习 一、选择题 1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A 、CM=DM B 、∠ACB=∠ADB C 、AD=2B D D 、∠BCD=∠BDC G A A

抽样定理的理论证明与实际应用分析

信号与线性系统分析综合练习题目:抽样定理的理论证明与实际应用

一、抽样和抽样定理 数字信号处理技术的优势和快速发展使得数字设备和数字媒体广泛应用,如手机、MP3、CD 和DVD 等。抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分,又称取样定理、采样定理,是由奈奎斯特(Nyquist)和香农(Shannon)分别于1928年和1949年提出的,故又称为奈奎斯特抽样定理或香农抽样定理。 “抽样”就是利用周期抽样脉冲p(t)从连续信号f(t)中抽取离散样值的过程,得到的离散信号为抽样信号,也称为抽样信号,以?s (t )表示。抽样过程的数学模型就是连续信号与抽样脉冲序列相乘。 抽样过程所应遵循的规律,称抽样定理。抽样定理说明抽样频率与信号频谱之间的关系,是连续信号离散化的基本依据。在进行模A/D 转换过程中,当抽样频率f s.max 大于信号中最高频率f max 的2倍时(f s.max >2f max ),抽样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证抽样频率为信号最高频率的5~10倍。 抽样定理描述了在一定条件下,一个连续的信号完全可以用该信号在等时间间隔上的瞬时样本值表示,这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原来的连续信号。也就是说,抽样定理将连续信号与离散信号之间紧密的联系起来,为连续信号与离散信号的相互转换提供了依据。通过观察抽样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,然后再利用频域时域的对称关系,就能在时域上恢复原信号。 二、时域抽样定理的理论证明 时域抽样定理的完整描述是这样:一个频谱在区间(-ωm ,ωm )以外为零的频带有限信号?(t),可唯一地由其在均匀间隔T s (T s<1/2?m )上的样点值?s (t )=?(nT s )确定。以下为理论证明过程: 根据傅里叶变换和离散傅里叶变换定义,有 ΩΩ=Ω∞∞-?d e j X t x t j a a )(21)(π (1) ωπωππ ωd e e X n x n j j ?-=)(21)( (2) 将抽样过程的时域关系x (n )=x a (nT )带入(1)式,有 ΩΩ=Ω∞∞ -?d e j X n x nt j a )(21)(π (3) 比较(2)(3)式,可以得到 ωωπ πωd e e X d e j X n j j nT j a ??-Ω∞ ∞-=ΩΩ)()( 将模拟角频率Ω和数字角频率ω的关系ω=ΩT 带入上式,得

勾股定理知识讲解

勾股定理知识点 学习要求: 学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来 判断一个三角 形是否是直角三角形。难点是各种拼图的理解和勾股定理的应用。 中考执占: I <7 八、、八\、? 主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合 考查。 一、探索勾股定理: 1?勾股定理(重点) 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么a 2 b 2 c 2 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方 注:勾股定理揭示的是直角三角形三边关系的定理, 只使用与直角三角形。 使用勾股定理时 首先确定最长边即斜边。 2 ?勾股定理的证明(难点) 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法二:见右图 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2 _ 2 2 2 大正方形面积为 S (a b ) a 2ab b 所以a 2 b 2 c 2 1 11 方法三:S 梯形 (a b ) (a b ) , S 梯形2S ADE S ABE 2 2 2 得证 方法一:4S S 正方形EFGH St 方形 ABCD , 1 4 ab 2 (b a)2 c 2,化简可证. b a

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.doczj.com/doc/c68366388.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.doczj.com/doc/c68366388.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

C圆的基本知识和垂径定理

学科教师辅导讲义讲义编号_09sh1sx000812

(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等; 直径所对的圆周角是直角;900的圆周角所对的弦是直径. (4)圆心角与圆周角的关系. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. 3.三角形的内心和外心 (1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心. (3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 4.与圆有关常用的公式 周长:2 c R π =面积2 s R π =弧长 180 n R lπ =扇形面积2 360 n R lπ = 二、典型例题 【例1】如图,AB是⊙O的弦,点C是弦AB上一点,且BC︰CA=2︰1,连结OC并延长交⊙O于D,又DC=2厘米,OC=3厘米,则圆心O到AB的距离为。 (该提主要考查的是圆中弦心距的求解方法) 练习:1.(08上海统一学业)如图,从圆O外一点P引圆O的两条切线PA PB ,,切点分别为A B ,.如果60 APB ∠=o,8 PA=,那么弦AB的长是() A.4 B.8 C.43D.83P B A O

2. 在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =_____ 3.如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。 【例2】(06上海中考)本市新建的滴水湖是圆形人工湖。为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图所示。请你帮他们求出滴水湖的半径。 (该题主要考查了学生对垂径定理的掌握情况,要学会针对实际问题通过建立数学模型来求解,数形结合的思想) 练习:1.(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆 形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块 A B C ?例1图 H E F G O D C B A

取样定理的证明及其应用

取样定理及其应用 测控五班穆可汗 学号:3013-202-136 引言: 取样定理论述了在一定条件下,一个连续信号完全可以用离散样本值表示、这些样本值包含了该连续信号的全部信息,利用这些样本值可以恢复原信号、可以说,取样定理在连续信号与离散信号之间架起了一座桥梁、为其互为转换提供了理论依据。 所谓“取样”就是利用取样脉冲序列s(t)从连续信号f(t)中“抽取”一系列离散样本值的过程、这样得到的离散信号称为取样信号fs(t) 、它是对信号进行数字处理的第一个环节。 一、定理证明: 设的频谱为离散信号x(n)的频谱为,由连续信号傅立叶变换和序列傅立叶变换可知: 在(1)式中令t=nT (T为时域取样周期,取样频率fs=1/T),可得: 对(3)式作变量代换,令,可得:

令对(4)整理可得, 对比(2)式和(5)式可得 上式给出了连续信号频谱与离散信号频谱的关系式从中可以看出,由连续信号的频谱可以通过以下两步得到离散信号的频谱:第一步,对连续信号的频谱进行换元、水平轴上的尺度展缩,信号的最高角频率由变化到;第二步,对频谱图以2π的整数倍为间隔进行平移,然后进行叠加,其幅值变为原来的1/T。由以上过程可知,只要,即原连续信号的最高频率,则频谱平移叠加后不会发生频谱的混叠,可以无失真地换原出原连续信号,取样定理得证。 二、取样定理的应用:基于带通取样定理的高速数据采集系统的硬件电路设计 数据采集是获得信息的一种基本手段。随着信息科学技术的迅速发展,它已经成为信息领域中不可缺少的部分。随着科技的不断进步,人们对数据采集系统的要求也越来越高,不仅要求取样的精度高,数据转换速度快,还要求具有抗干扰能力。

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

相关主题
文本预览
相关文档 最新文档