受弯构件计算
- 格式:ppt
- 大小:2.06 MB
- 文档页数:84
受弯构件配筋率计算公式受弯构件配筋率计算公式是用于计算受弯构件中钢筋的配筋率,也称为配筋密度或配筋系数。
配筋率是一个重要的参数,可以反映出受弯构件的抗弯刚度和承载能力。
在设计和施工过程中,正确计算和确定受弯构件的配筋率是非常重要的,可以确保受弯构件的安全性和可靠性。
受弯构件的配筋率计算公式如下:ρ=(A_s/b)×100其中,ρ表示配筋率,A_s表示钢筋截面积,b表示截面宽度。
配筋率的单位是百分比,表示钢筋面积占整个截面面积的比例。
受弯构件的配筋率的计算过程如下:1.首先,根据受弯构件的设计要求和规范要求确定截面宽度b。
2.然后,根据受弯构件的设计要求和规范要求确定钢筋的尺寸和数量。
3.接下来,计算钢筋的总面积A_s。
可以通过将每根钢筋的面积相加来计算总面积。
4.最后,根据配筋率的计算公式,将总面积A_s除以截面宽度b,然后乘以100,得到配筋率。
需要注意的是,在计算配筋率时,应该考虑受弯构件的所有钢筋。
如果受弯构件中有多层钢筋,应该将每层钢筋的面积相加来计算总面积。
在实际应用中,根据受弯构件的具体情况和设计要求,可以根据配筋率的计算结果选择合适的钢筋尺寸和数量,以确保受弯构件的抗弯刚度和承载能力。
受弯构件的配筋率计算是土木工程中的一个重要内容,对于受弯构件的设计和施工具有重要的指导作用。
在实际应用中,需要根据具体情况和要求,灵活运用配筋率的计算方法,以确保受弯构件的安全可靠。
因此,工程师和技术人员需要熟练掌握受弯构件配筋率的计算方法,并结合实际情况进行合理选择和设计。
受弯构件计算技术手册受弯构件计算主要遵循《钢结构设计规范》GB50017-2003 第5章轴心受力构件和拉弯、压弯构件的计算第5.2节拉弯构件和压弯构件及第4章受弯构件的计算内容进行计算。
软件内受弯构件指仅受弯矩作用,无轴力作用状态下,构件的验算。
一:受弯构件强度的计算根据《钢结构设计规范》5.2拉弯构件和压弯构件规定,5.2.1弯矩作用在主平面内的拉弯构件和压弯构件,其强度应按下列规定计算:参数说明:为构件所受轴力;为构件净截面面积;为构件所受绕X轴弯矩作用;为构件所受绕Y轴弯矩作用;为与X轴截面模量相应的截面塑性发展系数;为与Y轴截面模量相应的截面塑性发展系数;为与X轴相关的净截面模量;为与Y轴相关的净截面模量;为钢材抗拉、抗压、抗弯强度设计值。
其中,、、均需用户根据构件实际受力情况给出具体的数值。
为构件净截面面积,软件计算过程中直接利用截面所计算出的截面实际面积(受弯构件无轴力作用状态下,此项最终比值为0)。
、为净截面模量,因软件计算过程中直接取截面计算过程中的毛截面模量数值,所以此处引入抵抗矩系数,用于调整净截面模量与毛截面模量的比值,用户可根据实际情况自行计算,并将所得数值输入。
参数计算过程可参见截面计算用户手册:《钢板截面计算用户手册》、《等边角钢截面计算用户手册》、《不等边角钢截面计算用户手册》、《工字钢截面计算用户手册》、《槽钢截面计算用户手册》、《圆钢管截面计算用户手册》、《热轧H型钢截面计算用户手册》、《T型钢截面计算用户手册》、《方钢管截面计算用户手册》、《矩形钢管截面计算用户手册》、《卷边薄壁C型钢截面计算用户手册》、《卷边薄壁Z型钢截面计算用户手册》、《焊接H型钢截面计算用户手册》、《箱型截面计算用户手册》、《增强H型截面计算用户手册》、《增强箱型截面计算用户手册》、《T形与圆管组合截面计算用户手册》、《单腹板两圆管抗弯组合截面计算用户手册》、《双腹板两圆管抗弯组合截面计算用户手册》、《闭口双C形组合截面计算用户手册》、《开口双C形组合截面计算用户手册》、《开口双槽钢组合截面计算用户手册》、《闭口双槽钢组合截面计算用户手册》、《等边双角钢组合截面计算用户手册》、《短肢相连不等边双角钢组合截面计算用户手册》、《长肢相连不等边双角钢组合截面计算用户手册》、《十字等边双角钢组合截面计算用户手册》、《十字等边四角钢组合截面计算用户手册》、《实腹角钢H型钢组合截面计算用户手册》、《实腹双槽钢组合截面计算用户手册》、《实腹双H型钢组合截面计算用户手册》、《实腹TH型钢组合截面计算用户手册》、《实腹槽钢H型钢组合截面计算用户手册》、《十字柱型钢组合截面计算用户手册》、《双槽钢双肢柱组合截面计算用户手册》、《双H型钢双肢柱组合截面计算用户手册》、《双肢角钢H型钢组合截面计算用户手册》、《双肢槽钢H型钢柱组合截面计算用户手册》、《四肢角钢柱组合截面计算用户手册》、《三肢圆管柱组合截面计算用户手册》、《四肢圆管柱组合截面计算用户手册》,上述截面种类中,用户可根据需要选择相符合的截面对应手册查看。
受弯构件的计算内容受弯构件的计算内容一、受弯构件总体计算1、受弯构件的验算(1)受弯构件的弯矩计算受弯构件的弯矩计算实际上是受弯构件的受力分析,根据计算结果确定受弯构件的轴心剪力和弯矩,进而判定构件的强度和刚度是否足够。
(2)受弯构件的应力计算受弯构件的应力计算,实际上是受弯构件的位移分析,根据计算结果确定受弯构件的柔度,最大应力和抗弯剪能力是否足够。
(3)受弯构件的变形计算受弯构件的变形计算实际上是对受弯构件弯曲变形的确定,以及受弯构件的变形量是否超出允许范围。
2、受弯构件的设计(1)受弯构件的尺寸及截面组成受弯构件在设计时,一般会首先根据结构形式和受力条件选定受弯构件的尺寸。
根据受弯构件的尺寸,确定构件的截面组成,以确定受弯构件的结构尺寸及强度刚度。
(2)受弯构件的构件选择除了自行设计外,受弯构件的设计还可以采用模块化设计原理,根据要求选择标准构件,以简化受弯构件的设计。
二、受弯构件分析计算1、受弯构件的强度分析受弯构件的结构强度分析是受弯构件的结构性能和整体结构安全性的主要评价指标之一。
它主要分析受弯构件在极限载荷作用下的承载能力,包括构件的弹性极限、抗拉极限、剪切极限和抗剪极限等。
2、受弯构件的刚度分析受弯构件的结构刚度分析是受弯构件的结构性能和整体结构安全性的主要评价指标之一。
它主要分析受弯构件在载荷作用下的变形、变位、弹性模量及其变形和变位的变化规律等。
3、受弯构件的振动分析受弯构件的振动分析是受弯构件结构性能和整体安全性的另一重要评价指标。
它主要分析受弯构件在静止状态下和动力作用下的频率和振动形态,以确定受弯构件的振动特性及它们之间的关系。
附录G 深受弯构件G.0.1简支钢筋混凝土单跨深梁可采用由一般方法计算的内力进行截面设计;钢筋混凝土多跨连续深梁应采用由二维弹性分析求得的内力进行截面设计。
G.0.2钢筋混凝土深受弯构件的正截面受弯承载力应符合下列规定:M≤fAz(G.0.2-1)sy z=α(h-0.5x)(G.0.2-2)0dα=0.80+0.04l/h(G.0.3-3)0d 当l<h 时,取内力臂z=0.6l。
00式中:x——截面受压区高度,按本规范公式第 6.2 节计算;当x<0.2h时,取x=00.2h;0——截面有效高度:h/h≤2 时,跨中截面al,其中h h为截面高度;当h-a=s 000s取0.1h,支座截面a取0.2h;当l/h>2 时,a按受拉区纵向钢筋截面重心至受拉边s s 0缘的实际距离取用。
G.0.3钢筋混凝土深受弯构件的受剪截面应符合下列条件:当h/b 不大于 4 时w(G.0.3-1)当h/b 不小于 6 时w)G.0.3-2(当h/b 大于 4 且小于 6 时,按线性内插法取用。
w式中:V——剪力设计值;——计算跨度,当l 小于h 时,取2h;l 00b——矩形截面的宽度以及T形、I形截面的腹板厚度;——截面高度、截面有效高度;h、h0——截面的腹板高度:对矩形截面,取有效高度h;对T形截面,取有效高度h0w减去翼缘高度;对I形和箱型截面,取腹板净高;——混凝土强度影响系数,按本规范第 6.5 节的规定取用。
βc G.0.4矩形、T形和I形截面的深受弯构件,在均布荷载作用下,当配有竖向分布钢筋和水平分布钢筋时,其斜截面的受剪承载力应符合下列规定:(G.0.4-1)对集中荷载作用下的深受弯构件(包括作用有多种荷载,且其中集中荷载对支座截面所产生的剪力值占总剪力值的75%以上的情况),其斜截面的受剪承载力应符合下列规定:(G.0.4-2)式中:λ——计算剪跨比:当l/h 不大于 2.0 时,取λ=0.25;当l/h 大于 2 且小于 5 00时,取λ=a/h,其中,a 为集中荷载到深受弯构件支座的水平距离;λ的上限值为0(0.92l/h-1.58),下限值为(0.42l/h-0.58);00l/h——跨高比,当l/h 小于 2 时,取 2.0。
一、受弯构件(一)在主平面内受弯的实腹式构件抗弯强度应符合下列规定1、翼缘板弯曲正应力满足下列要求:双向受弯的实腹式构件:f d ≥γ0(M y W y,eff +M z W z,eff )式中:γ0——结构重要性系数;M y 、M z ——计算截面的弯矩设计值;W y,eff 、W z,eff ——有效截面相对于y 轴和z 轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
2、腹板剪应力应满足下列要求。
闭口截面腹板剪应力应按剪力流理论计算。
γ0τ≤f vd式中:γ0——结构重要性系数;τ——剪应力;f vd ——钢材的抗剪强度设计值。
3、平面内受弯实腹式构件腹板在正应力 σx 和剪应力 τ 共同作用时,应满足下列要求。
γ0√(σx f d )2+(τf vd)2≤1 式中:σx ——x 方向正应力;f d ——钢材的抗拉、抗压和抗弯强度设计值。
(二)受弯构件的整体稳定性应符合下列规定1、等截面实腹式受弯构件,应按下列规定验算整体稳定。
γ0(βm,yM y χLT,y M Rd,y +M z M Rd,z )≤1 γ0(M y M Rd,y +βm,z M z χLT,z M Rd,z)≤1 M Rd,y =W y,eff f dM Rd,z =W z,eff f dλLT,y =√W y,eff f y M cr,y ,λLT,z =√W z,eff f y M cr,z式中: M y 、M z ——构件最大弯矩;βm,y、βm,z——等效弯矩系数;χLT,y、χLT,z——M y和M z作用平面内的弯矩单独作用下,构件弯扭失稳模态的整体稳定折减系数;λ̅̅̅LT,y、λLT,z——弯扭相对长细比;W y,eff、W z,eff——有效截面相对于y轴和z轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
M cr,y、M cr,z——M y和M z作用平面内的弯矩单独作用下,考虑约束影响的构件弯扭失稳模态的整体弯扭弹性屈曲弯矩,可采用有限元方法计算。